| /* |
| * drivers/mtd/nand.c |
| * |
| * Overview: |
| * This is the generic MTD driver for NAND flash devices. It should be |
| * capable of working with almost all NAND chips currently available. |
| * Basic support for AG-AND chips is provided. |
| * |
| * Additional technical information is available on |
| * http://www.linux-mtd.infradead.org/tech/nand.html |
| * |
| * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) |
| * 2002 Thomas Gleixner (tglx@linutronix.de) |
| * |
| * 02-08-2004 tglx: support for strange chips, which cannot auto increment |
| * pages on read / read_oob |
| * |
| * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes |
| * pointed this out, as he marked an auto increment capable chip |
| * as NOAUTOINCR in the board driver. |
| * Make reads over block boundaries work too |
| * |
| * 04-14-2004 tglx: first working version for 2k page size chips |
| * |
| * 05-19-2004 tglx: Basic support for Renesas AG-AND chips |
| * |
| * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared |
| * among multiple independend devices. Suggestions and initial |
| * patch from Ben Dooks <ben-mtd@fluff.org> |
| * |
| * 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" |
| * issue. Basically, any block not rewritten may lose data when |
| * surrounding blocks are rewritten many times. JFFS2 ensures |
| * this doesn't happen for blocks it uses, but the Bad Block |
| * Table(s) may not be rewritten. To ensure they do not lose |
| * data, force them to be rewritten when some of the surrounding |
| * blocks are erased. Rather than tracking a specific nearby |
| * block (which could itself go bad), use a page address 'mask' to |
| * select several blocks in the same area, and rewrite the BBT |
| * when any of them are erased. |
| * |
| * 01-03-2005 dmarlin: added support for the device recovery command sequence |
| * for Renesas AG-AND chips. If there was a sudden loss of power |
| * during an erase operation, a "device recovery" operation must |
| * be performed when power is restored to ensure correct |
| * operation. |
| * |
| * 01-20-2005 dmarlin: added support for optional hardware specific callback |
| * routine to perform extra error status checks on erase and write |
| * failures. This required adding a wrapper function for |
| * nand_read_ecc. |
| * |
| * 08-20-2005 vwool: suspend/resume added |
| * |
| * Credits: |
| * David Woodhouse for adding multichip support |
| * |
| * Aleph One Ltd. and Toby Churchill Ltd. for supporting the |
| * rework for 2K page size chips |
| * |
| * TODO: |
| * Enable cached programming for 2k page size chips |
| * Check, if mtd->ecctype should be set to MTD_ECC_HW |
| * if we have HW ecc support. |
| * The AG-AND chips have nice features for speed improvement, |
| * which are not supported yet. Read / program 4 pages in one go. |
| * |
| * $Id: nand_base.c,v 1.150 2005/09/15 13:58:48 vwool Exp $ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/mtd/compatmac.h> |
| #include <linux/interrupt.h> |
| #include <linux/bitops.h> |
| #include <linux/leds.h> |
| #include <asm/io.h> |
| |
| #ifdef CONFIG_MTD_PARTITIONS |
| #include <linux/mtd/partitions.h> |
| #endif |
| |
| /* Define default oob placement schemes for large and small page devices */ |
| static struct nand_oobinfo nand_oob_8 = { |
| .useecc = MTD_NANDECC_AUTOPLACE, |
| .eccbytes = 3, |
| .eccpos = {0, 1, 2}, |
| .oobfree = {{3, 2}, {6, 2}} |
| }; |
| |
| static struct nand_oobinfo nand_oob_16 = { |
| .useecc = MTD_NANDECC_AUTOPLACE, |
| .eccbytes = 6, |
| .eccpos = {0, 1, 2, 3, 6, 7}, |
| .oobfree = {{8, 8}} |
| }; |
| |
| static struct nand_oobinfo nand_oob_64 = { |
| .useecc = MTD_NANDECC_AUTOPLACE, |
| .eccbytes = 24, |
| .eccpos = { |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63}, |
| .oobfree = {{2, 38}} |
| }; |
| |
| /* This is used for padding purposes in nand_write_oob */ |
| static uint8_t ffchars[] = { |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| }; |
| |
| /* |
| * NAND low-level MTD interface functions |
| */ |
| static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len); |
| static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len); |
| static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len); |
| |
| static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, uint8_t *buf); |
| static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, uint8_t *buf); |
| static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const uint8_t *buf); |
| static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const uint8_t *buf); |
| static int nand_erase(struct mtd_info *mtd, struct erase_info *instr); |
| static void nand_sync(struct mtd_info *mtd); |
| |
| /* Some internal functions */ |
| static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, |
| int page, uint8_t * oob_buf, |
| struct nand_oobinfo *oobsel, int mode); |
| #ifdef CONFIG_MTD_NAND_VERIFY_WRITE |
| static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, |
| int page, int numpages, uint8_t *oob_buf, |
| struct nand_oobinfo *oobsel, int chipnr, |
| int oobmode); |
| #else |
| #define nand_verify_pages(...) (0) |
| #endif |
| |
| static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, |
| int new_state); |
| |
| /** |
| * nand_release_device - [GENERIC] release chip |
| * @mtd: MTD device structure |
| * |
| * Deselect, release chip lock and wake up anyone waiting on the device |
| */ |
| static void nand_release_device(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| /* De-select the NAND device */ |
| this->select_chip(mtd, -1); |
| |
| /* Release the controller and the chip */ |
| spin_lock(&this->controller->lock); |
| this->controller->active = NULL; |
| this->state = FL_READY; |
| wake_up(&this->controller->wq); |
| spin_unlock(&this->controller->lock); |
| } |
| |
| /** |
| * nand_read_byte - [DEFAULT] read one byte from the chip |
| * @mtd: MTD device structure |
| * |
| * Default read function for 8bit buswith |
| */ |
| static uint8_t nand_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| return readb(this->IO_ADDR_R); |
| } |
| |
| /** |
| * nand_write_byte - [DEFAULT] write one byte to the chip |
| * @mtd: MTD device structure |
| * @byte: pointer to data byte to write |
| * |
| * Default write function for 8it buswith |
| */ |
| static void nand_write_byte(struct mtd_info *mtd, uint8_t byte) |
| { |
| struct nand_chip *this = mtd->priv; |
| writeb(byte, this->IO_ADDR_W); |
| } |
| |
| /** |
| * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip |
| * @mtd: MTD device structure |
| * |
| * Default read function for 16bit buswith with |
| * endianess conversion |
| */ |
| static uint8_t nand_read_byte16(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| return (uint8_t) cpu_to_le16(readw(this->IO_ADDR_R)); |
| } |
| |
| /** |
| * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip |
| * @mtd: MTD device structure |
| * @byte: pointer to data byte to write |
| * |
| * Default write function for 16bit buswith with |
| * endianess conversion |
| */ |
| static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) |
| { |
| struct nand_chip *this = mtd->priv; |
| writew(le16_to_cpu((u16) byte), this->IO_ADDR_W); |
| } |
| |
| /** |
| * nand_read_word - [DEFAULT] read one word from the chip |
| * @mtd: MTD device structure |
| * |
| * Default read function for 16bit buswith without |
| * endianess conversion |
| */ |
| static u16 nand_read_word(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| return readw(this->IO_ADDR_R); |
| } |
| |
| /** |
| * nand_write_word - [DEFAULT] write one word to the chip |
| * @mtd: MTD device structure |
| * @word: data word to write |
| * |
| * Default write function for 16bit buswith without |
| * endianess conversion |
| */ |
| static void nand_write_word(struct mtd_info *mtd, u16 word) |
| { |
| struct nand_chip *this = mtd->priv; |
| writew(word, this->IO_ADDR_W); |
| } |
| |
| /** |
| * nand_select_chip - [DEFAULT] control CE line |
| * @mtd: MTD device structure |
| * @chip: chipnumber to select, -1 for deselect |
| * |
| * Default select function for 1 chip devices. |
| */ |
| static void nand_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *this = mtd->priv; |
| switch (chip) { |
| case -1: |
| this->hwcontrol(mtd, NAND_CTL_CLRNCE); |
| break; |
| case 0: |
| this->hwcontrol(mtd, NAND_CTL_SETNCE); |
| break; |
| |
| default: |
| BUG(); |
| } |
| } |
| |
| /** |
| * nand_write_buf - [DEFAULT] write buffer to chip |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| * |
| * Default write function for 8bit buswith |
| */ |
| static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| int i; |
| struct nand_chip *this = mtd->priv; |
| |
| for (i = 0; i < len; i++) |
| writeb(buf[i], this->IO_ADDR_W); |
| } |
| |
| /** |
| * nand_read_buf - [DEFAULT] read chip data into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| * |
| * Default read function for 8bit buswith |
| */ |
| static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| int i; |
| struct nand_chip *this = mtd->priv; |
| |
| for (i = 0; i < len; i++) |
| buf[i] = readb(this->IO_ADDR_R); |
| } |
| |
| /** |
| * nand_verify_buf - [DEFAULT] Verify chip data against buffer |
| * @mtd: MTD device structure |
| * @buf: buffer containing the data to compare |
| * @len: number of bytes to compare |
| * |
| * Default verify function for 8bit buswith |
| */ |
| static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| int i; |
| struct nand_chip *this = mtd->priv; |
| |
| for (i = 0; i < len; i++) |
| if (buf[i] != readb(this->IO_ADDR_R)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /** |
| * nand_write_buf16 - [DEFAULT] write buffer to chip |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| * |
| * Default write function for 16bit buswith |
| */ |
| static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| int i; |
| struct nand_chip *this = mtd->priv; |
| u16 *p = (u16 *) buf; |
| len >>= 1; |
| |
| for (i = 0; i < len; i++) |
| writew(p[i], this->IO_ADDR_W); |
| |
| } |
| |
| /** |
| * nand_read_buf16 - [DEFAULT] read chip data into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| * |
| * Default read function for 16bit buswith |
| */ |
| static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| int i; |
| struct nand_chip *this = mtd->priv; |
| u16 *p = (u16 *) buf; |
| len >>= 1; |
| |
| for (i = 0; i < len; i++) |
| p[i] = readw(this->IO_ADDR_R); |
| } |
| |
| /** |
| * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer |
| * @mtd: MTD device structure |
| * @buf: buffer containing the data to compare |
| * @len: number of bytes to compare |
| * |
| * Default verify function for 16bit buswith |
| */ |
| static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| int i; |
| struct nand_chip *this = mtd->priv; |
| u16 *p = (u16 *) buf; |
| len >>= 1; |
| |
| for (i = 0; i < len; i++) |
| if (p[i] != readw(this->IO_ADDR_R)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /** |
| * nand_block_bad - [DEFAULT] Read bad block marker from the chip |
| * @mtd: MTD device structure |
| * @ofs: offset from device start |
| * @getchip: 0, if the chip is already selected |
| * |
| * Check, if the block is bad. |
| */ |
| static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) |
| { |
| int page, chipnr, res = 0; |
| struct nand_chip *this = mtd->priv; |
| u16 bad; |
| |
| if (getchip) { |
| page = (int)(ofs >> this->page_shift); |
| chipnr = (int)(ofs >> this->chip_shift); |
| |
| /* Grab the lock and see if the device is available */ |
| nand_get_device(this, mtd, FL_READING); |
| |
| /* Select the NAND device */ |
| this->select_chip(mtd, chipnr); |
| } else |
| page = (int)ofs; |
| |
| if (this->options & NAND_BUSWIDTH_16) { |
| this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, |
| page & this->pagemask); |
| bad = cpu_to_le16(this->read_word(mtd)); |
| if (this->badblockpos & 0x1) |
| bad >>= 8; |
| if ((bad & 0xFF) != 0xff) |
| res = 1; |
| } else { |
| this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos, |
| page & this->pagemask); |
| if (this->read_byte(mtd) != 0xff) |
| res = 1; |
| } |
| |
| if (getchip) { |
| /* Deselect and wake up anyone waiting on the device */ |
| nand_release_device(mtd); |
| } |
| |
| return res; |
| } |
| |
| /** |
| * nand_default_block_markbad - [DEFAULT] mark a block bad |
| * @mtd: MTD device structure |
| * @ofs: offset from device start |
| * |
| * This is the default implementation, which can be overridden by |
| * a hardware specific driver. |
| */ |
| static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct nand_chip *this = mtd->priv; |
| uint8_t buf[2] = { 0, 0 }; |
| size_t retlen; |
| int block; |
| |
| /* Get block number */ |
| block = ((int)ofs) >> this->bbt_erase_shift; |
| if (this->bbt) |
| this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); |
| |
| /* Do we have a flash based bad block table ? */ |
