blob: 1795e2cb89bf1cf304a737cbbda1387f191021a0 [file] [log] [blame]
/*
* Synaptics DSX touchscreen driver
*
* Copyright (C) 2012 Synaptics Incorporated
*
* Copyright (C) 2012 Alexandra Chin <alexandra.chin@tw.synaptics.com>
* Copyright (C) 2012 Scott Lin <scott.lin@tw.synaptics.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/gpio.h>
#include <linux/ctype.h>
#include <linux/jiffies.h>
#include <linux/semaphore.h>
#include <linux/regulator/consumer.h>
#include <linux/input/synaptics_rmi_dsx.h>
#include "synaptics_dsx_i2c.h"
#ifdef KERNEL_ABOVE_2_6_38
#include <linux/input/mt.h>
#endif
#define DRIVER_NAME "synaptics_dsx_i2c"
#define INPUT_PHYS_NAME "synaptics_dsx_i2c/input0"
#define TYPE_B_PROTOCOL
#define NO_0D_WHILE_2D
/*
#define REPORT_2D_Z
*/
#define REPORT_2D_W
#define RPT_TYPE (1 << 0)
#define RPT_X_LSB (1 << 1)
#define RPT_X_MSB (1 << 2)
#define RPT_Y_LSB (1 << 3)
#define RPT_Y_MSB (1 << 4)
#define RPT_Z (1 << 5)
#define RPT_WX (1 << 6)
#define RPT_WY (1 << 7)
#define RPT_DEFAULT (RPT_TYPE | RPT_X_LSB | RPT_X_MSB | RPT_Y_LSB | RPT_Y_MSB)
#define EXP_FN_DET_INTERVAL 1000 /* ms */
#define POLLING_PERIOD 1 /* ms */
#define SYN_I2C_RETRY_TIMES 10
#define MAX_ABS_MT_TOUCH_MAJOR 15
#define SYN_MAX_BUTTONS 4
#define F01_STD_QUERY_LEN 21
#define F01_BUID_ID_OFFSET 18
#define F11_STD_QUERY_LEN 9
#define F11_STD_CTRL_LEN 10
#define F11_STD_DATA_LEN 12
#define F12_STD_QUERY_LEN 10
#define F12_STD_CTRL_LEN 4
#define F12_STD_DATA_LEN 80
#define NORMAL_OPERATION (0 << 0)
#define SENSOR_SLEEP (1 << 0)
#define NO_SLEEP_OFF (0 << 2)
#define NO_SLEEP_ON (1 << 2)
#define ONE_TOUCH_RECALIBRATION 49
#define ONE_TOUCH_SUPPRESSION 5
#define MULTI_TOUCH_SUPPRESSION 1
#define F11_DELTA_MAX (2*MULTI_TOUCH_SUPPRESSION)
#define X_1T_SUPPRESSION ONE_TOUCH_SUPPRESSION
#define Y_1T_SUPPRESSION ONE_TOUCH_SUPPRESSION
#define X_MT_SUPPRESSION MULTI_TOUCH_SUPPRESSION
#define Y_MT_SUPPRESSION MULTI_TOUCH_SUPPRESSION
#define TYPE_FINGER (1 << 0)
#define TYPE_STYLUS (1 << 1)
#define RESET_GPIO_NAME "touch_reset"
#define IRQ_GPIO_NAME "touch_irq"
#define SYDBG(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ##args)
#define SYDBG_REG(subpkt, fld) SYDBG(#subpkt "." #fld " = 0x%02X\n", subpkt.fld)
/* F12 packet register description */
static struct {
unsigned char max_x_lsb;
unsigned char max_x_msb;
unsigned char max_y_lsb;
unsigned char max_y_msb;
} f12_c08_0;
static struct {
unsigned char recv_pitch_lsb;
unsigned char recv_pitch_msb;
unsigned char trans_pitch_lsb;
unsigned char trans_pitch_msb;
} f12_c08_1;
static struct {
unsigned char low_recv_clip;
unsigned char high_recv_clip;
unsigned char low_trans_clip;
unsigned char high_trans_clip;
} f12_c08_2;
static struct {
unsigned char num_2d_recv;
unsigned char num_2d_trans;
} f12_c08_3;
static struct f12_c20_0_type {
unsigned char x_suppression;
unsigned char y_suppression;
} f12_c20_0;
static struct {
union {
struct {
unsigned char report_always:1;
unsigned char reserved:7;
} __packed;
unsigned char data[1];
};
} f12_c20_1;
static struct f12_c23_0_type {
union {
struct {
unsigned char finger:1;
unsigned char stylus:1;
unsigned char palm:1;
unsigned char unclassified:1;
unsigned char reserved:4;
} __packed;
unsigned char data[1];
};
} f12_c23_0;
static struct f12_c23_1_type {
unsigned char max_num_reported_objects;
} f12_c23_1;
static struct {
unsigned char reported_bytes_per_object;
} f12_c28_0;
static struct synaptics_rmi4_subpkt f12_c08[] = {
RMI4_SUBPKT(f12_c08_0),
RMI4_SUBPKT(f12_c08_1),
RMI4_SUBPKT(f12_c08_2),
RMI4_SUBPKT(f12_c08_3),
};
static struct synaptics_rmi4_subpkt f12_c20[] = {
RMI4_SUBPKT(f12_c20_0),
RMI4_SUBPKT(f12_c20_1),
};
static struct synaptics_rmi4_subpkt f12_c23[] = {
RMI4_SUBPKT(f12_c23_0),
RMI4_SUBPKT(f12_c23_1),
};
static struct synaptics_rmi4_subpkt f12_c28[] = {
RMI4_SUBPKT(f12_c28_0),
};
static struct synaptics_rmi4_packet_reg f12_ctrl_reg_array[] = {
RMI4_NO_REG(), /*00*/
RMI4_NO_REG(), /*01*/
RMI4_NO_REG(), /*02*/
RMI4_NO_REG(), /*03*/
RMI4_NO_REG(), /*04*/
RMI4_NO_REG(), /*05*/
RMI4_NO_REG(), /*06*/
RMI4_NO_REG(), /*07*/
RMI4_REG(f12_c08), /*08*/
RMI4_NO_REG(), /*09*/
RMI4_NO_REG(), /*10*/
RMI4_NO_REG(), /*11*/
RMI4_NO_REG(), /*12*/
RMI4_NO_REG(), /*13*/
RMI4_NO_REG(), /*14*/
RMI4_NO_REG(), /*15*/
RMI4_NO_REG(), /*16*/
RMI4_NO_REG(), /*17*/
RMI4_NO_REG(), /*18*/
RMI4_NO_REG(), /*19*/
RMI4_REG(f12_c20), /*20*/
RMI4_NO_REG(), /*21*/
RMI4_NO_REG(), /*22*/
RMI4_REG(f12_c23), /*23*/
RMI4_NO_REG(), /*24*/
RMI4_NO_REG(), /*25*/
RMI4_NO_REG(), /*26*/
RMI4_NO_REG(), /*27*/
RMI4_REG(f12_c28), /*28*/
};
static struct synaptics_rmi4_func_packet_regs f12_ctrl_regs = {
.base_addr = 0,
.nr_regs = ARRAY_SIZE(f12_ctrl_reg_array),
.regs = f12_ctrl_reg_array
};
struct synaptics_dsx_hob {
struct f12_c20_0_type f12_c20_0;
struct f12_c23_0_type f12_c23_0;
struct f12_c23_1_type f12_c23_1;
unsigned char f01_c9;
};
/* global variable init-ed from kernel cmd line */
static int touch_test_mode;
int __init touch_test_mode_init(char *s)
{
touch_test_mode = 1;
pr_info("touch driver in TEST mode\n");
return 1;
}
__setup("touch_test_mode", touch_test_mode_init);
static struct synaptics_dsx_hob hob_data;
static unsigned char tsb_buff_clean_flag = 1;
#define LAST_SUBPACKET_ROW_IND_MASK 0x80
#define NR_SUBPKT_PRESENCE_BITS 7
int synaptics_rmi4_scan_packet_reg_info(
struct synaptics_rmi4_data *rmi4_data,
unsigned short query_addr,
unsigned short regs_base_addr,
struct synaptics_rmi4_func_packet_regs *regs)
{
unsigned char sz, mask;
int ii, jj, r, s, retval;
unsigned short r_offset;
unsigned short addr = query_addr;
unsigned char data[255];
for (r = 0; r < regs->nr_regs; ++r) {
regs->regs[r].offset = -1;
regs->regs[r].size = 0;
for (s = 0; s < regs->regs[r].nr_subpkts; ++s) {
regs->regs[r].subpkt[s].present = 0;
if (regs->regs[r].subpkt[s].data &&
regs->regs[r].subpkt[s].size)
memset(regs->regs[r].subpkt[s].data, 0,
regs->regs[r].subpkt[s].size);
}
}
regs->base_addr = regs_base_addr;
retval = rmi4_data->i2c_read(rmi4_data, addr, &sz, 1);
pr_debug("size of reg presence = %d\n", sz);
if (retval < 0)
return retval;
if (!sz)
return -EIO;
/* Scan register presence */
retval = rmi4_data->i2c_read(rmi4_data, ++addr, data, sz);
if (retval < 0)
return retval;
if (!data[0]) {
pr_err("packet register size greater 255 bytes"
" not supported\n");
return -ENOSYS;
}
ii = 1;
for (r = 0, r_offset = 0; ii < sz; ++ii) {
pr_debug("reg presence [%d] = 0x%02x\n", ii, data[ii]);
for (jj = 0, mask = 1; jj < 8; ++jj, ++r, mask <<= 1) {
struct synaptics_rmi4_packet_reg *reg = regs->regs + r;
int present = (data[ii] & mask) != 0;
int allocated = r < regs->nr_regs;
int expected = allocated && reg->expected;
if (!present || !expected) {
if (allocated && present)
reg->offset = r_offset++;
if (present != expected)
pr_debug(" reg: r%d"
" is%s present, but was%s"
" expected\n", r,
present ? "" : " NOT",
expected ? "" : " NOT");
continue;
}
pr_debug(" r%d offset = %d\n", r, r_offset);
reg->offset = r_offset++;
}
}
/* Scan register size and subpacket presence*/
sz = data[0];
pr_debug("subpacket presence sz = %d\n", sz);
retval = rmi4_data->i2c_read(rmi4_data, ++addr, data, sz);
if (retval < 0)
return retval;
for (r = 0, ii = 0; r < regs->nr_regs && ii < sz; ++r) {
unsigned int expected_reg_size;
struct synaptics_rmi4_packet_reg *reg = regs->regs + r;
if (reg->offset == -1)
continue;
reg->size = data[ii++];
pr_debug("r%d sz = %d\n", r, reg->size);
if (!reg->size) {
pr_err("packet register size greater 255 bytes"
" not supported\n");
return -ENOSYS;
}
expected_reg_size = 0;
for (s = 0; ii < sz;) {
pr_debug(" subpkt presence [%d] = 0x%02x\n",
ii, data[ii]);
for (jj = 0, mask = 1; jj < NR_SUBPKT_PRESENCE_BITS;
++jj, ++s, mask <<= 1) {
struct synaptics_rmi4_subpkt *subpkt =
reg->subpkt + s;
int present = (data[ii] & mask) != 0;
int expected = (s < reg->nr_subpkts) &&
subpkt->expected;
if (!present || !expected) {
if (present != expected)
pr_debug(" subpacket:"
" r%d s%d is%s present,"
" but was%s expected\n",
r, s,
present ? "" : " NOT",
expected ? "" : " NOT");
continue;
}
pr_debug(" r%d.s%d is present\n", r, s);
subpkt->present = 1;
expected_reg_size += subpkt->size;
}
if ((data[ii++] & LAST_SUBPACKET_ROW_IND_MASK) == 0)
break;
}
if (reg->expected && reg->size != expected_reg_size) {
pr_debug(" r%d size error:"
" expected %d actual is %d\n",
r, expected_reg_size, reg->size);
}
}
return 0;
}
int synaptics_rmi4_read_packet_reg(
struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_func_packet_regs *regs, unsigned char r)
{
int s, retval, offset;
static unsigned char data[255];
struct synaptics_rmi4_packet_reg *reg = regs->regs + r;
if (r >= regs->nr_regs || !reg->size)
return -EINVAL;
if (reg->offset == -1) {
pr_err("touch register error: can't read r%d - not present\n",
r);
return -ENOENT;
}
retval = rmi4_data->i2c_read(
rmi4_data,
regs->base_addr + reg->offset,
data,
reg->size);
if (retval < 0)
return retval;
for (s = 0, offset = 0; s < reg->nr_subpkts; ++s) {
struct synaptics_rmi4_subpkt *subpkt = reg->subpkt + s;
if (!subpkt->present)
continue;
if ((reg->size - offset) < subpkt->size) {
pr_err("subpkt size error: expected %d bytes,"
" only %d present\n", subpkt->size,
(reg->size - offset));
break;
}
memcpy(subpkt->data, data+offset, subpkt->size);
offset += subpkt->size;
#if defined(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
{
int kk;
pr_debug("read r%d.s%d =\n", r, s);
for (kk = 0; kk < subpkt->size; ++kk)
pr_debug("%02x\n",
((unsigned char *)subpkt->data)[kk]);
}
#endif
}
return retval;
}
int synaptics_rmi4_read_packet_regs(
struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_func_packet_regs *regs)
{
int r;
int retval = 0;
for (r = 0; r < regs->nr_regs; ++r) {
if (regs->regs[r].expected && regs->regs[r].offset >= 0) {
retval = synaptics_rmi4_read_packet_reg(
rmi4_data, regs, r);
if (retval < 0)
break;
}
}
return retval;
}
static int synaptics_rmi4_write_packet_reg(
struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_func_packet_regs *regs, unsigned char r)
{
unsigned char data[255];
struct synaptics_rmi4_packet_reg *reg = regs->regs + r;
int sz, ii, offset, retval;
if (r >= regs->nr_regs || !reg->size)
return -EINVAL;
if (reg->offset == -1) {
pr_err("touch register error: writing to absent register r%d\n",
r);
return -ENOENT;
}
for (ii = 0, sz = 0, offset = 0; ii < reg->nr_subpkts; ++ii) {
struct synaptics_rmi4_subpkt *subpkt = reg->subpkt + ii;
if (!subpkt->present)
continue;
if (subpkt->data && subpkt->size &&
(offset + subpkt->size) < sizeof(data)) {
if ((reg->size - offset) >= subpkt->size) {
memcpy(data + sz, subpkt->data, subpkt->size);
sz += subpkt->size;
} else {
pr_err("expected %d bytes, only %d present\n",
offset + subpkt->size, reg->size);
break;
}
} else {
retval = -EINVAL;
pr_err("bad subpacket or register greater %d bytes\n",
sizeof(data));
goto out;
}
}
retval = rmi4_data->i2c_write(rmi4_data, regs->base_addr + reg->offset,
data, sz);
out:
return retval;
}
