blob: f5e0fc59d82704cdf218949873f8df34ce1ef6c5 [file] [log] [blame]
#include <Wire.h>
#include <Servo.h>
#include <Max3421e.h>
#include <Usb.h>
#include <AndroidAccessory.h>
#include <CapSense.h>
#define LED3_RED 2
#define LED3_GREEN 4
#define LED3_BLUE 3
#define LED2_RED 5
#define LED2_GREEN 7
#define LED2_BLUE 6
#define LED1_RED 8
#define LED1_GREEN 10
#define LED1_BLUE 9
#define SERVO1 11
#define SERVO2 12
#define SERVO3 13
#define TOUCH_RECV 14
#define TOUCH_SEND 15
#define RELAY1 A0
#define RELAY2 A1
#define LIGHT_SENSOR A2
#define TEMP_SENSOR A3
#define BUTTON1 A6
#define BUTTON2 A7
#define BUTTON3 A8
#define JOY_SWITCH A9 // pulls line down when pressed
#define JOY_nINT A10 // active low interrupt input
#define JOY_nRESET A11 // active low reset output
AndroidAccessory acc("Google, Inc.",
"DemoKit",
"DemoKit Arduino Board",
"1.0",
"http://www.android.com",
"0000000012345678");
Servo servos[3];
CapSense touch_robot = CapSense(TOUCH_SEND, TOUCH_RECV); // 10M ohm resistor on demo shield
void setup();
void loop();
void init_buttons()
{
pinMode( BUTTON1, INPUT );
pinMode( BUTTON2, INPUT );
pinMode( BUTTON3, INPUT );
digitalWrite( BUTTON1, HIGH ); // enable the internal pullups
digitalWrite( BUTTON2, HIGH );
digitalWrite( BUTTON3, HIGH );
}
void init_relays()
{
pinMode( RELAY1, OUTPUT );
pinMode( RELAY2, OUTPUT );
}
void init_leds()
{
digitalWrite( LED1_RED, 1 );
digitalWrite( LED1_GREEN, 1 );
digitalWrite( LED1_BLUE, 1 );
pinMode( LED1_RED, OUTPUT );
pinMode( LED1_GREEN, OUTPUT );
pinMode( LED1_BLUE, OUTPUT );
digitalWrite( LED2_RED, 1 );
digitalWrite( LED2_GREEN, 1 );
digitalWrite( LED2_BLUE, 1 );
pinMode( LED2_RED, OUTPUT );
pinMode( LED2_GREEN, OUTPUT );
pinMode( LED2_BLUE, OUTPUT );
digitalWrite( LED3_RED, 1 );
digitalWrite( LED3_GREEN, 1 );
digitalWrite( LED3_BLUE, 1 );
pinMode( LED3_RED, OUTPUT );
pinMode( LED3_GREEN, OUTPUT );
pinMode( LED3_BLUE, OUTPUT );
}
void init_joystick( int threshold );
byte b1, b2, b3, c;
void setup()
{
Serial.begin( 115200 );
Serial.print("\r\nStart");
init_leds();
init_relays();
init_buttons();
init_joystick( 5 ); // initialize with thresholding enabled, dead zone of 5 units
touch_robot.set_CS_AutocaL_Millis(0xFFFFFFFF); // autocalibrate OFF
servos[0].attach(SERVO1);
servos[0].write(90);
servos[1].attach(SERVO2);
servos[1].write(90);
servos[2].attach(SERVO3);
servos[2].write(90);
b1 = digitalRead(BUTTON1);
b2 = digitalRead(BUTTON2);
b3 = digitalRead(BUTTON3);
c = 0;
acc.powerOn();
}
void loop()
{
byte err;
byte idle;
static byte count = 0;
byte msg[3];
long touchcount;
if (acc.isConnected()) {
int len = acc.read(msg, sizeof(msg), 1);
int i;
byte b;
uint16_t val;
int x, y;
char c0;
if (len > 0) {
// XXX: assumes only one command per packet
Serial.print(msg[0], HEX);
Serial.print(":");
Serial.print(msg[1], HEX);
Serial.print(":");
Serial.println(msg[2], HEX);
if (msg[0] == 0x2) {
if (msg[1] == 0x0)
analogWrite( LED1_RED, 255 - msg[2]);
else if (msg[1] == 0x1)
analogWrite( LED1_GREEN, 255 - msg[2]);
else if (msg[1] == 0x2)
analogWrite( LED1_BLUE, 255 - msg[2]);
else if (msg[1] == 0x3)
analogWrite( LED2_RED, 255 - msg[2]);
else if (msg[1] == 0x4)
analogWrite( LED2_GREEN, 255 - msg[2]);
else if (msg[1] == 0x5)
analogWrite( LED2_BLUE, 255 - msg[2]);
else if (msg[1] == 0x6)
analogWrite( LED3_RED, 255 - msg[2]);
else if (msg[1] == 0x7)
analogWrite( LED3_GREEN, 255 - msg[2]);
else if (msg[1] == 0x8)
analogWrite( LED3_BLUE, 255 - msg[2]);
else if (msg[1] == 0x10)
servos[0].write(map(msg[2], 0, 255, 0, 180));
else if (msg[1] == 0x11)
servos[1].write(map(msg[2], 0, 255, 0, 180));
else if (msg[1] == 0x12)
servos[2].write(map(msg[2], 0, 255, 0, 180));
} else if (msg[0] == 0x3) {
if (msg[1] == 0x0)
digitalWrite( RELAY1, msg[2] ? HIGH : LOW );
else if (msg[1] == 0x1)
digitalWrite( RELAY2, msg[2] ? HIGH : LOW );
}
}
msg[0] = 0x1;
b = digitalRead(BUTTON1);
if (b != b1) {
msg[1] = 0;