| if (this->options & NAND_USE_FLASH_BBT) |
| return nand_update_bbt(mtd, ofs); |
| |
| /* We write two bytes, so we dont have to mess with 16 bit access */ |
| ofs += mtd->oobsize + (this->badblockpos & ~0x01); |
| return nand_write_oob(mtd, ofs, 2, &retlen, buf); |
| } |
| |
| /** |
| * nand_check_wp - [GENERIC] check if the chip is write protected |
| * @mtd: MTD device structure |
| * Check, if the device is write protected |
| * |
| * The function expects, that the device is already selected |
| */ |
| static int nand_check_wp(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| /* Check the WP bit */ |
| this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); |
| return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1; |
| } |
| |
| /** |
| * nand_block_checkbad - [GENERIC] Check if a block is marked bad |
| * @mtd: MTD device structure |
| * @ofs: offset from device start |
| * @getchip: 0, if the chip is already selected |
| * @allowbbt: 1, if its allowed to access the bbt area |
| * |
| * Check, if the block is bad. Either by reading the bad block table or |
| * calling of the scan function. |
| */ |
| static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, |
| int allowbbt) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| if (!this->bbt) |
| return this->block_bad(mtd, ofs, getchip); |
| |
| /* Return info from the table */ |
| return nand_isbad_bbt(mtd, ofs, allowbbt); |
| } |
| |
| DEFINE_LED_TRIGGER(nand_led_trigger); |
| |
| /* |
| * Wait for the ready pin, after a command |
| * The timeout is catched later. |
| */ |
| static void nand_wait_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| unsigned long timeo = jiffies + 2; |
| |
| led_trigger_event(nand_led_trigger, LED_FULL); |
| /* wait until command is processed or timeout occures */ |
| do { |
| if (this->dev_ready(mtd)) |
| break; |
| touch_softlockup_watchdog(); |
| } while (time_before(jiffies, timeo)); |
| led_trigger_event(nand_led_trigger, LED_OFF); |
| } |
| |
| /** |
| * nand_command - [DEFAULT] Send command to NAND device |
| * @mtd: MTD device structure |
| * @command: the command to be sent |
| * @column: the column address for this command, -1 if none |
| * @page_addr: the page address for this command, -1 if none |
| * |
| * Send command to NAND device. This function is used for small page |
| * devices (256/512 Bytes per page) |
| */ |
| static void nand_command(struct mtd_info *mtd, unsigned command, int column, |
| int page_addr) |
| { |
| register struct nand_chip *this = mtd->priv; |
| |
| /* Begin command latch cycle */ |
| this->hwcontrol(mtd, NAND_CTL_SETCLE); |
| /* |
| * Write out the command to the device. |
| */ |
| if (command == NAND_CMD_SEQIN) { |
| int readcmd; |
| |
| if (column >= mtd->writesize) { |
| /* OOB area */ |
| column -= mtd->writesize; |
| readcmd = NAND_CMD_READOOB; |
| } else if (column < 256) { |
| /* First 256 bytes --> READ0 */ |
| readcmd = NAND_CMD_READ0; |
| } else { |
| column -= 256; |
| readcmd = NAND_CMD_READ1; |
| } |
| this->write_byte(mtd, readcmd); |
| } |
| this->write_byte(mtd, command); |
| |
| /* Set ALE and clear CLE to start address cycle */ |
| this->hwcontrol(mtd, NAND_CTL_CLRCLE); |
| |
| if (column != -1 || page_addr != -1) { |
| this->hwcontrol(mtd, NAND_CTL_SETALE); |
| |
| /* Serially input address */ |
| if (column != -1) { |
| /* Adjust columns for 16 bit buswidth */ |
| if (this->options & NAND_BUSWIDTH_16) |
| column >>= 1; |
| this->write_byte(mtd, column); |
| } |
| if (page_addr != -1) { |
| this->write_byte(mtd, (uint8_t)(page_addr & 0xff)); |
| this->write_byte(mtd, (uint8_t)((page_addr >> 8) & 0xff)); |
| /* One more address cycle for devices > 32MiB */ |
| if (this->chipsize > (32 << 20)) |
| this->write_byte(mtd, (uint8_t)((page_addr >> 16) & 0x0f)); |
| } |
| /* Latch in address */ |
| this->hwcontrol(mtd, NAND_CTL_CLRALE); |
| } |
| |
| /* |
| * program and erase have their own busy handlers |
| * status and sequential in needs no delay |
| */ |
| switch (command) { |
| |
| case NAND_CMD_PAGEPROG: |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| case NAND_CMD_SEQIN: |
| case NAND_CMD_STATUS: |
| return; |
| |
| case NAND_CMD_RESET: |
| if (this->dev_ready) |
| break; |
| udelay(this->chip_delay); |
| this->hwcontrol(mtd, NAND_CTL_SETCLE); |
| this->write_byte(mtd, NAND_CMD_STATUS); |
| this->hwcontrol(mtd, NAND_CTL_CLRCLE); |
| while (!(this->read_byte(mtd) & NAND_STATUS_READY)) ; |
| return; |
| |
| /* This applies to read commands */ |
| default: |
| /* |
| * If we don't have access to the busy pin, we apply the given |
| * command delay |
| */ |
| if (!this->dev_ready) { |
| udelay(this->chip_delay); |
| return; |
| } |
| } |
| /* Apply this short delay always to ensure that we do wait tWB in |
| * any case on any machine. */ |
| ndelay(100); |
| |
| nand_wait_ready(mtd); |
| } |
| |
| /** |
| * nand_command_lp - [DEFAULT] Send command to NAND large page device |
| * @mtd: MTD device structure |
| * @command: the command to be sent |
| * @column: the column address for this command, -1 if none |
| * @page_addr: the page address for this command, -1 if none |
| * |
| * Send command to NAND device. This is the version for the new large page devices |
| * We dont have the separate regions as we have in the small page devices. |
| * We must emulate NAND_CMD_READOOB to keep the code compatible. |
| * |
| */ |
| static void nand_command_lp(struct mtd_info *mtd, unsigned command, int column, int page_addr) |
| { |
| register struct nand_chip *this = mtd->priv; |
| |
| /* Emulate NAND_CMD_READOOB */ |
| if (command == NAND_CMD_READOOB) { |
| column += mtd->writesize; |
| command = NAND_CMD_READ0; |
| } |
| |
| /* Begin command latch cycle */ |
| this->hwcontrol(mtd, NAND_CTL_SETCLE); |
| /* Write out the command to the device. */ |
| this->write_byte(mtd, (command & 0xff)); |
| /* End command latch cycle */ |
| this->hwcontrol(mtd, NAND_CTL_CLRCLE); |
| |
| if (column != -1 || page_addr != -1) { |
| this->hwcontrol(mtd, NAND_CTL_SETALE); |
| |
| /* Serially input address */ |
| if (column != -1) { |
| /* Adjust columns for 16 bit buswidth */ |
| if (this->options & NAND_BUSWIDTH_16) |
| column >>= 1; |
| this->write_byte(mtd, column & 0xff); |
| this->write_byte(mtd, column >> 8); |
| } |
| if (page_addr != -1) { |
| this->write_byte(mtd, (uint8_t)(page_addr & 0xff)); |
| this->write_byte(mtd, (uint8_t)((page_addr >> 8) & 0xff)); |
| /* One more address cycle for devices > 128MiB */ |