int synaptics_dsx_gpio_config(
struct synaptics_dsx_platform_data *pdata, bool enable)
{
int retval = 0;
if (enable) {
if (!gpio_is_valid(pdata->irq_gpio)) {
pr_err("invalid %s\n", IRQ_GPIO_NAME);
retval = -EINVAL;
}
retval = gpio_request(pdata->irq_gpio, IRQ_GPIO_NAME);
if (retval) {
pr_err("unable to request %s [%d]: rc=%d\n",
IRQ_GPIO_NAME, pdata->irq_gpio, retval);
goto err_gpio;
}
retval = gpio_direction_input(pdata->irq_gpio);
if (retval) {
pr_err("unable to set %s [%d] dir: rc=%d\n",
IRQ_GPIO_NAME, pdata->irq_gpio, retval);
goto err_gpio;
}
if (!gpio_is_valid(pdata->reset_gpio)) {
pr_err("invalid %s\n", RESET_GPIO_NAME);
retval = -EINVAL;
}
retval = gpio_request(pdata->reset_gpio, RESET_GPIO_NAME);
if (retval) {
pr_err("unable to request %s [%d]: rc=%d\n",
RESET_GPIO_NAME, pdata->reset_gpio, retval);
goto err_gpio;
}
retval = gpio_direction_output(pdata->reset_gpio, 1);
if (retval) {
pr_err("unable to set %s [%d] dir: rc=%d\n",
RESET_GPIO_NAME, pdata->reset_gpio, retval);
goto err_gpio;
}
} else {
gpio_free(pdata->irq_gpio);
gpio_free(pdata->reset_gpio);
}
err_gpio:
return retval;
}
#if 0
static struct synaptics_dsx_platform_data *
synaptics_dsx_of_init(struct i2c_client *client,
struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned key_codes[SYN_MAX_BUTTONS];
struct synaptics_dsx_platform_data *pdata;
struct device_node *np = client->dev.of_node;
struct synaptics_dsx_cap_button_map *button_map = NULL;
pdata = devm_kzalloc(&client->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(&client->dev, "pdata allocation failure\n");
return NULL;
}
pdata->irq_gpio = of_get_gpio(np, 0);
pdata->reset_gpio = of_get_gpio(np, 1);
memset(key_codes, 0, sizeof(key_codes));
retval = of_property_read_u32_array(np, "synaptics,key-buttons",
key_codes, SYN_MAX_BUTTONS);
if (!retval) {
int ii;
unsigned char *button_codes;
button_map = kzalloc(sizeof(*button_map), GFP_KERNEL);
if (IS_ERR_OR_NULL(button_map)) {
dev_err(&client->dev, "button allocation failure\n");
return NULL;
}
for (ii = 0; ii < SYN_MAX_BUTTONS; ii++)
if (key_codes[ii])
button_map->nbuttons++;
button_codes = kzalloc(button_map->nbuttons, GFP_KERNEL);
if (IS_ERR_OR_NULL(button_codes)) {
dev_err(&client->dev, "button allocation failure\n");
kfree(button_map);
return NULL;
}
for (ii = 0; ii < button_map->nbuttons; ii++)
*(button_codes + ii) = (unsigned char)key_codes[ii];
button_map->map = button_codes;
}
pdata->irq_flags = IRQF_TRIGGER_LOW | IRQF_ONESHOT;
pdata->cap_button_map = button_map;
if (of_property_read_bool(np, "synaptics,gpio-config")) {
pr_notice("using gpio config\n");
pdata->gpio_config = synaptics_dsx_gpio_config;
}
if (of_property_read_bool(np, "synaptics,x-flip")) {
pr_notice("using flipped X axis\n");
pdata->x_flip = true;
}
if (of_property_read_bool(np, "synaptics,y-flip")) {
pr_notice("using flipped Y axis\n");
pdata->y_flip = true;
}
if (of_property_read_bool(np, "synaptics,purge-enabled")) {
pr_notice("using purge\n");
rmi4_data->purge_enabled = true;
}
if (of_property_read_bool(np, "synaptics,reset-on-resume")) {
pr_notice("using reset ic on resume\n");
rmi4_data->reset_on_resume = true;
}
if (of_property_read_bool(np, "synaptics,one-touch-enabled")) {
pr_notice("using one touch while suspended\n");
rmi4_data->one_touch_enabled = true;
}
if (!of_property_read_bool(np, "synaptics,normal-mode")) {
pr_notice("using normal mode settings from tdat\n");
rmi4_data->normal_mode = -1;
} else {
of_property_read_u32(np, "synaptics,normal-mode",
&rmi4_data->normal_mode);
pr_notice("%s mode\n", rmi4_data->normal_mode ?
"using normal" : "enforce no sleep");
}
if (of_property_read_bool(np, "synaptics,hw-reset")) {
pr_notice("using hard ic reset\n");
rmi4_data->hw_reset = true;
}
return pdata;
}
#else
static inline struct synaptics_dsx_platform_data *
synaptics_dsx_of_init(struct i2c_client *client)
{
int ii;
unsigned char *button_codes;
unsigned key_codes[SYN_MAX_BUTTONS];
struct synaptics_dsx_platform_data *pdata = client->dev.platform_data;
struct synaptics_dsx_cap_button_map *button_map = NULL;
memset(key_codes, 0, sizeof(key_codes));
button_map = kzalloc(sizeof(*button_map), GFP_KERNEL);
if (IS_ERR_OR_NULL(button_map)) {
dev_err(&client->dev, "button allocation failure\n");
return NULL;
}
for (ii = 0; ii < SYN_MAX_BUTTONS; ii++)
if (key_codes[ii])
button_map->nbuttons++;
button_codes = kzalloc(button_map->nbuttons, GFP_KERNEL);
if (IS_ERR_OR_NULL(button_codes)) {
dev_err(&client->dev, "button allocation failure\n");
kfree(button_map);
return NULL;
}
for (ii = 0; ii < button_map->nbuttons; ii++)
*(button_codes + ii) = (unsigned char)key_codes[ii];
button_map->map = button_codes;
pdata->irq_flags = IRQF_TRIGGER_LOW | IRQF_ONESHOT;
pdata->cap_button_map = button_map;
return pdata;
}
#endif
#define HYPHEN '-'
#define letter_i 'i'
#define letter_s 's'
#define letter_t 't'
static void synaptics_dsx_darn_product_string(unsigned char *id, size_t len)
{
unsigned char *hyphen;
hyphen = strnchr(id, len, HYPHEN);
if (hyphen) {
if (*(hyphen+1) == toupper(letter_t)) {
memmove(id+1, id, hyphen-id);
hyphen++;
*hyphen++ = letter_t;
} else if (*(hyphen+1) == toupper(letter_i))
*hyphen++ = letter_i;
*id = letter_s;
*hyphen = 0;
} else {
int i;
for (i = 0; *(id+i) != 0; i++)
if (isupper(*(id+i)))
*(id+i) = tolower(*(id+i));
}
}
static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data,
unsigned short length);
static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data,
unsigned short length);
static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data,
unsigned char *f01_cmd_base_addr);
static void synaptics_rmi4_sensor_sleep(struct synaptics_rmi4_data *rmi4_data);
static void synaptics_rmi4_sensor_wake(struct synaptics_rmi4_data *rmi4_data);
static void synaptics_rmi4_sensor_one_touch(
struct synaptics_rmi4_data *rmi4_data, bool enable);
static void synaptics_rmi4_sensor_multi_touch(
struct synaptics_rmi4_data *rmi4_data, unsigned char function);
static int synaptics_rmi4_irq_enable(struct synaptics_rmi4_data *rmi4_data,
bool enable);
static void synaptics_dsx_sensor_state(struct synaptics_rmi4_data *rmi4_data,
int state);
#if defined(CONFIG_FB) && !defined(CONFIG_MMI_PANEL_NOTIFICATIONS)
static int synaptics_dsx_panel_cb(struct notifier_block *nb,
unsigned long event, void *data);
#endif
static int synaptics_rmi4_suspend(struct device *dev);
static int synaptics_rmi4_resume(struct device *dev);
static ssize_t synaptics_rmi4_f01_reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_f01_productinfo_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_f01_buildid_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_f01_flashprog_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_0dbutton_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_0dbutton_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_resume_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_irqtimes_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_drv_irq_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_drv_irq_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_hw_irqstat_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_ic_ver_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_poweron_show(struct device *dev,
struct device_attribute *attr, char *buf);
struct synaptics_rmi4_f01_device_status {
union {
struct {
unsigned char status_code:4;
unsigned char reserved:2;
unsigned char flash_prog:1;
unsigned char unconfigured:1;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f1a_query {
union {
struct {
unsigned char max_button_count:3;
unsigned char reserved:5;
unsigned char has_general_control:1;
unsigned char has_interrupt_enable:1;
unsigned char has_multibutton_select:1;
unsigned char has_tx_rx_map:1;
unsigned char has_perbutton_threshold:1;
unsigned char has_release_threshold:1;
unsigned char has_strongestbtn_hysteresis:1;
unsigned char has_filter_strength:1;
} __packed;
unsigned char data[2];
};
};
struct synaptics_rmi4_f1a_control_0 {
union {
struct {
unsigned char multibutton_report:2;
unsigned char filter_mode:2;
unsigned char reserved:4;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f1a_control_3_4 {
unsigned char transmitterbutton;
unsigned char receiverbutton;
};
struct synaptics_rmi4_f1a_control {
struct synaptics_rmi4_f1a_control_0 general_control;
unsigned char *button_int_enable;
unsigned char *multi_button;
struct synaptics_rmi4_f1a_control_3_4 *electrode_map;
unsigned char *button_threshold;
unsigned char button_release_threshold;
unsigned char strongest_button_hysteresis;
unsigned char filter_strength;
};
struct synaptics_rmi4_f1a_handle {
int button_bitmask_size;
unsigned char button_count;
unsigned char valid_button_count;
unsigned char *button_data_buffer;
unsigned char *button_map;
struct synaptics_rmi4_f1a_query button_query;
struct synaptics_rmi4_f1a_control button_control;
};
struct synaptics_rmi4_exp_fn {
enum exp_fn fn_type;
enum ic_modes mode;
bool inserted;
int (*func_init)(struct synaptics_rmi4_data *rmi4_data);
void (*func_remove)(struct synaptics_rmi4_data *rmi4_data);
void (*func_attn)(struct synaptics_rmi4_data *rmi4_data,
unsigned char intr_mask);
struct list_head link;
};
static struct device_attribute attrs[] = {
__ATTR(reset, S_IWUSR | S_IWGRP,
synaptics_rmi4_show_error,
synaptics_rmi4_f01_reset_store),
__ATTR(productinfo, S_IRUGO,
synaptics_rmi4_f01_productinfo_show,
synaptics_rmi4_store_error),
__ATTR(buildid, S_IRUGO,
synaptics_rmi4_f01_buildid_show,
synaptics_rmi4_store_error),
__ATTR(flashprog, S_IRUSR | S_IRGRP,
synaptics_rmi4_f01_flashprog_show,
synaptics_rmi4_store_error),
__ATTR(0dbutton, (S_IRUSR | S_IRGRP | S_IWUSR | S_IWGRP),
synaptics_rmi4_0dbutton_show,
synaptics_rmi4_0dbutton_store),
__ATTR(resumeinfo, S_IRUSR | S_IRGRP,
synaptics_rmi4_resume_show,
synaptics_rmi4_store_error),
__ATTR(drv_irq, (S_IRUSR | S_IRGRP | S_IWUSR | S_IWGRP),
synaptics_rmi4_drv_irq_show,
synaptics_rmi4_drv_irq_store),
__ATTR(hw_irqstat, S_IRUSR | S_IRGRP,
synaptics_rmi4_hw_irqstat_show,
synaptics_rmi4_store_error),
__ATTR(ic_ver, S_IRUGO,
synaptics_rmi4_ic_ver_show,
synaptics_rmi4_store_error),
__ATTR(irqinfo, S_IRUSR | S_IRGRP,
synaptics_rmi4_irqtimes_show,
synaptics_rmi4_store_error),
__ATTR(poweron, S_IRUSR | S_IRGRP,
synaptics_rmi4_poweron_show,
synaptics_rmi4_store_error),
};
struct synaptics_exp_fn_ctrl {
bool inited;
struct mutex list_mutex;
struct list_head fn_list;
struct delayed_work det_work;
struct workqueue_struct *det_workqueue;
struct synaptics_rmi4_data *rmi4_data_ptr;
};
DEFINE_MUTEX(exp_fn_ctrl_mutex);
static struct synaptics_exp_fn_ctrl exp_fn_ctrl;
static struct semaphore reset_semaphore;
static irqreturn_t synaptics_dsx_reset_irq(int irq, void *data)
{
struct semaphore *sema = data;
up(sema);
return IRQ_HANDLED;
}
static int synaptics_dsx_ic_reset(
struct synaptics_rmi4_data *rmi4_data, bool hw_reset)
{
int retval;
unsigned long start = jiffies;
const struct synaptics_dsx_platform_data *platform_data =