msg[2] = b ? 0 : 1;
acc.write(msg, 3);
b1 = b;
}
b = digitalRead(BUTTON2);
if (b != b2) {
msg[1] = 1;
msg[2] = b ? 0 : 1;
acc.write(msg, 3);
b2 = b;
}
b = digitalRead(BUTTON3);
if (b != b3) {
msg[1] = 2;
msg[2] = b ? 0 : 1;
acc.write(msg, 3);
b3 = b;
}
switch (count++ % 0x10) {
case 0:
val = analogRead(TEMP_SENSOR);
msg[0] = 0x4;
msg[1] = val >> 8;
msg[2] = val & 0xff;
acc.write(msg, 3);
break;
case 0x4:
val = analogRead(LIGHT_SENSOR);
msg[0] = 0x5;
msg[1] = val >> 8;
msg[2] = val & 0xff;
acc.write(msg, 3);
break;
case 0x8:
read_joystick(&x, &y);
msg[0] = 0x6;
msg[1] = constrain(x, -128, 127);
msg[2] = constrain(y, -128, 127);
acc.write(msg, 3);
break;
/* captoutched needs to be asynchonous */
case 0xc:
touchcount = touch_robot.capSense(5);
c0 = touchcount > 750;
if (c0 != c) {
msg[0] = 0x1;
msg[1] = 3;
msg[2] = c0;
acc.write(msg, 3);
c = c0;
}
break;
}
}
delay(10);
}
// ==============================================================================
// Austria Microsystems i2c Joystick
/*
If a threshold is provided, the dead zone will be programmed such that interrupts will not
be generated unless the threshold is exceeded.
Note that if you use that mode, you will have to use passage of time with no new interrupts
to detect that the stick has been released and has returned to center.
If you need to explicitly track return to center, pass 0 as the threshold. "Center" will
still bounce around a little
*/
void init_joystick( int threshold )
{
byte status = 0;
pinMode( JOY_SWITCH, INPUT );
digitalWrite( JOY_SWITCH, HIGH ); // enable the internal pullup
pinMode( JOY_nINT, INPUT );
digitalWrite( JOY_nINT, HIGH ); // enable the internal pullup
pinMode( JOY_nRESET, OUTPUT );
digitalWrite( JOY_nRESET, 1 );
delay(1);
digitalWrite( JOY_nRESET, 0 );
delay(1);
digitalWrite( JOY_nRESET, 1 );
Wire.begin();
do {
status = read_joy_reg( 0x0f ); // XXX need timeout
} while ((status & 0xf0) != 0xf0);
write_joy_reg( 0x2e, 0x86 ); // invert magnet polarity setting, per datasheet
calibrate_joystick( threshold ); // calibrate & set up dead zone area
}
int offset_X, offset_Y;
void calibrate_joystick( int dz )
{
char iii;
int x_cal = 0;
int y_cal = 0;
write_joy_reg( 0x0f, 0x00 ); // Low Power Mode, 20ms auto wakeup
// INTn output enabled
// INTn active after each measurement
// Normal (non-Reset) mode
delay(1);
read_joy_reg( 0x11 ); // dummy read of Y_reg to reset interrupt
for( iii = 0; iii != 16; iii++ ) { // read coords 16 times & average
while( !joystick_interrupt() ) // poll for interrupt
;
x_cal += read_joy_reg( 0x10 ); // X pos
y_cal += read_joy_reg( 0x11 ); // Y pos
}
offset_X = -(x_cal>>4); // divide by 16 to get average
offset_Y = -(y_cal>>4);
//sprintf(msgbuf, "offsets = %d, %d\n", offset_X, offset_Y);
//Serial.print(msgbuf);
write_joy_reg( 0x12, dz - offset_X ); // Xp, LEFT threshold for INTn
write_joy_reg( 0x13, -dz - offset_X ); // Xn, RIGHT threshold for INTn
write_joy_reg( 0x14, dz - offset_Y ); // Yp, UP threshold for INTn
write_joy_reg( 0x15, -dz - offset_Y ); // Yn, DOWN threshold for INTn
if ( dz ) // dead zone threshold detect requested?
write_joy_reg( 0x0f, 0x04 ); // Low Power Mode, 20ms auto wakeup
// INTn output enabled
// INTn active when movement exceeds dead zone
// Normal (non-Reset) mode
}
void read_joystick( int *x, int *y )
{
*x = read_joy_reg( 0x10 ) + offset_X;
*y = read_joy_reg( 0x11 ) + offset_Y; // reading Y clears the interrupt
}
char joystick_interrupt()
{
return ( digitalRead( JOY_nINT ) == 0 );
}
#define JOY_I2C_ADDR 0x40
char read_joy_reg( char reg_addr )
{
char c;
Wire.beginTransmission( JOY_I2C_ADDR );
Wire.send( reg_addr );
Wire.endTransmission();
Wire.requestFrom( JOY_I2C_ADDR, 1 );
while(Wire.available())
c = Wire.receive();
return c;
}
void write_joy_reg( char reg_addr, char val )
{
Wire.beginTransmission( JOY_I2C_ADDR );
Wire.send( reg_addr );
Wire.send( val );
Wire.endTransmission();
}