| if (this->chipsize > (128 << 20)) |
| this->write_byte(mtd, (uint8_t)((page_addr >> 16) & 0xff)); |
| } |
| /* Latch in address */ |
| this->hwcontrol(mtd, NAND_CTL_CLRALE); |
| } |
| |
| /* |
| * program and erase have their own busy handlers |
| * status, sequential in, and deplete1 need no delay |
| */ |
| switch (command) { |
| |
| case NAND_CMD_CACHEDPROG: |
| case NAND_CMD_PAGEPROG: |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| case NAND_CMD_SEQIN: |
| case NAND_CMD_STATUS: |
| case NAND_CMD_DEPLETE1: |
| return; |
| |
| /* |
| * read error status commands require only a short delay |
| */ |
| case NAND_CMD_STATUS_ERROR: |
| case NAND_CMD_STATUS_ERROR0: |
| case NAND_CMD_STATUS_ERROR1: |
| case NAND_CMD_STATUS_ERROR2: |
| case NAND_CMD_STATUS_ERROR3: |
| udelay(this->chip_delay); |
| return; |
| |
| case NAND_CMD_RESET: |
| if (this->dev_ready) |
| break; |
| udelay(this->chip_delay); |
| this->hwcontrol(mtd, NAND_CTL_SETCLE); |
| this->write_byte(mtd, NAND_CMD_STATUS); |
| this->hwcontrol(mtd, NAND_CTL_CLRCLE); |
| while (!(this->read_byte(mtd) & NAND_STATUS_READY)) ; |
| return; |
| |
| case NAND_CMD_READ0: |
| /* Begin command latch cycle */ |
| this->hwcontrol(mtd, NAND_CTL_SETCLE); |
| /* Write out the start read command */ |
| this->write_byte(mtd, NAND_CMD_READSTART); |
| /* End command latch cycle */ |
| this->hwcontrol(mtd, NAND_CTL_CLRCLE); |
| /* Fall through into ready check */ |
| |
| /* This applies to read commands */ |
| default: |
| /* |
| * If we don't have access to the busy pin, we apply the given |
| * command delay |
| */ |
| if (!this->dev_ready) { |
| udelay(this->chip_delay); |
| return; |
| } |
| } |
| |
| /* Apply this short delay always to ensure that we do wait tWB in |
| * any case on any machine. */ |
| ndelay(100); |
| |
| nand_wait_ready(mtd); |
| } |
| |
| /** |
| * nand_get_device - [GENERIC] Get chip for selected access |
| * @this: the nand chip descriptor |
| * @mtd: MTD device structure |
| * @new_state: the state which is requested |
| * |
| * Get the device and lock it for exclusive access |
| */ |
| static int |
| nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state) |
| { |
| spinlock_t *lock = &this->controller->lock; |
| wait_queue_head_t *wq = &this->controller->wq; |
| DECLARE_WAITQUEUE(wait, current); |
| retry: |
| spin_lock(lock); |
| |
| /* Hardware controller shared among independend devices */ |
| /* Hardware controller shared among independend devices */ |
| if (!this->controller->active) |
| this->controller->active = this; |
| |
| if (this->controller->active == this && this->state == FL_READY) { |
| this->state = new_state; |
| spin_unlock(lock); |
| return 0; |
| } |
| if (new_state == FL_PM_SUSPENDED) { |
| spin_unlock(lock); |
| return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN; |
| } |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(wq, &wait); |
| spin_unlock(lock); |
| schedule(); |
| remove_wait_queue(wq, &wait); |
| goto retry; |
| } |
| |
| /** |
| * nand_wait - [DEFAULT] wait until the command is done |
| * @mtd: MTD device structure |
| * @this: NAND chip structure |
| * @state: state to select the max. timeout value |
| * |
| * Wait for command done. This applies to erase and program only |
| * Erase can take up to 400ms and program up to 20ms according to |
| * general NAND and SmartMedia specs |
| * |
| */ |
| static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state) |
| { |
| |
| unsigned long timeo = jiffies; |
| int status; |
| |
| if (state == FL_ERASING) |
| timeo += (HZ * 400) / 1000; |
| else |
| timeo += (HZ * 20) / 1000; |
| |
| led_trigger_event(nand_led_trigger, LED_FULL); |
| |
| /* Apply this short delay always to ensure that we do wait tWB in |
| * any case on any machine. */ |
| ndelay(100); |
| |
| if ((state == FL_ERASING) && (this->options & NAND_IS_AND)) |
| this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1); |
| else |
| this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); |
| |
| while (time_before(jiffies, timeo)) { |
| /* Check, if we were interrupted */ |
| if (this->state != state) |
| return 0; |
| |
| if (this->dev_ready) { |
| if (this->dev_ready(mtd)) |
| break; |
| } else { |
| if (this->read_byte(mtd) & NAND_STATUS_READY) |
| break; |
| } |
| cond_resched(); |
| } |
| led_trigger_event(nand_led_trigger, LED_OFF); |
| |
| status = (int)this->read_byte(mtd); |
| return status; |
| } |
| |
| /** |
| * nand_write_page - [GENERIC] write one page |
| * @mtd: MTD device structure |
| * @this: NAND chip structure |
| * @page: startpage inside the chip, must be called with (page & this->pagemask) |
| * @oob_buf: out of band data buffer |
| * @oobsel: out of band selecttion structre |
| * @cached: 1 = enable cached programming if supported by chip |
| * |
| * Nand_page_program function is used for write and writev ! |
| * This function will always program a full page of data |
| * If you call it with a non page aligned buffer, you're lost :) |
| * |
| * Cached programming is not supported yet. |
| */ |
| static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page, |
| uint8_t *oob_buf, struct nand_oobinfo *oobsel, int cached) |
| { |
| int i, status; |
| uint8_t ecc_code[32]; |
| int eccmode = oobsel->useecc ? this->ecc.mode : NAND_ECC_NONE; |
| int *oob_config = oobsel->eccpos; |
| int datidx = 0, eccidx = 0, eccsteps = this->ecc.steps; |
| int eccbytes = 0; |
| |
| /* FIXME: Enable cached programming */ |
| cached = 0; |
| |
| /* Send command to begin auto page programming */ |
| this->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); |
| |
| /* Write out complete page of data, take care of eccmode */ |
| switch (eccmode) { |
| /* No ecc, write all */ |
| case NAND_ECC_NONE: |
| printk(KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n"); |
| this->write_buf(mtd, this->data_poi, mtd->writesize); |
| break; |
| |
| /* Software ecc 3/256, write all */ |
| case NAND_ECC_SOFT: |
| for (; eccsteps; eccsteps--) { |
| this->ecc.calculate(mtd, &this->data_poi[datidx], ecc_code); |
| for (i = 0; i < 3; i++, eccidx++) |
| oob_buf[oob_config[eccidx]] = ecc_code[i]; |
| datidx += this->ecc.size; |
| } |
| this->write_buf(mtd, this->data_poi, mtd->writesize); |
| break; |
| default: |
| eccbytes = this->ecc.bytes; |
| for (; eccsteps; eccsteps--) { |
| /* enable hardware ecc logic for write */ |
| this->ecc.hwctl(mtd, NAND_ECC_WRITE); |
| this->write_buf(mtd, &this->data_poi[datidx], this->ecc.size); |