rmi4_data->board;
sema_init(&reset_semaphore, 0);
if (hw_reset) {
gpio_set_value(platform_data->reset_gpio, 0);
udelay(1500);
}
retval = request_irq(rmi4_data->irq, synaptics_dsx_reset_irq,
IRQF_TRIGGER_RISING, "synaptics_reset",
&reset_semaphore);
if (retval < 0)
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to request irq: %d\n",
__func__, retval);
if (hw_reset)
gpio_set_value(platform_data->reset_gpio, 1);
retval = down_timeout(&reset_semaphore, msecs_to_jiffies(100));
if (retval) {
dev_err(&rmi4_data->i2c_client->dev,
"timed out waiting for reset to complete\n");
retval = -ETIMEDOUT;
} else {
retval = (int)jiffies_to_msecs(jiffies-start);
/* delay extra 0.5 ms to ensure 1st i2c bus access succeeds */
udelay(500);
}
free_irq(rmi4_data->irq, &reset_semaphore);
return retval;
}
static int synaptics_dsx_alloc_input(struct synaptics_rmi4_data *rmi4_data)
{
rmi4_data->input_dev = input_allocate_device();
if (IS_ERR_OR_NULL(rmi4_data->input_dev))
return PTR_ERR(rmi4_data->input_dev);
rmi4_data->input_dev->name = DRIVER_NAME;
rmi4_data->input_dev->phys = INPUT_PHYS_NAME;
rmi4_data->input_dev->id.bustype = BUS_I2C;
rmi4_data->input_dev->dev.parent = &rmi4_data->i2c_client->dev;
set_bit(EV_SYN, rmi4_data->input_dev->evbit);
input_set_drvdata(rmi4_data->input_dev, rmi4_data);
pr_debug("allocated input device\n");
return 0;
}
#define DSX(a) (#a)
static const char * const synaptics_state_names[] = SYNAPTICS_DSX_STATES;
#undef DSX
static const char *synaptics_dsx_state_name(int state)
{
int index = state < 0 || state > STATE_INVALID ? STATE_INVALID : state;
return synaptics_state_names[index];
}
static int synaptics_dsx_get_state_safe(struct synaptics_rmi4_data *rmi4_data)
{
int state;
mutex_lock(&(rmi4_data->state_mutex));
state = rmi4_data->state;
mutex_unlock(&(rmi4_data->state_mutex));
return state;
}
static void synaptics_dsx_set_state_safe(struct synaptics_rmi4_data *rmi4_data,
int state)
{
mutex_lock(&(rmi4_data->state_mutex));
rmi4_data->state = state;
mutex_unlock(&(rmi4_data->state_mutex));
}
static int synaptics_dsx_wait_for_idle(struct synaptics_rmi4_data *rmi4_data)
{
unsigned long start_wait_jiffies = jiffies;
do {
int current_state;
current_state = synaptics_dsx_get_state_safe(rmi4_data);
if (!(current_state == STATE_INIT ||
current_state == STATE_FLASH ||
current_state == STATE_UNKNOWN ||
touch_test_mode))
break;
usleep_range(1000, 1000);
} while (1);
if ((jiffies - start_wait_jiffies))
pr_info("entering suspend delayed for %ums\n",
jiffies_to_msecs(jiffies - start_wait_jiffies));
return 0;
}
static int synaptics_dsx_sensor_ready_state(
struct synaptics_rmi4_data *rmi4_data, bool standby)
{
bool ui_mode;
int retval, state;
struct synaptics_rmi4_f01_device_status status;
/* ensure ic is woken up, since older beta firmware cannot */
/* access device status register when ic is in sleep mode */
if (rmi4_data->sensor_sleep)
synaptics_rmi4_sensor_wake(rmi4_data);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
status.data,
sizeof(status.data));
if (retval < 0) {
pr_err("failed to query touch ic status\n");
return retval;
}
state = synaptics_dsx_get_state_safe(rmi4_data);
ui_mode = status.flash_prog == 0;
pr_debug("UI mode: %s\n", ui_mode ? "true" : "false");
if (ui_mode) {
state = standby ? STATE_STANDBY : STATE_ACTIVE;
state = touch_test_mode ? STATE_ACTIVE : state;
} else
if (!(state == STATE_INIT || state == STATE_FLASH))
state = STATE_BL;
synaptics_dsx_sensor_state(rmi4_data, state);
return 0;
}
static void synaptics_dsx_sensor_state(struct synaptics_rmi4_data *rmi4_data,
int state)
{
if (synaptics_dsx_get_state_safe(rmi4_data) == state)
return;
switch (state) {
case STATE_UNKNOWN:
case STATE_FLASH:
/* no special handling for these states */
break;
case STATE_SUSPEND:
synaptics_dsx_wait_for_idle(rmi4_data);
synaptics_rmi4_irq_enable(rmi4_data, false);
if (rmi4_data->one_touch_enabled)
synaptics_rmi4_sensor_one_touch(rmi4_data, true);
if (!rmi4_data->sensor_sleep)
synaptics_rmi4_sensor_sleep(rmi4_data);
break;
case STATE_ACTIVE:
if (rmi4_data->sensor_sleep)
synaptics_rmi4_sensor_wake(rmi4_data);
if (rmi4_data->one_touch_enabled)
synaptics_rmi4_sensor_one_touch(rmi4_data, false);
synaptics_rmi4_irq_enable(rmi4_data, true);
break;
case STATE_STANDBY:
synaptics_rmi4_irq_enable(rmi4_data, false);
/* put sensor to sleep to ensure the same */
/* initial conditions apply to all */
if (!rmi4_data->sensor_sleep)
synaptics_rmi4_sensor_sleep(rmi4_data);
break;
case STATE_BL:
if (!rmi4_data->in_bootloader)
rmi4_data->in_bootloader = true;
case STATE_INIT:
synaptics_rmi4_irq_enable(rmi4_data, false);
if (rmi4_data->sensor_sleep)
synaptics_rmi4_sensor_wake(rmi4_data);
break;
}
pr_info("state change %s -> %s\n",
synaptics_dsx_state_name(rmi4_data->state),
synaptics_dsx_state_name(state));
synaptics_dsx_set_state_safe(rmi4_data, state);
}
static ssize_t synaptics_rmi4_f01_reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int reset;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &reset) != 1)
return -EINVAL;
if (reset != 1)
return -EINVAL;
retval = synaptics_rmi4_reset_device(rmi4_data, NULL);
if (retval < 0) {
dev_err(dev,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
return retval;
}
return count;
}
static ssize_t synaptics_rmi4_f01_productinfo_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%s\n",
rmi4_data->rmi4_mod_info.product_id_string);
}
static ssize_t synaptics_rmi4_f01_buildid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned int firmware_id;
unsigned int config_id;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
batohui(&firmware_id, rmi->build_id, sizeof(rmi->build_id));
batohui(&config_id, rmi->config_id, sizeof(rmi->config_id));
return scnprintf(buf, PAGE_SIZE, "%x-%08x\n", firmware_id, config_id);
}
static ssize_t synaptics_rmi4_resume_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
int i;
int c_res;
int offset = 0;
c_res = rmi4_data->last_resume;
/* Resume buffer not allocated or there were no resumes yet */
if (rmi4_data->number_resumes <= 0 || c_res < 0)
return scnprintf(buf, PAGE_SIZE,
"No resume information found.\n");
offset += scnprintf(buf + offset, PAGE_SIZE - offset,
"Count\tStart\t\tFinish\t# no-events\t"
"ISR\t\tpurge off\tsendevent\n");
for (i = 0; i < rmi4_data->number_resumes; i++) {
offset += scnprintf(buf + offset, PAGE_SIZE - offset,
"%d\t%4ld.%03ld\t%4ld.%03ld\t%d\t%4ld.%03ld\t"
"%4ld.%03ld\t%4ld.%03ld\n",
i+1,
rmi4_data->resume_info[c_res].start.tv_sec%1000,
rmi4_data->resume_info[c_res].start.tv_nsec/1000000,
rmi4_data->resume_info[c_res].finish.tv_sec%1000,
rmi4_data->resume_info[c_res].finish.tv_nsec/1000000,
rmi4_data->resume_info[c_res].ignored_events,
rmi4_data->resume_info[c_res].isr.tv_sec%1000,
rmi4_data->resume_info[c_res].isr.tv_nsec/1000000,
rmi4_data->resume_info[c_res].purge_off.tv_sec%1000,
rmi4_data->resume_info[c_res].purge_off.tv_nsec/1000000,
rmi4_data->resume_info[c_res].send_touch.tv_sec%1000,
rmi4_data->resume_info[c_res].send_touch.tv_nsec/1000000);
if (c_res <= 0)
c_res = rmi4_data->number_resumes-1;
else
c_res--;
}
return offset;
}
static ssize_t synaptics_rmi4_irqtimes_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
int i;
int c_res;
int offset = 0;
c_res = rmi4_data->last_irq;
/* Resume buffer not allocated or there were no irq data collected yet*/
if (rmi4_data->number_irq <= 0 || c_res < 0)
return scnprintf(buf, PAGE_SIZE,
"No resume information found.\n");
offset += scnprintf(buf + offset, PAGE_SIZE - offset,
"Count\tIRQ Start\n");
for (i = 0; i < rmi4_data->number_irq; i++) {
offset += scnprintf(buf + offset, PAGE_SIZE - offset,
"%d\t%4ld.%03ld\n",
i+1,
rmi4_data->irq_info[i].irq_time.tv_sec%1000,
rmi4_data->irq_info[i].irq_time.tv_nsec/1000000);
if (c_res <= 0)
c_res = rmi4_data->number_irq-1;
else
c_res--;
}
return offset;
}
static ssize_t synaptics_rmi4_f01_flashprog_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int retval;
struct synaptics_rmi4_f01_device_status device_status;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
device_status.data,
sizeof(device_status.data));
if (retval < 0) {
dev_err(dev,
"%s: Failed to read device status, error = %d\n",
__func__, retval);
return retval;
}
return scnprintf(buf, PAGE_SIZE, "%u\n",
device_status.flash_prog);
}
static ssize_t synaptics_rmi4_hw_irqstat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
switch (gpio_get_value(rmi4_data->board->irq_gpio)) {
case 0:
return scnprintf(buf, PAGE_SIZE, "Low\n");
case 1:
return scnprintf(buf, PAGE_SIZE, "High\n");
default:
printk(KERN_ERR "%s: Failed to get GPIO for irq %d.\n",
__func__,
rmi4_data->irq);
return scnprintf(buf, PAGE_SIZE, "Unknown\n");
}
}
static ssize_t synaptics_rmi4_drv_irq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%s\n",
rmi4_data->irq_enabled ? "ENABLED" : "DISABLED");
}
static ssize_t synaptics_rmi4_drv_irq_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
unsigned long value = 0;
int err = 0;
err = kstrtoul(buf, 10, &value);
if (err < 0) {
printk(KERN_ERR "%s: Failed to convert value.\n", __func__);
return -EINVAL;
}
switch (value) {
case 0:
/* Disable irq */
synaptics_rmi4_irq_enable(rmi4_data, false);
break;
case 1:
/* Enable irq */
synaptics_rmi4_irq_enable(rmi4_data, true);
break;
default:
printk(KERN_ERR "%s: Invalid value\n", __func__);
return -EINVAL;
}
return count;
}
static ssize_t synaptics_rmi4_0dbutton_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->button_0d_enabled);
}
static ssize_t synaptics_rmi4_0dbutton_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int input;
unsigned char ii;
unsigned char intr_enable;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
input = input > 0 ? 1 : 0;
if (rmi4_data->button_0d_enabled == input)
return count;
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) {
ii = fhandler->intr_reg_num;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr + 1 + ii,
&intr_enable,
sizeof(intr_enable));
if (retval < 0)
return retval;
if (input == 1)
intr_enable |= fhandler->intr_mask;
else
intr_enable &= ~fhandler->intr_mask;
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr + 1 + ii,
&intr_enable,
sizeof(intr_enable));
if (retval < 0)
return retval;
}
}
rmi4_data->button_0d_enabled = input;
return count;
}
static ssize_t synaptics_rmi4_ic_ver_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned int build_id, config_id;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
batohui(&build_id, rmi->build_id, sizeof(rmi->build_id));
batohui(&config_id, rmi->config_id, sizeof(rmi->config_id));
return scnprintf(buf, PAGE_SIZE,
"%s%s\n%s%x\n%s%x\n",
"Product ID: ", rmi->product_id_string,
"Build ID: ", build_id,
"Config ID: ", config_id);
}
static ssize_t synaptics_rmi4_poweron_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%d\n", rmi4_data->poweron);
}
/**
* synaptics_rmi4_set_page()
*
* Called by synaptics_rmi4_i2c_read() and synaptics_rmi4_i2c_write().