| this->ecc.calculate(mtd, &this->data_poi[datidx], ecc_code); |
| for (i = 0; i < eccbytes; i++, eccidx++) |
| oob_buf[oob_config[eccidx]] = ecc_code[i]; |
| /* If the hardware ecc provides syndromes then |
| * the ecc code must be written immidiately after |
| * the data bytes (words) */ |
| if (this->options & NAND_HWECC_SYNDROME) |
| this->write_buf(mtd, ecc_code, eccbytes); |
| datidx += this->ecc.size; |
| } |
| break; |
| } |
| |
| /* Write out OOB data */ |
| if (this->options & NAND_HWECC_SYNDROME) |
| this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes); |
| else |
| this->write_buf(mtd, oob_buf, mtd->oobsize); |
| |
| /* Send command to actually program the data */ |
| this->cmdfunc(mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1); |
| |
| if (!cached) { |
| /* call wait ready function */ |
| status = this->waitfunc(mtd, this, FL_WRITING); |
| |
| /* See if operation failed and additional status checks are available */ |
| if ((status & NAND_STATUS_FAIL) && (this->errstat)) { |
| status = this->errstat(mtd, this, FL_WRITING, status, page); |
| } |
| |
| /* See if device thinks it succeeded */ |
| if (status & NAND_STATUS_FAIL) { |
| DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page); |
| return -EIO; |
| } |
| } else { |
| /* FIXME: Implement cached programming ! */ |
| /* wait until cache is ready */ |
| // status = this->waitfunc (mtd, this, FL_CACHEDRPG); |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_MTD_NAND_VERIFY_WRITE |
| /** |
| * nand_verify_pages - [GENERIC] verify the chip contents after a write |
| * @mtd: MTD device structure |
| * @this: NAND chip structure |
| * @page: startpage inside the chip, must be called with (page & this->pagemask) |
| * @numpages: number of pages to verify |
| * @oob_buf: out of band data buffer |
| * @oobsel: out of band selecttion structre |
| * @chipnr: number of the current chip |
| * @oobmode: 1 = full buffer verify, 0 = ecc only |
| * |
| * The NAND device assumes that it is always writing to a cleanly erased page. |
| * Hence, it performs its internal write verification only on bits that |
| * transitioned from 1 to 0. The device does NOT verify the whole page on a |
| * byte by byte basis. It is possible that the page was not completely erased |
| * or the page is becoming unusable due to wear. The read with ECC would catch |
| * the error later when the ECC page check fails, but we would rather catch |
| * it early in the page write stage. Better to write no data than invalid data. |
| */ |
| static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, |
| uint8_t *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode) |
| { |
| int i, j, datidx = 0, oobofs = 0, res = -EIO; |
| int eccsteps = this->eccsteps; |
| int hweccbytes; |
| uint8_t oobdata[64]; |
| |
| hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0; |
| |
| /* Send command to read back the first page */ |
| this->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| |
| for (;;) { |
| for (j = 0; j < eccsteps; j++) { |
| /* Loop through and verify the data */ |
| if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) { |
| DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); |
| goto out; |
| } |
| datidx += mtd->eccsize; |
| /* Have we a hw generator layout ? */ |
| if (!hweccbytes) |
| continue; |
| if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) { |
| DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); |
| goto out; |
| } |
| oobofs += hweccbytes; |
| } |
| |
| /* check, if we must compare all data or if we just have to |
| * compare the ecc bytes |
| */ |
| if (oobmode) { |
| if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) { |
| DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); |
| goto out; |
| } |
| } else { |
| /* Read always, else autoincrement fails */ |
| this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps); |
| |
| if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) { |
| int ecccnt = oobsel->eccbytes; |
| |
| for (i = 0; i < ecccnt; i++) { |
| int idx = oobsel->eccpos[i]; |
| if (oobdata[idx] != oob_buf[oobofs + idx]) { |
| DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed ECC write verify, page 0x%08x, %6i bytes were succesful\n", |
| __FUNCTION__, page, i); |
| goto out; |
| } |
| } |
| } |
| } |
| oobofs += mtd->oobsize - hweccbytes * eccsteps; |
| page++; |
| numpages--; |
| |
| /* Apply delay or wait for ready/busy pin |
| * Do this before the AUTOINCR check, so no problems |
| * arise if a chip which does auto increment |
| * is marked as NOAUTOINCR by the board driver. |
| * Do this also before returning, so the chip is |
| * ready for the next command. |
| */ |
| if (!this->dev_ready) |
| udelay(this->chip_delay); |
| else |
| nand_wait_ready(mtd); |
| |
| /* All done, return happy */ |
| if (!numpages) |
| return 0; |
| |
| /* Check, if the chip supports auto page increment */ |
| if (!NAND_CANAUTOINCR(this)) |
| this->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); |
| } |
| /* |
| * Terminate the read command. We come here in case of an error |
| * So we must issue a reset command. |
| */ |
| out: |
| this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); |
| return res; |
| } |
| #endif |
| |
| /** |
| * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc |
| * @mtd: MTD device structure |
| * @from: offset to read from |
| * @len: number of bytes to read |
| * @retlen: pointer to variable to store the number of read bytes |
| * @buf: the databuffer to put data |
| * |
| * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL |
| * and flags = 0xff |
| */ |
| static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf) |
| { |
| return nand_do_read_ecc(mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff); |
| } |
| |
| /** |
| * nand_do_read_ecc - [MTD Interface] Read data with ECC |
| * @mtd: MTD device structure |
| * @from: offset to read from |
| * @len: number of bytes to read |
| * @retlen: pointer to variable to store the number of read bytes |
| * @buf: the databuffer to put data |
| * @oob_buf: filesystem supplied oob data buffer (can be NULL) |
| * @oobsel: oob selection structure |
| * @flags: flag to indicate if nand_get_device/nand_release_device should be preformed |
| * and how many corrected error bits are acceptable: |
| * bits 0..7 - number of tolerable errors |
| * bit 8 - 0 == do not get/release chip, 1 == get/release chip |
| * |
| * NAND read with ECC |
| */ |
| int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, uint8_t *buf, uint8_t *oob_buf, struct nand_oobinfo *oobsel, int flags) |
| { |
| |
| int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1; |
| int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0; |
| struct nand_chip *this = mtd->priv; |
| uint8_t *data_poi, *oob_data = oob_buf; |
| uint8_t ecc_calc[32]; |
| uint8_t ecc_code[32]; |
| int eccmode, eccsteps; |
| int *oob_config, datidx; |
| int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; |
| int eccbytes; |
| int compareecc = 1; |
| int oobreadlen; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len); |
| |
| /* Do not allow reads past end of device */ |
| if ((from + len) > mtd->size) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n"); |
| *retlen = 0; |
| return -EINVAL; |
| } |
| |
| /* Grab the lock and see if the device is available */ |
| if (flags & NAND_GET_DEVICE) |
| nand_get_device(this, mtd, FL_READING); |
| |
| /* Autoplace of oob data ? Use the default placement scheme */ |
| if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) |
| oobsel = this->autooob; |
| |
| eccmode = oobsel->useecc ? this->ecc.mode : NAND_ECC_NONE; |
| oob_config = oobsel->eccpos; |
| |
| /* Select the NAND device */ |
| chipnr = (int)(from >> this->chip_shift); |
| this->select_chip(mtd, chipnr); |
| |
| /* First we calculate the starting page */ |
| realpage = (int)(from >> this->page_shift); |
| page = realpage & this->pagemask; |
| |
| /* Get raw starting column */ |
| col = from & (mtd->writesize - 1); |
| |
| end = mtd->writesize; |
| ecc = this->ecc.size; |
| eccbytes = this->ecc.bytes; |
| |
| if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME)) |
| compareecc = 0; |
| |
| oobreadlen = mtd->oobsize; |
| if (this->options & NAND_HWECC_SYNDROME) |
| oobreadlen -= oobsel->eccbytes; |
| |
| /* Loop until all data read */ |
| while (read < len) { |
| |
| int aligned = (!col && (len - read) >= end); |
| /* |
| * If the read is not page aligned, we have to read into data buffer |
| * due to ecc, else we read into return buffer direct |
| */ |
| if (aligned) |
| data_poi = &buf[read]; |
| else |
| data_poi = this->data_buf; |
| |
| /* Check, if we have this page in the buffer |
| * |
| * FIXME: Make it work when we must provide oob data too, |
| * check the usage of data_buf oob field |
| */ |
| if (realpage == this->pagebuf && !oob_buf) { |
| /* aligned read ? */ |
| if (aligned) |
| memcpy(data_poi, this->data_buf, end); |
| goto readdata; |
| } |
| |
| /* Check, if we must send the read command */ |
| if (sndcmd) { |
| this->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); |
| sndcmd = 0; |
| } |
| |
| /* get oob area, if we have no oob buffer from fs-driver */ |
| if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE || |
| oobsel->useecc == MTD_NANDECC_AUTOPL_USR) |
| oob_data = &this->data_buf[end]; |
| |
| eccsteps = this->ecc.steps; |
| |
| switch (eccmode) { |
| case NAND_ECC_NONE:{ |
| /* No ECC, Read in a page */ |
| static unsigned long lastwhinge = 0; |
| if ((lastwhinge / HZ) != (jiffies / HZ)) { |
| printk(KERN_WARNING |
| "Reading data from NAND FLASH without ECC is not recommended\n"); |
| lastwhinge = jiffies; |
| } |
| this->read_buf(mtd, data_poi, end); |
| break; |
| } |
| |
| case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */ |
| this->read_buf(mtd, data_poi, end); |
| for (i = 0, datidx = 0; eccsteps; eccsteps--, i += 3, datidx += ecc) |
| this->ecc.calculate(mtd, &data_poi[datidx], &ecc_calc[i]); |
| break; |
| |
| default: |
| for (i = 0, datidx = 0; eccsteps; eccsteps--, i += eccbytes, datidx += ecc) { |
| this->ecc.hwctl(mtd, NAND_ECC_READ); |
| this->read_buf(mtd, &data_poi[datidx], ecc); |
| |
| /* HW ecc with syndrome calculation must read the |
| * syndrome from flash immidiately after the data */ |
| if (!compareecc) { |
| /* Some hw ecc generators need to know when the |
| * syndrome is read from flash */ |
| this->ecc.hwctl(mtd, NAND_ECC_READSYN); |
| this->read_buf(mtd, &oob_data[i], eccbytes); |
| /* We calc error correction directly, it checks the hw |
| * generator for an error, reads back the syndrome and |
| * does the error correction on the fly */ |
| ecc_status = this->ecc.correct(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]); |
| if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: " |
| "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr); |
| ecc_failed++; |
| } |
| } else { |
| this->ecc.calculate(mtd, &data_poi[datidx], &ecc_calc[i]); |
| } |
| } |
| break; |
| } |
| |
| /* read oobdata */ |
| this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen); |
| |
| /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */ |
| if (!compareecc) |
| goto readoob; |
| |
| /* Pick the ECC bytes out of the oob data */ |
| for (j = 0; j < oobsel->eccbytes; j++) |
| ecc_code[j] = oob_data[oob_config[j]]; |
| |
| /* correct data, if necessary */ |
| for (i = 0, j = 0, datidx = 0; i < this->ecc.steps; i++, datidx += ecc) { |
| ecc_status = this->ecc.correct(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]); |
| |
| /* Get next chunk of ecc bytes */ |
| j += eccbytes; |
| |
| /* Check, if we have a fs supplied oob-buffer, |
| * This is the legacy mode. Used by YAFFS1 |
| * Should go away some day |
| */ |
| if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) { |
| int *p = (int *)(&oob_data[mtd->oobsize]); |
| p[i] = ecc_status; |
| } |
| |
| if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page); |
| ecc_failed++; |
| } |
| } |
| |
| readoob: |
| /* check, if we have a fs supplied oob-buffer */ |
| if (oob_buf) { |
| /* without autoplace. Legacy mode used by YAFFS1 */ |
| switch (oobsel->useecc) { |
| case MTD_NANDECC_AUTOPLACE: |
| case MTD_NANDECC_AUTOPL_USR: |
| /* Walk through the autoplace chunks */ |
| for (i = 0; oobsel->oobfree[i][1]; i++) { |
| int from = oobsel->oobfree[i][0]; |
| int num = oobsel->oobfree[i][1]; |
| memcpy(&oob_buf[oob], &oob_data[from], num); |
| oob += num; |
| } |
| break; |
| case MTD_NANDECC_PLACE: |
| /* YAFFS1 legacy mode */ |
| oob_data += this->ecc.steps * sizeof(int); |
| default: |
| oob_data += mtd->oobsize; |
| } |
| } |
| readdata: |
| /* Partial page read, transfer data into fs buffer */ |
| if (!aligned) { |
| for (j = col; j < end && read < len; j++) |
| buf[read++] = data_poi[j]; |
| this->pagebuf = realpage; |
| } else |
| read += mtd->writesize; |
| |
| /* Apply delay or wait for ready/busy pin |