*
* This function writes to the page select register to switch to the
* assigned page.
*/
static int synaptics_rmi4_set_page(struct synaptics_rmi4_data *rmi4_data,
unsigned int address)
{
int retval = 0;
unsigned char retry;
unsigned char buf[PAGE_SELECT_LEN];
unsigned char page;
struct i2c_client *i2c = rmi4_data->i2c_client;
page = ((address >> 8) & MASK_8BIT);
if (page != rmi4_data->current_page) {
buf[0] = MASK_8BIT;
buf[1] = page;
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
retval = i2c_master_send(i2c, buf, PAGE_SELECT_LEN);
if (retval != PAGE_SELECT_LEN) {
dev_err(&i2c->dev,
"%s: I2C retry %d\n",
__func__, retry + 1);
msleep(20);
} else {
rmi4_data->current_page = page;
break;
}
}
} else
return PAGE_SELECT_LEN;
return (retval == PAGE_SELECT_LEN) ? retval : -EIO;
}
/**
* synaptics_rmi4_i2c_read()
*
* Called by various functions in this driver, and also exported to
* other expansion Function modules such as rmi_dev.
*
* This function reads data of an arbitrary length from the sensor,
* starting from an assigned register address of the sensor, via I2C
* with a retry mechanism.
*/
static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data, unsigned short length)
{
int retval;
unsigned char retry;
unsigned char buf;
struct i2c_msg msg[] = {
{
.addr = rmi4_data->i2c_client->addr,
.flags = 0,
.len = 1,
.buf = &buf,
},
{
.addr = rmi4_data->i2c_client->addr,
.flags = I2C_M_RD,
.len = length,
.buf = data,
},
};
buf = addr & MASK_8BIT;
mutex_lock(&(rmi4_data->rmi4_io_ctrl_mutex));
retval = synaptics_rmi4_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN)
goto exit;
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
if (i2c_transfer(rmi4_data->i2c_client->adapter, msg, 2) == 2) {
retval = length;
break;
}
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C retry %d\n",
__func__, retry + 1);
msleep(20);
}
if (retry == SYN_I2C_RETRY_TIMES) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C read %db@x%x over retry limit\n",
__func__, length, addr);
retval = -EIO;
}
exit:
mutex_unlock(&(rmi4_data->rmi4_io_ctrl_mutex));
return retval;
}
/**
* synaptics_rmi4_i2c_write()
*
* Called by various functions in this driver, and also exported to
* other expansion Function modules such as rmi_dev.
*
* This function writes data of an arbitrary length to the sensor,
* starting from an assigned register address of the sensor, via I2C with
* a retry mechanism.
*/
static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data, unsigned short length)
{
int retval;
unsigned char retry;
unsigned char buf[length + 1];
struct i2c_msg msg[] = {
{
.addr = rmi4_data->i2c_client->addr,
.flags = 0,
.len = length + 1,
.buf = buf,
}
};
mutex_lock(&(rmi4_data->rmi4_io_ctrl_mutex));
retval = synaptics_rmi4_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN)
goto exit;
buf[0] = addr & MASK_8BIT;
memcpy(&buf[1], &data[0], length);
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
if (i2c_transfer(rmi4_data->i2c_client->adapter, msg, 1) == 1) {
retval = length;
break;
}
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C retry %d\n",
__func__, retry + 1);
msleep(20);
}
if (retry == SYN_I2C_RETRY_TIMES) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C write %db@x%x over retry limit\n",
__func__, length, addr);
retval = -EIO;
}
exit:
mutex_unlock(&(rmi4_data->rmi4_io_ctrl_mutex));
return retval;
}
/**
* synaptics_rmi4_f12_abs_report()
*
* Called by synaptics_rmi4_report_touch() when valid Function $12
* finger data has been detected.
*
* This function reads the Function $12 data registers, determines the
* status of each finger supported by the Function, processes any
* necessary coordinate manipulation, reports the finger data to
* the input subsystem, and returns the number of fingers detected.
*/
static int synaptics_rmi4_f12_abs_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
struct synaptics_rmi4_resume_info *tmp_resume_i = NULL;
int retval;
unsigned char touch_count = 0; /* number of touch points */
unsigned char index = 0;
unsigned char finger;
unsigned char fingers_supported;
unsigned char finger_data[F12_STD_DATA_LEN];
unsigned short data_addr;
unsigned short data_size;
int x;
int y;
int p;
int w;
int id;
fingers_supported = fhandler->num_of_data_points;
data_addr = fhandler->full_addr.data_base;
data_size = fingers_supported * fhandler->size_of_data_register_block;
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr,
finger_data,
data_size);
if (retval < 0)
return 0;
if (rmi4_data->number_resumes > 0) {
tmp_resume_i =
&(rmi4_data->resume_info[rmi4_data->last_resume]);
if (atomic_read(&rmi4_data->panel_off_flag)) {
tmp_resume_i->ignored_events++;
return 0;
}
if (tmp_resume_i->purge_off.tv_sec == 0)
getnstimeofday(&(tmp_resume_i->purge_off));
} else {
if (atomic_read(&rmi4_data->panel_off_flag)) {
return 0;
}
}
for (finger = 0; finger < fingers_supported; finger++,
index += fhandler->size_of_data_register_block) {
if (finger_data[index] == 0)
continue;
x = finger_data[index+1] | (finger_data[index+2] << 8);
y = finger_data[index+3] | (finger_data[index+4] << 8);
p = finger_data[index+5];
w = finger_data[index+5];
id = finger;
if (rmi4_data->board->x_flip)
x = rmi4_data->sensor_max_x - x;
if (rmi4_data->board->y_flip)
y = rmi4_data->sensor_max_y - y;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Finger %d:\n"
"x = %d\n"
"y = %d\n"
"p = %d\n"
"w = %d\n",
__func__, finger,
x, y, p, w);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_X, x);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_Y, y);
input_report_abs(rmi4_data->input_dev,
ABS_MT_PRESSURE, p);
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, w);
input_report_abs(rmi4_data->input_dev,
ABS_MT_TRACKING_ID, id);
input_mt_sync(rmi4_data->input_dev);
touch_count++;
if (rmi4_data->number_resumes > 0 &&
tmp_resume_i->send_touch.tv_sec == 0)
getnstimeofday(&(tmp_resume_i->send_touch));
}
if (!touch_count)
input_mt_sync(rmi4_data->input_dev);
input_sync(rmi4_data->input_dev);
return touch_count;
}
/**
* synaptics_rmi4_f11_abs_report()
*
* Called by synaptics_rmi4_report_touch() when valid Function $11
* finger data has been detected.
*
* This function reads the Function $11 data registers, determines the
* status of each finger supported by the Function, processes any
* necessary coordinate manipulation, reports the finger data to
* the input subsystem, and returns the number of fingers detected.
*/
static int synaptics_rmi4_f11_abs_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char touch_count = 0; /* number of touch points */
unsigned char reg_index;
unsigned char finger;
unsigned char fingers_supported;
unsigned char num_of_finger_status_regs;
unsigned char finger_shift;
unsigned char finger_status;
unsigned char data_reg_blk_size;
unsigned char finger_status_reg[3];
unsigned char data[F11_STD_DATA_LEN];
unsigned short data_addr;
unsigned short data_offset;
int x;
int y;
int wx;
int wy;
int z;
struct timespec hw_time = ktime_to_timespec(ktime_get());
/*
* The number of finger status registers is determined by the
* maximum number of fingers supported - 2 bits per finger. So
* the number of finger status registers to read is:
* register_count = ceil(max_num_of_fingers / 4)
*/
fingers_supported = fhandler->num_of_data_points;
num_of_finger_status_regs = (fingers_supported + 3) / 4;
data_addr = fhandler->full_addr.data_base;
data_reg_blk_size = fhandler->size_of_data_register_block;
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr,
finger_status_reg,
num_of_finger_status_regs);
if (retval < 0)
return 0;
if (atomic_read(&rmi4_data->panel_off_flag))
return 0;
input_event(rmi4_data->input_dev, EV_SYN,
SYN_TIME_SEC, hw_time.tv_sec);
input_event(rmi4_data->input_dev, EV_SYN,
SYN_TIME_NSEC, hw_time.tv_nsec);
for (finger = 0; finger < fingers_supported; finger++) {
reg_index = finger / 4;
finger_shift = (finger % 4) * 2;
finger_status = (finger_status_reg[reg_index] >> finger_shift)
& MASK_2BIT;
/*
* Each 2-bit finger status field represents the following:
* 00 = finger not present
* 01 = finger present and data accurate
* 10 = finger present but data may be inaccurate
* 11 = reserved
*/
#ifdef TYPE_B_PROTOCOL
input_mt_slot(rmi4_data->input_dev, finger);
input_mt_report_slot_state(rmi4_data->input_dev,
MT_TOOL_FINGER, finger_status);
#endif
if (finger_status) {
data_offset = data_addr +
num_of_finger_status_regs +
(finger * data_reg_blk_size);
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_offset,
data,
data_reg_blk_size);
if (retval < 0)
goto end;
x = (data[0] << 4) | (data[2] & MASK_4BIT);
y = (data[1] << 4) | ((data[2] >> 4) & MASK_4BIT);
wx = (data[3] & MASK_4BIT);
wy = (data[3] >> 4) & MASK_4BIT;
z = data[4];
if (rmi4_data->board->x_flip)
x = rmi4_data->sensor_max_x - x;
if (rmi4_data->board->y_flip)
y = rmi4_data->sensor_max_y - y;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Finger %d:\n"
"status = 0x%02x\n"
"x = %d\n"
"y = %d\n"
"wx = %d\n"
"wy = %d\n"
"z = %d\n",
__func__, finger,
finger_status,
x, y, wx, wy, z);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_X, x);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_Y, y);
input_report_abs(rmi4_data->input_dev,
ABS_MT_PRESSURE, z);
#ifdef REPORT_2D_W
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, max(wx, wy));
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MINOR, min(wx, wy));
#endif
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
touch_count++;
}
}
end:
#ifndef TYPE_B_PROTOCOL
if (!touch_count)
input_mt_sync(rmi4_data->input_dev);
#endif
input_sync(rmi4_data->input_dev);
return touch_count;
}
static void synaptics_rmi4_f1a_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char button;
unsigned char index;
unsigned char shift;
unsigned char status;
unsigned char *data;
unsigned short data_addr = fhandler->full_addr.data_base;
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
static bool current_status[MAX_NUMBER_OF_BUTTONS];
#ifdef NO_0D_WHILE_2D
static bool before_2d_status[MAX_NUMBER_OF_BUTTONS];
static bool while_2d_status[MAX_NUMBER_OF_BUTTONS];
#endif
if (tsb_buff_clean_flag) {
memset(current_status, 0, sizeof(current_status));
#ifdef NO_0D_WHILE_2D
memset(before_2d_status, 0, sizeof(before_2d_status));
memset(while_2d_status, 0, sizeof(while_2d_status));
#endif
tsb_buff_clean_flag = 0;
}
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr,
f1a->button_data_buffer,
f1a->button_bitmask_size);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read button data registers\n",
__func__);
return;
}
if (atomic_read(&rmi4_data->panel_off_flag))
return;
data = f1a->button_data_buffer;
for (button = 0; button < f1a->valid_button_count; button++) {
index = button / 8;
shift = button % 8;
status = ((data[index] >> shift) & MASK_1BIT);
if (current_status[button] == status)
continue;
else
current_status[button] = status;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Button %d (code %d) ->%d\n",
__func__, button,
f1a->button_map[button],
status);
#ifdef NO_0D_WHILE_2D
if (rmi4_data->fingers_on_2d == false) {
if (status == 1) {
before_2d_status[button] = 1;
} else {
if (while_2d_status[button] == 1) {
while_2d_status[button] = 0;
continue;
} else {
before_2d_status[button] = 0;
}
}
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
} else {
if (before_2d_status[button] == 1) {
before_2d_status[button] = 0;
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
} else {
if (status == 1)
while_2d_status[button] = 1;
else
while_2d_status[button] = 0;
}
}
#else
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
#endif
}
input_sync(rmi4_data->input_dev);
return;
}
static void synaptics_rmi4_f01_handler(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned short data_addr = fhandler->full_addr.data_base;
struct synaptics_rmi4_f01_device_status status;
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr,
status.data,
sizeof(status.data));
if (retval < 0)
return;
switch (status.status_code) {
case 0x00:
printk(KERN_INFO "%s: No error.\n", __func__);
break;
case 0x01:
printk(KERN_INFO "%s: Touch IC reset complete.\n", __func__);
break;
case 0x02:
printk(KERN_ERR "%s: Touch IC configuration error--%s.\n",
__func__, "check platform settings");
break;
case 0x03:
printk(KERN_ERR "%s: Touch IC device failure.\n", __func__);
break;
case 0x04:
printk(KERN_ERR "%s: Configuration CRC failure.\n", __func__);
break;
case 0x05:
printk(KERN_ERR "%s: Firmware CRC failure.\n", __func__);
break;
case 0x06:
printk(KERN_ERR "%s: CRC in progress.\n", __func__);
break;
default:
printk(KERN_ERR "%s: Unknown error 0x%02X received.\n",
__func__, status.status_code);
break;
}
}
/**
* synaptics_rmi4_report_touch()
*
* Called by synaptics_rmi4_sensor_report().