| * Do this before the AUTOINCR check, so no problems |
| * arise if a chip which does auto increment |
| * is marked as NOAUTOINCR by the board driver. |
| */ |
| if (!this->dev_ready) |
| udelay(this->chip_delay); |
| else |
| nand_wait_ready(mtd); |
| |
| if (read == len) |
| break; |
| |
| /* For subsequent reads align to page boundary. */ |
| col = 0; |
| /* Increment page address */ |
| realpage++; |
| |
| page = realpage & this->pagemask; |
| /* Check, if we cross a chip boundary */ |
| if (!page) { |
| chipnr++; |
| this->select_chip(mtd, -1); |
| this->select_chip(mtd, chipnr); |
| } |
| /* Check, if the chip supports auto page increment |
| * or if we have hit a block boundary. |
| */ |
| if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) |
| sndcmd = 1; |
| } |
| |
| /* Deselect and wake up anyone waiting on the device */ |
| if (flags & NAND_GET_DEVICE) |
| nand_release_device(mtd); |
| |
| /* |
| * Return success, if no ECC failures, else -EBADMSG |
| * fs driver will take care of that, because |
| * retlen == desired len and result == -EBADMSG |
| */ |
| *retlen = read; |
| return ecc_failed ? -EBADMSG : 0; |
| } |
| |
| /** |
| * nand_read_oob - [MTD Interface] NAND read out-of-band |
| * @mtd: MTD device structure |
| * @from: offset to read from |
| * @len: number of bytes to read |
| * @retlen: pointer to variable to store the number of read bytes |
| * @buf: the databuffer to put data |
| * |
| * NAND read out-of-band data from the spare area |
| */ |
| static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf) |
| { |
| int i, col, page, chipnr; |
| struct nand_chip *this = mtd->priv; |
| int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len); |
| |
| /* Shift to get page */ |
| page = (int)(from >> this->page_shift); |
| chipnr = (int)(from >> this->chip_shift); |
| |
| /* Mask to get column */ |
| col = from & (mtd->oobsize - 1); |
| |
| /* Initialize return length value */ |
| *retlen = 0; |
| |
| /* Do not allow reads past end of device */ |
| if ((from + len) > mtd->size) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n"); |
| *retlen = 0; |
| return -EINVAL; |
| } |
| |
| /* Grab the lock and see if the device is available */ |
| nand_get_device(this, mtd, FL_READING); |
| |
| /* Select the NAND device */ |
| this->select_chip(mtd, chipnr); |
| |
| /* Send the read command */ |
| this->cmdfunc(mtd, NAND_CMD_READOOB, col, page & this->pagemask); |
| /* |
| * Read the data, if we read more than one page |
| * oob data, let the device transfer the data ! |
| */ |
| i = 0; |
| while (i < len) { |
| int thislen = mtd->oobsize - col; |
| thislen = min_t(int, thislen, len); |
| this->read_buf(mtd, &buf[i], thislen); |
| i += thislen; |
| |
| /* Read more ? */ |
| if (i < len) { |
| page++; |
| col = 0; |
| |
| /* Check, if we cross a chip boundary */ |
| if (!(page & this->pagemask)) { |
| chipnr++; |
| this->select_chip(mtd, -1); |
| this->select_chip(mtd, chipnr); |
| } |
| |
| /* Apply delay or wait for ready/busy pin |
| * Do this before the AUTOINCR check, so no problems |
| * arise if a chip which does auto increment |
| * is marked as NOAUTOINCR by the board driver. |
| */ |
| if (!this->dev_ready) |
| udelay(this->chip_delay); |
| else |
| nand_wait_ready(mtd); |
| |
| /* Check, if the chip supports auto page increment |
| * or if we have hit a block boundary. |
| */ |
| if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) { |
| /* For subsequent page reads set offset to 0 */ |
| this->cmdfunc(mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask); |
| } |
| } |
| } |
| |
| /* Deselect and wake up anyone waiting on the device */ |
| nand_release_device(mtd); |
| |
| /* Return happy */ |
| *retlen = len; |
| return 0; |
| } |
| |
| /** |
| * nand_read_raw - [GENERIC] Read raw data including oob into buffer |
| * @mtd: MTD device structure |
| * @buf: temporary buffer |
| * @from: offset to read from |
| * @len: number of bytes to read |
| * @ooblen: number of oob data bytes to read |
| * |
| * Read raw data including oob into buffer |
| */ |
| int nand_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen) |
| { |
| struct nand_chip *this = mtd->priv; |
| int page = (int)(from >> this->page_shift); |
| int chip = (int)(from >> this->chip_shift); |
| int sndcmd = 1; |
| int cnt = 0; |
| int pagesize = mtd->writesize + mtd->oobsize; |
| int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; |
| |
| /* Do not allow reads past end of device */ |
| if ((from + len) > mtd->size) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n"); |
| return -EINVAL; |
| } |
| |
| /* Grab the lock and see if the device is available */ |
| nand_get_device(this, mtd, FL_READING); |
| |
| this->select_chip(mtd, chip); |
| |
| /* Add requested oob length */ |
| len += ooblen; |
| |
| while (len) { |
| if (sndcmd) |
| this->cmdfunc(mtd, NAND_CMD_READ0, 0, page & this->pagemask); |
| sndcmd = 0; |
| |
| this->read_buf(mtd, &buf[cnt], pagesize); |
| |
| len -= pagesize; |
| cnt += pagesize; |
| page++; |
| |
| if (!this->dev_ready) |
| udelay(this->chip_delay); |
| else |
| nand_wait_ready(mtd); |
| |
| /* Check, if the chip supports auto page increment */ |
| if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) |
| sndcmd = 1; |
| } |
| |
| /* Deselect and wake up anyone waiting on the device */ |
| nand_release_device(mtd); |
| return 0; |
| } |
| |
| /** |
| * nand_write_raw - [GENERIC] Write raw data including oob |
| * @mtd: MTD device structure |
| * @buf: source buffer |
| * @to: offset to write to |
| * @len: number of bytes to write |
| * @buf: source buffer |
| * @oob: oob buffer |
| * |
| * Write raw data including oob |
| */ |
| int nand_write_raw(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, |
| uint8_t *buf, uint8_t *oob) |
| { |
| struct nand_chip *this = mtd->priv; |
| int page = (int)(to >> this->page_shift); |
| int chip = (int)(to >> this->chip_shift); |
| int ret; |
| |
| *retlen = 0; |
| |
| /* Do not allow writes past end of device */ |
| if ((to + len) > mtd->size) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt write " |
| "beyond end of device\n"); |
| return -EINVAL; |
| } |
| |
| /* Grab the lock and see if the device is available */ |
| nand_get_device(this, mtd, FL_WRITING); |
| |
| this->select_chip(mtd, chip); |
| this->data_poi = buf; |
| |
| while (len != *retlen) { |
| ret = nand_write_page(mtd, this, page, oob, &mtd->oobinfo, 0); |
| if (ret) |
| return ret; |