*
* This function calls the appropriate finger data reporting function
* based on the function handler it receives and returns the number of
* fingers detected.
*/
static void synaptics_rmi4_report_touch(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
unsigned char *touch_count)
{
unsigned char touch_count_2d;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Function %02x reporting\n",
__func__, fhandler->fn_number);
switch (fhandler->fn_number) {
case SYNAPTICS_RMI4_F01:
synaptics_rmi4_f01_handler(rmi4_data, fhandler);
break;
case SYNAPTICS_RMI4_F11:
touch_count_2d = synaptics_rmi4_f11_abs_report(rmi4_data,
fhandler);
*touch_count += touch_count_2d;
if (touch_count_2d)
rmi4_data->fingers_on_2d = true;
else
rmi4_data->fingers_on_2d = false;
break;
case SYNAPTICS_RMI4_F12:
touch_count_2d = synaptics_rmi4_f12_abs_report(rmi4_data,
fhandler);
*touch_count += touch_count_2d;
if (touch_count_2d)
rmi4_data->fingers_on_2d = true;
else
rmi4_data->fingers_on_2d = false;
break;
case SYNAPTICS_RMI4_F1A:
synaptics_rmi4_f1a_report(rmi4_data, fhandler);
break;
default:
break;
}
return;
}
/**
* synaptics_rmi4_sensor_report()
*
* Called by synaptics_rmi4_irq().
*
* This function determines the interrupt source(s) from the sensor
* and calls synaptics_rmi4_report_touch() with the appropriate
* function handler for each function with valid data inputs.
*/
static int synaptics_rmi4_sensor_report(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char touch_count = 0;
unsigned char intr[MAX_INTR_REGISTERS];
unsigned int intr_status_mask;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_exp_fn *exp_fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
/*
* Get interrupt status information from F01 Data1 register to
* determine the source(s) that are flagging the interrupt.
*/
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr + 1,
intr,
rmi4_data->num_of_intr_regs);
if (retval < 0)
return retval;
/*
* Traverse the function handler list and service the source(s)
* of the interrupt accordingly.
*/
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->num_of_data_sources) {
if (fhandler->intr_mask &
intr[fhandler->intr_reg_num]) {
synaptics_rmi4_report_touch(rmi4_data,
fhandler, &touch_count);
}
}
}
batohui(&intr_status_mask, intr, rmi4_data->num_of_intr_regs);
/*
* Go through external handlers list only when interrupt
* is not handled by currently active internal functions.
*/
if (intr_status_mask & (~rmi4_data->active_fn_intr_mask)) {
mutex_lock(&exp_fn_ctrl.list_mutex);
if (!list_empty(&exp_fn_ctrl.fn_list)) {
list_for_each_entry(exp_fhandler,
&exp_fn_ctrl.fn_list, link) {
if (exp_fhandler->inserted &&
(exp_fhandler->func_attn != NULL))
exp_fhandler->func_attn(
rmi4_data, intr[0]);
}
}
mutex_unlock(&exp_fn_ctrl.list_mutex);
}
return touch_count;
}
/**
* synaptics_rmi4_irq()
*
* Called by the kernel when an interrupt occurs (when the sensor
* asserts the attention irq).
*
* This function is the ISR thread and handles the acquisition
* and the reporting of finger data when the presence of fingers
* is detected.
*/
static irqreturn_t synaptics_rmi4_irq(int irq, void *data)
{
struct synaptics_rmi4_data *rmi4_data = data;
struct synaptics_rmi4_resume_info *tmp_resume_i;
struct synaptics_rmi4_irq_info *tmp_q;
if (rmi4_data->number_irq > 0) {
rmi4_data->last_irq++;
if (rmi4_data->last_irq >= rmi4_data->number_irq)
rmi4_data->last_irq = 0;
tmp_q =
&(rmi4_data->irq_info[rmi4_data->last_irq]);
getnstimeofday(&(tmp_q->irq_time));
}
if (rmi4_data->number_resumes > 0) {
tmp_resume_i =
&(rmi4_data->resume_info[rmi4_data->last_resume]);
if (tmp_resume_i->isr.tv_sec == 0)
getnstimeofday(&(tmp_resume_i->isr));
}
synaptics_rmi4_sensor_report(rmi4_data);
return IRQ_HANDLED;
}
/**
* synaptics_rmi4_irq_enable()
*
* Called by synaptics_rmi4_probe() and the power management functions
* in this driver and also exported to other expansion Function modules
* such as rmi_dev.
*
* This function handles the enabling and disabling of the attention
* irq including the setting up of the ISR thread.
*/
static int synaptics_rmi4_irq_enable(struct synaptics_rmi4_data *rmi4_data,
bool enable)
{
int retval = 0;
unsigned char intr_status;
const struct synaptics_dsx_platform_data *platform_data =
rmi4_data->board;
if (enable) {
if (rmi4_data->irq_enabled)
return retval;
/* Clear interrupts first */
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr + 1,
&intr_status,
rmi4_data->num_of_intr_regs);
if (retval < 0)
return retval;
retval = request_threaded_irq(rmi4_data->irq, NULL,
synaptics_rmi4_irq, platform_data->irq_flags,
DRIVER_NAME, rmi4_data);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to create irq thread\n",
__func__);
return retval;
}
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Started irq thread\n", __func__);
rmi4_data->irq_enabled = true;
} else {
if (rmi4_data->irq_enabled) {
disable_irq(rmi4_data->irq);
free_irq(rmi4_data->irq, rmi4_data);
rmi4_data->irq_enabled = false;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Stopped irq thread\n", __func__);
}
}
return retval;
}
/**
* synaptics_rmi4_f11_init()
*
* Called by synaptics_rmi4_query_device().
*
* This funtion parses information from the Function 11 registers
* and determines the number of fingers supported, x and y data ranges,
* offset to the associated interrupt status register, interrupt bit
* mask, and gathers finger data acquisition capabilities from the query
* registers.
*/
static int synaptics_rmi4_f11_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char ii;
unsigned char intr_offset;
unsigned char abs_data_size;
unsigned char abs_data_blk_size;
unsigned char query[F11_STD_QUERY_LEN];
unsigned char control[F11_STD_CTRL_LEN];
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = (fd->intr_src_count & MASK_3BIT);
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base,
query,
sizeof(query));
if (retval < 0)
return retval;
/* Maximum number of fingers supported */
if ((query[1] & MASK_3BIT) <= 4)
fhandler->num_of_data_points = (query[1] & MASK_3BIT) + 1;
else if ((query[1] & MASK_3BIT) == 5)
fhandler->num_of_data_points = 10;
rmi4_data->num_of_fingers = fhandler->num_of_data_points;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.ctrl_base,
control,
sizeof(control));
if (retval < 0)
return retval;
/* Maximum x and y */
rmi4_data->sensor_max_x = ((control[6] & MASK_8BIT) << 0) |
((control[7] & MASK_4BIT) << 8);
rmi4_data->sensor_max_y = ((control[8] & MASK_8BIT) << 0) |
((control[9] & MASK_4BIT) << 8);
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Function %02x max x = %d max y = %d\n",
__func__, fhandler->fn_number,
rmi4_data->sensor_max_x,
rmi4_data->sensor_max_y);
/* Reporting mode */
if (!(control[0] & MASK_3BIT)) {
pr_warn("Reporting mode: continuous\n");
} else {
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: thresholds: x=0x%x, y=0x%x\n",
__func__, control[2], control[3]);
/* Delta thresholds */
if (control[2] > F11_DELTA_MAX)
pr_warn("excessive x threshold: 0x%x\n", control[2]);
if (control[3] > F11_DELTA_MAX)
pr_warn("excessive y threshold: 0x%x\n", control[3]);
}
fhandler->intr_reg_num = (intr_count + 7) / 8;
if (fhandler->intr_reg_num != 0)
fhandler->intr_reg_num -= 1;
/* Set an enable bit for each data source */
intr_offset = intr_count % 8;
fhandler->intr_mask = 0;
for (ii = intr_offset;
ii < ((fd->intr_src_count & MASK_3BIT) +
intr_offset);
ii++)
fhandler->intr_mask |= 1 << ii;
abs_data_size = query[5] & MASK_2BIT;
abs_data_blk_size = 3 + (2 * (abs_data_size == 0 ? 1 : 0));
fhandler->size_of_data_register_block = abs_data_blk_size;
#ifdef INPUT_PROP_DIRECT
set_bit(INPUT_PROP_DIRECT, rmi4_data->input_dev->propbit);
#endif
set_bit(EV_ABS, rmi4_data->input_dev->evbit);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_POSITION_X, 0,
rmi4_data->sensor_max_x, 0, 0);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_POSITION_Y, 0,
rmi4_data->sensor_max_y, 0, 0);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_PRESSURE, 0,
255, 0, 0);
#ifdef REPORT_2D_W
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, 0,
15, 0, 0);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_TOUCH_MINOR, 0,
15, 0, 0);
#endif
#ifdef TYPE_B_PROTOCOL
input_mt_init_slots(rmi4_data->input_dev,
rmi4_data->num_of_fingers);
#else
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_TRACKING_ID, 0,
rmi4_data->num_of_fingers - 1, 0, 0);
input_set_events_per_packet(rmi4_data->input_dev, 64);
#endif
return retval;
}
static int synaptics_rmi4_f1a_alloc_mem(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
struct synaptics_rmi4_f1a_handle *f1a;
f1a = kzalloc(sizeof(*f1a), GFP_KERNEL);
if (!f1a) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for function handle\n",
__func__);
return -ENOMEM;
}
fhandler->data = (void *)f1a;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base,
f1a->button_query.data,
sizeof(f1a->button_query.data));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read query registers\n",
__func__);
return retval;
}
f1a->button_count = f1a->button_query.max_button_count + 1;
f1a->button_bitmask_size = (f1a->button_count + 7) / 8;
f1a->button_data_buffer = kcalloc(f1a->button_bitmask_size,
sizeof(*(f1a->button_data_buffer)), GFP_KERNEL);
if (!f1a->button_data_buffer) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for data buffer\n",
__func__);
return -ENOMEM;
}
f1a->button_map = kcalloc(f1a->button_count,
sizeof(*(f1a->button_map)), GFP_KERNEL);
if (!f1a->button_map) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for button map\n",
__func__);
return -ENOMEM;
}
return 0;
}
/**
* synaptics_rmi4_f12_init()
*
* Called by synaptics_rmi4_query_device().
*
* This funtion parses information from the Function 12 registers
* and determines the number of fingers supported, x and y data ranges,
* offset to the associated interrupt status register, interrupt bit
* mask, and gathers finger data acquisition capabilities from the query
* registers.
*/
static int synaptics_rmi4_f12_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char ii;
unsigned char intr_offset;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = (fd->intr_src_count & MASK_3BIT);
pr_debug("scan F12 ctrl registers\n");
retval = synaptics_rmi4_scan_packet_reg_info(
rmi4_data,
fhandler->full_addr.query_base + 4,
fhandler->full_addr.ctrl_base,
&f12_ctrl_regs);
if (retval < 0)
return retval;
retval = synaptics_rmi4_read_packet_regs(rmi4_data, &f12_ctrl_regs);
if (retval < 0)
return retval;
/* Maximum number of fingers supported */
if (f12_c23[1].present) {
fhandler->num_of_data_points =
f12_c23_1.max_num_reported_objects;
rmi4_data->num_of_fingers = f12_c23_1.max_num_reported_objects;
} else
return -ENOENT;
if (f12_c08[0].present) {
rmi4_data->sensor_max_x =
(f12_c08_0.max_x_msb << 8) | f12_c08_0.max_x_lsb;
rmi4_data->sensor_max_y =
(f12_c08_0.max_y_msb << 8) | f12_c08_0.max_y_lsb;
} else
return -ENOENT;
fhandler->intr_reg_num = (intr_count + 7) / 8;
if (fhandler->intr_reg_num != 0)
fhandler->intr_reg_num -= 1;
/* Set an enable bit for each data source */
intr_offset = intr_count % 8;
fhandler->intr_mask = 0;
for (ii = intr_offset;
ii < ((fd->intr_src_count & MASK_3BIT) +
intr_offset);
ii++)
fhandler->intr_mask |= 1 << ii;
/* Data size per touch */
if (f12_c28[0].present) {
for (ii = 0; ii < 8; ii++)
if (f12_c28_0.reported_bytes_per_object & (1 << ii))
fhandler->size_of_data_register_block++;
} else
return -ENOENT;
#ifdef INPUT_PROP_DIRECT
set_bit(INPUT_PROP_DIRECT, rmi4_data->input_dev->propbit);
#endif
set_bit(EV_ABS, rmi4_data->input_dev->evbit);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_POSITION_X, 0,
rmi4_data->sensor_max_x, 0, 0);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_POSITION_Y, 0,
rmi4_data->sensor_max_y, 0, 0);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_PRESSURE, 0,
255, 0, 0);
#ifdef REPORT_2D_W
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, 0,
255, 0, 0);
#endif
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_TRACKING_ID, 0,
rmi4_data->num_of_fingers - 1, 0, 0);
input_set_events_per_packet(rmi4_data->input_dev, 64);
return retval;
}
static int synaptics_rmi4_cap_button_map(
struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
unsigned char ii;
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
const struct synaptics_dsx_platform_data *pdata = rmi4_data->board;
if (!pdata->cap_button_map) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: cap_button_map is \
NULL in board file\n",
__func__);
return -ENODEV;
} else if (!pdata->cap_button_map->map) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Button map is missing in board file\n",
__func__);
return -ENODEV;
} else {
if (pdata->cap_button_map->nbuttons !=
f1a->button_count) {
f1a->valid_button_count = min(f1a->button_count,
pdata->cap_button_map->nbuttons);
} else {
f1a->valid_button_count = f1a->button_count;
}
set_bit(EV_KEY, rmi4_data->input_dev->evbit);
for (ii = 0; ii < f1a->valid_button_count; ii++) {
f1a->button_map[ii] =
pdata->cap_button_map->map[ii];
set_bit(f1a->button_map[ii],
rmi4_data->input_dev->keybit);
input_set_capability(rmi4_data->input_dev,
EV_KEY, f1a->button_map[ii]);
}
}
return 0;
}
static void synaptics_rmi4_f1a_kfree(struct synaptics_rmi4_fn *fhandler)
{
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
if (f1a) {
kfree(f1a->button_data_buffer);
kfree(f1a->button_map);
kfree(f1a);
fhandler->data = NULL;
}
return;
}
static int synaptics_rmi4_f1a_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char ii;
unsigned short intr_offset;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = (fd->intr_src_count & MASK_3BIT);
fhandler->intr_reg_num = (intr_count + 7) / 8;
if (fhandler->intr_reg_num != 0)
fhandler->intr_reg_num -= 1;
/* Set an enable bit for each data source */
intr_offset = intr_count % 8;
fhandler->intr_mask = 0;
for (ii = intr_offset;
ii < ((fd->intr_src_count & MASK_3BIT) +
intr_offset);
ii++)
fhandler->intr_mask |= 1 << ii;
retval = synaptics_rmi4_f1a_alloc_mem(rmi4_data, fhandler);
if (retval < 0)
goto error_exit;
retval = synaptics_rmi4_cap_button_map(rmi4_data, fhandler);
if (retval < 0)
goto error_exit;
rmi4_data->button_0d_enabled = 1;
return 0;
error_exit:
synaptics_rmi4_f1a_kfree(fhandler);
return retval;
}
static int synaptics_rmi4_alloc_fh(struct synaptics_rmi4_fn **fhandler,
struct synaptics_rmi4_fn_desc *rmi_fd, int page_number)
{
*fhandler = kzalloc(sizeof(**fhandler), GFP_KERNEL);
if (!(*fhandler))
return -ENOMEM;
(*fhandler)->full_addr.data_base =
(rmi_fd->data_base_addr |
(page_number << 8));
(*fhandler)->full_addr.ctrl_base =
(rmi_fd->ctrl_base_addr |
(page_number << 8));
(*fhandler)->full_addr.cmd_base =
(rmi_fd->cmd_base_addr |
(page_number << 8));
(*fhandler)->full_addr.query_base =
(rmi_fd->query_base_addr |
(page_number << 8));
return 0;
}
/**
* synaptics_rmi4_query_device()
*
* Called by synaptics_rmi4_probe().
*
* This funtion scans the page description table, records the offsets
* to the register types of Function $01, sets up the function handlers
* for Function $11 and Function $12, determines the number of interrupt
* sources from the sensor, adds valid Functions with data inputs to the
* Function linked list, parses information from the query registers of
* Function $01, and enables the interrupt sources from the valid Functions
* with data inputs.
*/
static int synaptics_rmi4_query_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char page_number;
unsigned char intr_count = 0;
unsigned char data_sources = 0;
unsigned char f01_query[F01_STD_QUERY_LEN] = {0};
unsigned short pdt_entry_addr;
struct synaptics_rmi4_fn_desc rmi_fd;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_device_info *rmi;
struct f34_properties f34_query;
struct synaptics_rmi4_f01_device_status status;
rmi = &(rmi4_data->rmi4_mod_info);
INIT_LIST_HEAD(&rmi->support_fn_list);
/* Scan the page description tables of the pages to service */
for (page_number = 0; page_number < PAGES_TO_SERVICE; page_number++) {
for (pdt_entry_addr = PDT_START; pdt_entry_addr > PDT_END;
pdt_entry_addr -= PDT_ENTRY_SIZE) {
pdt_entry_addr |= (page_number << 8);
retval = synaptics_rmi4_i2c_read(rmi4_data,
pdt_entry_addr,
(unsigned char *)&rmi_fd,
sizeof(rmi_fd));
if (retval < 0)
return retval;
fhandler = NULL;
if (rmi_fd.fn_number == 0) {
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Reached end of PDT\n",
__func__);
break;
}
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: F%02x found (page %d)\n",
__func__, rmi_fd.fn_number,
page_number);
switch (rmi_fd.fn_number) {
case SYNAPTICS_RMI4_F34:
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi_fd.query_base_addr +
F34_PROPERTIES_OFFSET,
&f34_query.data[0],
sizeof(f34_query));
if (retval < 0)
return retval;
if (f34_query.has_config_id) {
retval = synaptics_rmi4_i2c_read(
rmi4_data,
rmi_fd.ctrl_base_addr,
rmi->config_id,
sizeof(rmi->config_id));
if (retval < 0)
return retval;
}
break;
case SYNAPTICS_RMI4_F01:
rmi4_data->f01_query_base_addr =
rmi_fd.query_base_addr;
rmi4_data->f01_ctrl_base_addr =
rmi_fd.ctrl_base_addr;
rmi4_data->f01_data_base_addr =
rmi_fd.data_base_addr;
rmi4_data->f01_cmd_base_addr =
rmi_fd.cmd_base_addr;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
status.data,
sizeof(status.data));
if (retval < 0)
return retval;
synaptics_rmi4_sensor_multi_touch(
rmi4_data, SYNAPTICS_RMI4_F01);
rmi4_data->in_bootloader =
status.flash_prog == 1;
break;
case SYNAPTICS_RMI4_F11:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f11_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0)
return retval;
break;
case SYNAPTICS_RMI4_F12:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f12_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0)
return retval;
synaptics_rmi4_sensor_multi_touch(
rmi4_data, SYNAPTICS_RMI4_F12);
break;
case SYNAPTICS_RMI4_F1A:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f1a_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
switch (retval) {
case -ENOMEM:
return retval;
case -ENODEV:
/* removing buttons handler if there */
/* were no key codes in platform data */
kfree(fhandler);
fhandler = NULL;
rmi_fd.intr_src_count = 0;
break;
}
break;
}
/* Accumulate the interrupt count */
intr_count += (rmi_fd.intr_src_count & MASK_3BIT);
if (fhandler && rmi_fd.intr_src_count) {
list_add_tail(&fhandler->link,
&rmi->support_fn_list);
}
}
}
rmi4_data->num_of_intr_regs = (intr_count + 7) / 8;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Number of interrupt registers = %d\n",
__func__, rmi4_data->num_of_intr_regs);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_query_base_addr,
f01_query,
sizeof(f01_query));
if (retval < 0)
return retval;
/* RMI Version 4.0 currently supported */
rmi->version_major = 4;
rmi->version_minor = 0;
rmi->manufacturer_id = f01_query[0];
rmi->product_props = f01_query[1];
memcpy(&rmi->product_info[0], &f01_query[2],
SYNAPTICS_RMI4_PRODUCT_INFO_SIZE);
memcpy(rmi->serial, &f01_query[4], SYNAPTICS_RMI4_SERIAL_SIZE);
memcpy(rmi->product_id_string, &f01_query[11],
SYNAPTICS_RMI4_PRODUCT_ID_SIZE);
rmi->product_id_string[SYNAPTICS_RMI4_PRODUCT_ID_SIZE] = 0;
/* handle wrongfully programmed product id strings here */
synaptics_dsx_darn_product_string(rmi->product_id_string,
SYNAPTICS_RMI4_PRODUCT_ID_SIZE);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_query_base_addr+PACKAGE_ID_OFFSET,
rmi->package_id,
sizeof(rmi->package_id));
if (retval < 0)
return retval;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_query_base_addr+FW_VERSION_OFFSET,
rmi->build_id,
sizeof(rmi->build_id));
if (retval < 0)
return retval;
if (rmi->manufacturer_id != 1) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Non-Synaptics device found, manufacturer ID = %d\n",
__func__, rmi->manufacturer_id);
}
if (!rmi4_data->in_bootloader && !rmi4_data->input_registered) {
retval = input_register_device(rmi4_data->input_dev);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to register input device\n",
__func__);
return retval;
}
rmi4_data->input_registered = true;
}
memset(rmi4_data->intr_mask, 0x00, sizeof(rmi4_data->intr_mask));
/*
* Map out the interrupt bit masks for the interrupt sources
* from the registered function handlers.
*/
list_for_each_entry(fhandler, &rmi->support_fn_list, link)
data_sources += fhandler->num_of_data_sources;
if (data_sources) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->num_of_data_sources) {
rmi4_data->intr_mask[fhandler->intr_reg_num] |=
fhandler->intr_mask;
}
}
}
/* interrupt mask for currently active functions */
batohui(&rmi4_data->active_fn_intr_mask,
rmi4_data->intr_mask, rmi4_data->num_of_intr_regs);
pr_debug("active func intr_mask 0x%x\n",
rmi4_data->active_fn_intr_mask);
if (rmi4_data->in_bootloader)
pr_info("Product: %s is in bootloader mode\n",
rmi->product_id_string);
else {
unsigned int config_id, firmware_id;
batohui(&firmware_id, rmi->build_id, sizeof(rmi->build_id));
batohui(&config_id, rmi->config_id, sizeof(config_id));
pr_info("Product: %s, firmware id: %x, config id: %08x\n",
rmi->product_id_string, firmware_id, config_id);
}
return 0;
}
static void synaptics_rmi4_cleanup(struct synaptics_rmi4_data *rmi4_data)
{
struct synaptics_rmi4_fn *fhandler, *next_list_entry;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
list_for_each_entry_safe(fhandler, next_list_entry,
&rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A)
synaptics_rmi4_f1a_kfree(fhandler);
else
kfree(fhandler->data);
list_del(&fhandler->link);
kfree(fhandler);
}
}
static void synaptics_dsx_on_resume(struct synaptics_rmi4_data *rmi4_data)
{
/*
* Enforce touch release event report to work-around such event
* missing while touch IC is off.
*/
#ifdef TYPE_B_PROTOCOL
int i;
for (i = 0; i < rmi4_data->num_of_fingers; i++) {
input_mt_slot(rmi4_data->input_dev, i);
input_mt_report_slot_state(rmi4_data->input_dev,
MT_TOOL_FINGER, false);
}
#else
input_mt_sync(rmi4_data->input_dev);
#endif
input_sync(rmi4_data->input_dev);
/* reset some TSB global vars like fingers_on_2d after resume
* of reset touch IC
*/
if (rmi4_data->button_0d_enabled) {
tsb_buff_clean_flag = 1;
rmi4_data->fingers_on_2d = false;
}
}
static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data,
unsigned char *f01_cmd_base_addr)
{
int current_state, retval;
bool need_to_query = false;
unsigned char command = 0x01;
current_state = synaptics_dsx_get_state_safe(rmi4_data);
if (current_state == STATE_UNKNOWN) {
synaptics_rmi4_cleanup(rmi4_data);
if (rmi4_data->input_registered) {
input_unregister_device(rmi4_data->input_dev);
rmi4_data->input_dev = NULL;
rmi4_data->input_registered = false;
pr_debug("de-allocated input device\n");
}
need_to_query = true;
}
if (rmi4_data->hw_reset)
/* do hard reset instead of soft */
synaptics_dsx_ic_reset(rmi4_data, true);
else {
retval = synaptics_rmi4_i2c_write(rmi4_data,
f01_cmd_base_addr ? *f01_cmd_base_addr :
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
return retval;
}
msleep(100);
}
if (need_to_query) {
if (!rmi4_data->input_dev) {
retval = synaptics_dsx_alloc_input(rmi4_data);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to allocate input device\n",
__func__);
return retval;
}
}
retval = synaptics_rmi4_query_device(rmi4_data);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to query device\n",
__func__);
return retval;
}
/* kick off detection work after touch ic changes its mode */
if (exp_fn_ctrl.det_workqueue)
queue_delayed_work(exp_fn_ctrl.det_workqueue,
&exp_fn_ctrl.det_work, 0);
}
return 0;
}
/**
* synaptics_rmi4_detection_work()
*
* Called by the kernel at the scheduled time.
*
* This function is armed by synaptics_new_function call. It checks for
* the insertion and removal of other expansion Function modules such as
* rmi_dev and calls their initialization and removal callback functions
* accordingly.
*/
static void synaptics_rmi4_detection_work(struct work_struct *work)
{
struct synaptics_rmi4_exp_fn *exp_fhandler, *next_list_entry;
struct synaptics_rmi4_data *rmi4_data;
int state;
mutex_lock(&exp_fn_ctrl_mutex);
rmi4_data = exp_fn_ctrl.rmi4_data_ptr;
mutex_unlock(&exp_fn_ctrl_mutex);
if (rmi4_data == NULL) {
if (exp_fn_ctrl.det_workqueue)
queue_delayed_work(exp_fn_ctrl.det_workqueue,
&exp_fn_ctrl.det_work,
msecs_to_jiffies(EXP_FN_DET_INTERVAL));
return;
}
mutex_lock(&exp_fn_ctrl.list_mutex);
if (list_empty(&exp_fn_ctrl.fn_list))
goto release_mutex;
list_for_each_entry_safe(exp_fhandler,
next_list_entry,
&exp_fn_ctrl.fn_list,
link) {
if ((exp_fhandler->func_init != NULL) &&
(exp_fhandler->inserted == false)) {
if (rmi4_data->in_bootloader &&
(exp_fhandler->mode == IC_MODE_UI))
continue;
if (rmi4_data->sensor_sleep)
synaptics_rmi4_sensor_wake(rmi4_data);
exp_fhandler->func_init(rmi4_data);
state = synaptics_dsx_get_state_safe(rmi4_data);
if (state == STATE_STANDBY)
synaptics_rmi4_sensor_sleep(rmi4_data);
exp_fhandler->inserted = true;
} else if ((exp_fhandler->func_init == NULL) &&
(exp_fhandler->inserted == true)) {
exp_fhandler->func_remove(rmi4_data);
list_del(&exp_fhandler->link);
kfree(exp_fhandler);
}
}
release_mutex:
mutex_unlock(&exp_fn_ctrl.list_mutex);
return;
}
/**
* synaptics_rmi4_new_function()
*
* Called by other expansion Function modules in their module init and
* module exit functions.
*
* This function is used by other expansion Function modules such as
* rmi_dev to register themselves with the driver by providing their
* initialization and removal callback function pointers so that they
* can be inserted or removed dynamically at module init and exit times,
* respectively.
*/
void synaptics_rmi4_new_function(enum exp_fn fn_type, bool insert,
int (*func_init)(struct synaptics_rmi4_data *rmi4_data),
void (*func_remove)(struct synaptics_rmi4_data *rmi4_data),
void (*func_attn)(struct synaptics_rmi4_data *rmi4_data,
unsigned char intr_mask), enum ic_modes mode)
{
struct synaptics_rmi4_exp_fn *exp_fhandler;
mutex_lock(&exp_fn_ctrl_mutex);
if (!exp_fn_ctrl.inited) {
mutex_init(&exp_fn_ctrl.list_mutex);
INIT_LIST_HEAD(&exp_fn_ctrl.fn_list);
exp_fn_ctrl.det_workqueue =
create_singlethread_workqueue("rmi_det_workqueue");
if (IS_ERR_OR_NULL(exp_fn_ctrl.det_workqueue))
pr_err("unable to create a workqueue\n");
INIT_DELAYED_WORK(&exp_fn_ctrl.det_work,
synaptics_rmi4_detection_work);
exp_fn_ctrl.inited = true;
}
mutex_unlock(&exp_fn_ctrl_mutex);
mutex_lock(&exp_fn_ctrl.list_mutex);
if (insert) {
exp_fhandler = kzalloc(sizeof(*exp_fhandler), GFP_KERNEL);
if (!exp_fhandler) {
pr_err("failed to alloc mem for expansion function\n");
goto exit;
}
exp_fhandler->fn_type = fn_type;
exp_fhandler->func_init = func_init;
exp_fhandler->func_attn = func_attn;
exp_fhandler->func_remove = func_remove;
exp_fhandler->inserted = false;
exp_fhandler->mode = mode;
list_add_tail(&exp_fhandler->link, &exp_fn_ctrl.fn_list);
} else {
list_for_each_entry(exp_fhandler, &exp_fn_ctrl.fn_list, link) {
if (exp_fhandler->func_init == func_init) {
exp_fhandler->inserted = false;
exp_fhandler->func_init = NULL;
exp_fhandler->func_attn = NULL;
goto exit;
}
}
}
exit:
mutex_unlock(&exp_fn_ctrl.list_mutex);
if (exp_fn_ctrl.det_workqueue)
queue_delayed_work(exp_fn_ctrl.det_workqueue,
&exp_fn_ctrl.det_work, 0);
return;
}
EXPORT_SYMBOL(synaptics_rmi4_new_function);
/**
* synaptics_rmi4_probe()
*
* Called by the kernel when an association with an I2C device of the
* same name is made (after doing i2c_add_driver).
*
* This funtion allocates and initializes the resources for the driver
* as an input driver, turns on the power to the sensor, queries the
* sensor for its supported Functions and characteristics, registers
* the driver to the input subsystem, sets up the interrupt, and creates
* a work queue for detection of other expansion Function modules.
*/
static int __devinit synaptics_rmi4_probe(struct i2c_client *client,
const struct i2c_device_id *dev_id)
{
int retval;
unsigned char attr_count;
struct synaptics_rmi4_data *rmi4_data;
struct synaptics_rmi4_device_info *rmi;
struct synaptics_dsx_platform_data *platform_data;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(&client->dev,
"%s: SMBus byte data not supported\n",
__func__);
return -EIO;
}
rmi4_data = kzalloc(sizeof(*rmi4_data), GFP_KERNEL);
if (!rmi4_data) {
dev_err(&client->dev,
"%s: Failed to alloc mem for rmi4_data\n",
__func__);
return -ENOMEM;
}
platform_data = synaptics_dsx_of_init(client);
if (!platform_data) {
dev_err(&client->dev,
"%s: No platform data found\n",
__func__);
kfree(rmi4_data);
return -EINVAL;
}
rmi4_data->purge_enabled = platform_data->purge_enabled;
rmi4_data->reset_on_resume = platform_data->reset_on_resume;
rmi4_data->one_touch_enabled = platform_data->one_touch_enabled;
rmi4_data->normal_mode = platform_data->normal_mode;
rmi4_data->hw_reset = platform_data->hw_reset;
rmi = &(rmi4_data->rmi4_mod_info);
rmi4_data->i2c_client = client;
rmi4_data->current_page = MASK_8BIT;
rmi4_data->board = platform_data;
rmi4_data->touch_stopped = false;
rmi4_data->sensor_sleep = false;
rmi4_data->irq_enabled = false;
rmi4_data->i2c_read = synaptics_rmi4_i2c_read;
rmi4_data->i2c_write = synaptics_rmi4_i2c_write;
rmi4_data->set_state = synaptics_dsx_sensor_state;
rmi4_data->ready_state = synaptics_dsx_sensor_ready_state;
rmi4_data->irq_enable = synaptics_rmi4_irq_enable;
rmi4_data->reset_device = synaptics_rmi4_reset_device;
/* Initialize some resume debug information */
rmi4_data->resume_info = kzalloc(
sizeof(struct synaptics_rmi4_resume_info) *
MAX_NUMBER_TRACKED_RESUMES,
GFP_KERNEL);
if (!rmi4_data->resume_info) {
dev_err(&client->dev,
"%s: Failed to allocate memory for resume information\n",
__func__);
rmi4_data->number_resumes = 0;
} else
rmi4_data->number_resumes = MAX_NUMBER_TRACKED_RESUMES;
rmi4_data->last_resume = -1;
/* Initialize some interrupit timing debug information */
rmi4_data->irq_info = kzalloc(
sizeof(struct synaptics_rmi4_irq_info) *
MAX_NUMBER_TRACKED_IRQS,
GFP_KERNEL);
if (!rmi4_data->irq_info) {
dev_err(&client->dev,
"%s: Failed to allocate memory for IRQ debug information\n",
__func__);
rmi4_data->number_irq = 0;
} else
rmi4_data->number_irq = MAX_NUMBER_TRACKED_IRQS;
rmi4_data->last_irq = -1;
mutex_init(&(rmi4_data->rmi4_io_ctrl_mutex));
mutex_init(&(rmi4_data->state_mutex));
if (platform_data->gpio_config)
retval = platform_data->gpio_config(platform_data, true);
else {
retval = gpio_request(platform_data->reset_gpio,
RESET_GPIO_NAME);
if (!retval)
retval = gpio_direction_output(
platform_data->reset_gpio, 1);
}
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to configure GPIO\n",
__func__);
goto err_input_device;
}
/* get irq number initialized before calling reset */
rmi4_data->irq = gpio_to_irq(platform_data->irq_gpio);
i2c_set_clientdata(client, rmi4_data);
retval = synaptics_dsx_alloc_input(rmi4_data);
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to allocate input device\n",
__func__);
goto err_input_device;
}
rmi4_data->regulator = regulator_get(&client->dev, "touch_vdd");
if (IS_ERR(rmi4_data->regulator)) {
dev_err(&client->dev,
"%s: Failed to get regulator\n",
__func__);
} else {
platform_data->regulator_en = true;
regulator_enable(rmi4_data->regulator);
pr_debug("touch-vdd regulator is %s\n",
regulator_is_enabled(rmi4_data->regulator) ?
"on" : "off");
}
retval = synaptics_dsx_ic_reset(rmi4_data, true);
if (retval > 0)
pr_debug("successful reset took %dms\n", retval);
retval = synaptics_rmi4_query_device(rmi4_data);
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to query device\n",
__func__);
goto err_query_device;
}
init_waitqueue_head(&rmi4_data->wait);
#if defined(CONFIG_MMI_PANEL_NOTIFICATIONS)
rmi4_data->panel_nb.suspend = synaptics_rmi4_suspend;
rmi4_data->panel_nb.resume = synaptics_rmi4_resume;
rmi4_data->panel_nb.dev = &client->dev;
if (!mmi_panel_register_notifier(&rmi4_data->panel_nb))
pr_info("registered MMI panel notifier\n");
else
dev_err(&client->dev,
"%s: Unable to register MMI notifier\n",
__func__);
#elif defined(CONFIG_FB)
rmi4_data->panel_nb.notifier_call = synaptics_dsx_panel_cb;
if (!fb_register_client(&rmi4_data->panel_nb))
pr_debug("registered FB notifier\n");
else
dev_err(&client->dev,
"%s: Unable to register FB notifier\n",
__func__);
#endif
mutex_lock(&exp_fn_ctrl_mutex);
if (!exp_fn_ctrl.inited) {
mutex_init(&exp_fn_ctrl.list_mutex);
INIT_LIST_HEAD(&exp_fn_ctrl.fn_list);
exp_fn_ctrl.det_workqueue =
create_singlethread_workqueue("rmi_det_workqueue");
if (IS_ERR_OR_NULL(exp_fn_ctrl.det_workqueue))
pr_err("unable to create a workqueue\n");
INIT_DELAYED_WORK(&exp_fn_ctrl.det_work,
synaptics_rmi4_detection_work);
exp_fn_ctrl.inited = true;
}
mutex_unlock(&exp_fn_ctrl_mutex);
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
retval = sysfs_create_file(&rmi4_data->i2c_client->dev.kobj,
&attrs[attr_count].attr);
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to create sysfs attributes\n",
__func__);
goto err_sysfs;
}
}
synaptics_dsx_sensor_ready_state(rmi4_data, true);
mutex_lock(&exp_fn_ctrl_mutex);
exp_fn_ctrl.rmi4_data_ptr = rmi4_data;
mutex_unlock(&exp_fn_ctrl_mutex);
return retval;
err_sysfs:
for (attr_count--; attr_count >= 0; attr_count--) {
sysfs_remove_file(&rmi4_data->i2c_client->dev.kobj,
&attrs[attr_count].attr);
}
#if defined(CONFIG_MMI_PANEL_NOTIFICATIONS)
mmi_panel_unregister_notifier(&rmi4_data->panel_nb);
#elif defined(CONFIG_FB)
fb_unregister_client(&rmi4_data->panel_nb);
#endif
err_query_device:
if (rmi4_data->input_registered) {
input_unregister_device(rmi4_data->input_dev);
rmi4_data->input_dev = NULL;
}
if (platform_data->regulator_en) {
regulator_disable(rmi4_data->regulator);
regulator_put(rmi4_data->regulator);
}
synaptics_rmi4_cleanup(rmi4_data);
input_free_device(rmi4_data->input_dev);
err_input_device:
kfree(rmi4_data);
return retval;
}
/**
* synaptics_rmi4_remove()
*
* Called by the kernel when the association with an I2C device of the
* same name is broken (when the driver is unloaded).
*
* This funtion terminates the work queue, stops sensor data acquisition,
* frees the interrupt, unregisters the driver from the input subsystem,
* turns off the power to the sensor, and frees other allocated resources.
*/
static int __devexit synaptics_rmi4_remove(struct i2c_client *client)
{
unsigned char attr_count;
struct synaptics_rmi4_data *rmi4_data = i2c_get_clientdata(client);
struct synaptics_rmi4_device_info *rmi;
const struct synaptics_dsx_platform_data *platform_data =
rmi4_data->board;
rmi = &(rmi4_data->rmi4_mod_info);
if (exp_fn_ctrl.inited) {
cancel_delayed_work_sync(&exp_fn_ctrl.det_work);
flush_workqueue(exp_fn_ctrl.det_workqueue);
destroy_workqueue(exp_fn_ctrl.det_workqueue);
}
rmi4_data->touch_stopped = true;
wake_up(&rmi4_data->wait);
synaptics_rmi4_irq_enable(rmi4_data, false);
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
sysfs_remove_file(&rmi4_data->i2c_client->dev.kobj,
&attrs[attr_count].attr);
}
if (rmi4_data->input_registered) {
input_unregister_device(rmi4_data->input_dev);
rmi4_data->input_dev = NULL;
}
if (platform_data->regulator_en) {
regulator_disable(rmi4_data->regulator);
regulator_put(rmi4_data->regulator);
}
#if defined(CONFIG_MMI_PANEL_NOTIFICATIONS)
mmi_panel_unregister_notifier(&rmi4_data->panel_nb);
#elif defined(CONFIG_FB)
fb_unregister_client(&rmi4_data->panel_nb);
#endif
synaptics_rmi4_cleanup(rmi4_data);
kfree(rmi4_data);
return 0;
}
static void synaptics_rmi4_sensor_multi_touch(
struct synaptics_rmi4_data *rmi4_data, unsigned char function)
{
int retval;
switch (function) {
case SYNAPTICS_RMI4_F12:
/* Store multitouch config registers */
hob_data.f12_c20_0 = f12_c20_0;
hob_data.f12_c23_0 = f12_c23_0;
hob_data.f12_c23_1 = f12_c23_1;
if (!hob_data.f12_c20_0.x_suppression)
hob_data.f12_c20_0.x_suppression = X_MT_SUPPRESSION;
if (!hob_data.f12_c20_0.y_suppression)
hob_data.f12_c20_0.y_suppression = Y_MT_SUPPRESSION;
break;
case SYNAPTICS_RMI4_F01:
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr + 5,
&hob_data.f01_c9,
sizeof(hob_data.f01_c9));
if (retval < 0)
pr_err("error storing recalibration interval\n");
break;
}
}
/**
* synaptics_rmi4_sensor_one_touch()
*
* Called on suspend and resume.
*
* This function reconfigures finger data acquisition.
*/
static void synaptics_rmi4_sensor_one_touch(
struct synaptics_rmi4_data *rmi4_data, bool enable)
{
int retval;
unsigned char recalibration;
if (enable) {
f12_c20_0.x_suppression = X_1T_SUPPRESSION;
f12_c20_0.y_suppression = Y_1T_SUPPRESSION;
f12_c23_0.data[0] = TYPE_FINGER | TYPE_STYLUS;
f12_c23_1.max_num_reported_objects = 1;
recalibration = ONE_TOUCH_RECALIBRATION;
} else {
f12_c20_0 = hob_data.f12_c20_0;
f12_c23_0 = hob_data.f12_c23_0;
f12_c23_1 = hob_data.f12_c23_1;
recalibration = hob_data.f01_c9;
}
synaptics_rmi4_write_packet_reg(rmi4_data, &f12_ctrl_regs, 20);
synaptics_rmi4_write_packet_reg(rmi4_data, &f12_ctrl_regs, 23);
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr + 5,
&recalibration,
sizeof(recalibration));
if (retval < 0)
pr_err("error setting recalibration interval\n");
}
/**
* synaptics_rmi4_sensor_sleep()
*
* Called by synaptics_dsx_sensor_state().
*
* This function stops finger data acquisition and puts the sensor to sleep.
*/
static void synaptics_rmi4_sensor_sleep(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char device_ctrl;
unsigned char clear_mask = MASK_2BIT;
unsigned char set_mask = SENSOR_SLEEP;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to enter sleep mode\n",
__func__);
rmi4_data->sensor_sleep = false;
return;
}
if (rmi4_data->normal_mode >= 0) {
clear_mask = MASK_3BIT;
set_mask |= NO_SLEEP_OFF;
}
/* store ctrl register value to avoid being */
/* have to read its value when waking ic up */
rmi4_data->f01_ctrl_register_0 = device_ctrl;
device_ctrl = (device_ctrl & ~clear_mask);
device_ctrl = (device_ctrl | set_mask);
dev_dbg(&(rmi4_data->input_dev->dev),
"%s: Sleep mode 0x%x\n", __func__, device_ctrl);
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to enter sleep mode\n",
__func__);
rmi4_data->sensor_sleep = false;
return;
} else {
rmi4_data->sensor_sleep = true;
}
return;
}
/**
* synaptics_rmi4_sensor_wake()
*
* Called by synaptics_dsx_sensor_state().
*
* This function wakes the sensor from sleep.
*/
static void synaptics_rmi4_sensor_wake(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char device_ctrl;
unsigned char clear_mask = MASK_3BIT;
unsigned char set_mask = NORMAL_OPERATION;
/* use ctrl register value stored when ic is put in sleep */
device_ctrl = rmi4_data->f01_ctrl_register_0;
if (rmi4_data->normal_mode < 0)
clear_mask = MASK_2BIT;
else if (rmi4_data->normal_mode == 0)
set_mask |= NO_SLEEP_ON;
device_ctrl = (device_ctrl & ~clear_mask);
device_ctrl = (device_ctrl | set_mask);
dev_dbg(&(rmi4_data->input_dev->dev),
"%s: Wake up to mode 0x%x\n", __func__, device_ctrl);
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to wake from sleep mode\n",
__func__);
rmi4_data->sensor_sleep = true;
return;
} else {
rmi4_data->sensor_sleep = false;
}
return;
}
#if defined(CONFIG_FB) && !defined(CONFIG_MMI_PANEL_NOTIFICATIONS)
static int synaptics_dsx_panel_cb(struct notifier_block *nb,
unsigned long event, void *data)
{
struct fb_event *evdata = data;
int *blank;
int value = -1;
struct synaptics_rmi4_data *rmi4_data =
container_of(nb, struct synaptics_rmi4_data, panel_nb);
if (evdata && evdata->data && event == FB_EVENT_BLANK) {
blank = evdata->data;
if (*blank == FB_BLANK_UNBLANK) {
synaptics_rmi4_resume(&(rmi4_data->input_dev->dev));
value = 0; /* clear flag */
} else if (*blank == FB_BLANK_POWERDOWN) {
synaptics_rmi4_suspend(&(rmi4_data->input_dev->dev));
value = 1; /* set flag */
}
}
if (rmi4_data->purge_enabled && value != -1) {
atomic_set(&rmi4_data->panel_off_flag, value);
pr_debug("touches purge is %s\n", value ? "ON" : "OFF");
}
return 0;
}
#endif
/**
* synaptics_rmi4_suspend()
*
* Called by the kernel during the suspend phase when the system
* enters suspend.
*
* This function stops finger data acquisition and puts the sensor to
* sleep, disables the interrupt, and turns off the power to the sensor.
*/
static int synaptics_rmi4_suspend(struct device *dev)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
const struct synaptics_dsx_platform_data *platform_data =
rmi4_data->board;
synaptics_dsx_sensor_state(rmi4_data, STATE_SUSPEND);
rmi4_data->poweron = false;
if (!rmi4_data->touch_stopped) {
if (platform_data->regulator_en) {
regulator_disable(rmi4_data->regulator);
pr_debug("touch-vdd regulator is %s\n",
regulator_is_enabled(rmi4_data->regulator) ?
"on" : "off");
}
gpio_free(platform_data->reset_gpio);
rmi4_data->touch_stopped = true;
}
return 0;
}
/**
* synaptics_rmi4_resume()
*
* Called by the kernel during the resume phase when the system
* wakes up from suspend.
*
* This function turns on the power to the sensor, wakes the sensor
* from sleep, enables the interrupt, and starts finger data
* acquisition.
*/
static int synaptics_rmi4_resume(struct device *dev)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (rmi4_data->touch_stopped) {
int retval;
bool wait4idle = false;
const struct synaptics_dsx_platform_data *platform_data =
rmi4_data->board;
if (platform_data->regulator_en) {
regulator_enable(rmi4_data->regulator);
pr_debug("touch-vdd regulator is %s\n",
regulator_is_enabled(rmi4_data->regulator) ?
"on" : "off");
}
retval = gpio_get_value(platform_data->reset_gpio);
pr_debug("reset gpio state: %d\n", retval);
if (retval == 0)
wait4idle = true;
if (gpio_request(platform_data->reset_gpio,
RESET_GPIO_NAME) < 0)
pr_err("failed to request reset gpio\n");
rmi4_data->touch_stopped = false;
/*
* Decouple device reset and sending touch release, since
* on resume resetting ic can be optional, while sending
* release event is not
*/
synaptics_dsx_on_resume(rmi4_data);
if (rmi4_data->reset_on_resume)
synaptics_rmi4_reset_device(rmi4_data, NULL);
else if (wait4idle) {
retval = synaptics_dsx_ic_reset(rmi4_data, false);
pr_debug("waited for idle %dms\n", retval);
}
}
synaptics_dsx_sensor_ready_state(rmi4_data, false);
rmi4_data->poweron = true;
return 0;
}
static const struct dev_pm_ops synaptics_rmi4_dev_pm_ops = {
.suspend = synaptics_rmi4_suspend,
.resume = synaptics_rmi4_resume,
};
#ifdef CONFIG_OF
static const struct of_device_id synaptics_rmi4_match_tbl[] = {
{ .compatible = "synaptics," DRIVER_NAME },
{ },
};
MODULE_DEVICE_TABLE(of, synaptics_rmi4_match_tbl);
#endif
static const struct i2c_device_id synaptics_rmi4_id_table[] = {
{DRIVER_NAME, 0},
{},
};
MODULE_DEVICE_TABLE(i2c, synaptics_rmi4_id_table);
static struct i2c_driver synaptics_rmi4_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
#if !defined(CONFIG_FB) && defined(CONFIG_PM)
.pm = &synaptics_rmi4_dev_pm_ops,
#endif
},
.probe = synaptics_rmi4_probe,
.remove = __devexit_p(synaptics_rmi4_remove),
.id_table = synaptics_rmi4_id_table,
};
/**
* synaptics_rmi4_init()
*
* Called by the kernel during do_initcalls (if built-in)
* or when the driver is loaded (if a module).
*
* This function registers the driver to the I2C subsystem.
*
*/
static int __init synaptics_rmi4_init(void)
{
return i2c_add_driver(&synaptics_rmi4_driver);
}
/**
* synaptics_rmi4_exit()
*
* Called by the kernel when the driver is unloaded.
*
* This funtion unregisters the driver from the I2C subsystem.
*
*/
static void __exit synaptics_rmi4_exit(void)
{
i2c_del_driver(&synaptics_rmi4_driver);
}
module_init(synaptics_rmi4_init);
module_exit(synaptics_rmi4_exit);
MODULE_AUTHOR("Synaptics, Inc.");
MODULE_DESCRIPTION("Synaptics DSX I2C Touch Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(SYNAPTICS_DSX_DRIVER_VERSION);