| page++; |
| *retlen += mtd->writesize; |
| this->data_poi += mtd->writesize; |
| oob += mtd->oobsize; |
| } |
| |
| /* Deselect and wake up anyone waiting on the device */ |
| nand_release_device(mtd); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_write_raw); |
| |
| /** |
| * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer |
| * @mtd: MTD device structure |
| * @fsbuf: buffer given by fs driver |
| * @oobsel: out of band selection structre |
| * @autoplace: 1 = place given buffer into the oob bytes |
| * @numpages: number of pages to prepare |
| * |
| * Return: |
| * 1. Filesystem buffer available and autoplacement is off, |
| * return filesystem buffer |
| * 2. No filesystem buffer or autoplace is off, return internal |
| * buffer |
| * 3. Filesystem buffer is given and autoplace selected |
| * put data from fs buffer into internal buffer and |
| * retrun internal buffer |
| * |
| * Note: The internal buffer is filled with 0xff. This must |
| * be done only once, when no autoplacement happens |
| * Autoplacement sets the buffer dirty flag, which |
| * forces the 0xff fill before using the buffer again. |
| * |
| */ |
| static uint8_t *nand_prepare_oobbuf(struct mtd_info *mtd, uint8_t *fsbuf, struct nand_oobinfo *oobsel, |
| int autoplace, int numpages) |
| { |
| struct nand_chip *this = mtd->priv; |
| int i, len, ofs; |
| |
| /* Zero copy fs supplied buffer */ |
| if (fsbuf && !autoplace) |
| return fsbuf; |
| |
| /* Check, if the buffer must be filled with ff again */ |
| if (this->oobdirty) { |
| memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift)); |
| this->oobdirty = 0; |
| } |
| |
| /* If we have no autoplacement or no fs buffer use the internal one */ |
| if (!autoplace || !fsbuf) |
| return this->oob_buf; |
| |
| /* Walk through the pages and place the data */ |
| this->oobdirty = 1; |
| ofs = 0; |
| while (numpages--) { |
| for (i = 0, len = 0; len < mtd->oobavail; i++) { |
| int to = ofs + oobsel->oobfree[i][0]; |
| int num = oobsel->oobfree[i][1]; |
| memcpy(&this->oob_buf[to], fsbuf, num); |
| len += num; |
| fsbuf += num; |
| } |
| ofs += mtd->oobavail; |
| } |
| return this->oob_buf; |
| } |
| |
| #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0 |
| |
| /** |
| * nand_write - [MTD Interface] NAND write with ECC |
| * @mtd: MTD device structure |
| * @to: offset to write to |
| * @len: number of bytes to write |
| * @retlen: pointer to variable to store the number of written bytes |
| * @buf: the data to write |
| * |
| * NAND write with ECC |
| */ |
| static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const uint8_t *buf) |
| { |
| int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr; |
| int autoplace = 0, numpages, totalpages; |
| struct nand_chip *this = mtd->priv; |
| uint8_t *oobbuf, *bufstart, *eccbuf = NULL; |
| int ppblock = (1 << (this->phys_erase_shift - this->page_shift)); |
| struct nand_oobinfo *oobsel = &mtd->oobinfo; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, "nand_write: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len); |
| |
| /* Initialize retlen, in case of early exit */ |
| *retlen = 0; |
| |
| /* Do not allow write past end of device */ |
| if ((to + len) > mtd->size) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_write: Attempt to write past end of page\n"); |
| return -EINVAL; |
| } |
| |
| /* reject writes, which are not page aligned */ |
| if (NOTALIGNED(to) || NOTALIGNED(len)) { |
| printk(KERN_NOTICE "nand_write: Attempt to write not page aligned data\n"); |
| return -EINVAL; |
| } |
| |
| /* Grab the lock and see if the device is available */ |
| nand_get_device(this, mtd, FL_WRITING); |
| |
| /* Calculate chipnr */ |
| chipnr = (int)(to >> this->chip_shift); |
| /* Select the NAND device */ |
| this->select_chip(mtd, chipnr); |
| |
| /* Check, if it is write protected */ |
| if (nand_check_wp(mtd)) |
| goto out; |
| |
| /* Autoplace of oob data ? Use the default placement scheme */ |
| if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { |
| oobsel = this->autooob; |
| autoplace = 1; |
| } |
| if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR) |
| autoplace = 1; |
| |
| /* Setup variables and oob buffer */ |
| totalpages = len >> this->page_shift; |
| page = (int)(to >> this->page_shift); |
| /* Invalidate the page cache, if we write to the cached page */ |
| if (page <= this->pagebuf && this->pagebuf < (page + totalpages)) |
| this->pagebuf = -1; |
| |
| /* Set it relative to chip */ |
| page &= this->pagemask; |
| startpage = page; |
| /* Calc number of pages we can write in one go */ |
| numpages = min(ppblock - (startpage & (ppblock - 1)), totalpages); |
| oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages); |
| bufstart = (uint8_t *) buf; |
| |
| /* Loop until all data is written */ |
| while (written < len) { |
| |
| this->data_poi = (uint8_t *) &buf[written]; |
| /* Write one page. If this is the last page to write |
| * or the last page in this block, then use the |
| * real pageprogram command, else select cached programming |
| * if supported by the chip. |
| */ |
| ret = nand_write_page(mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0)); |
| if (ret) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_write: write_page failed %d\n", ret); |
| goto out; |
| } |
| /* Next oob page */ |
| oob += mtd->oobsize; |
| /* Update written bytes count */ |
| written += mtd->writesize; |
| if (written == len) |
| goto cmp; |
| |
| /* Increment page address */ |
| page++; |
| |
| /* Have we hit a block boundary ? Then we have to verify and |
| * if verify is ok, we have to setup the oob buffer for |
| * the next pages. |
| */ |
| if (!(page & (ppblock - 1))) { |
| int ofs; |
| this->data_poi = bufstart; |
| ret = nand_verify_pages(mtd, this, startpage, page - startpage, |
| oobbuf, oobsel, chipnr, (eccbuf != NULL)); |
| if (ret) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_write: verify_pages failed %d\n", ret); |
| goto out; |
| } |
| *retlen = written; |
| |
| ofs = autoplace ? mtd->oobavail : mtd->oobsize; |
| if (eccbuf) |
| eccbuf += (page - startpage) * ofs; |
| totalpages -= page - startpage; |
| numpages = min(totalpages, ppblock); |
| page &= this->pagemask; |
| startpage = page; |
| oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages); |
| oob = 0; |
| /* Check, if we cross a chip boundary */ |
| if (!page) { |
| chipnr++; |
| this->select_chip(mtd, -1); |
| this->select_chip(mtd, chipnr); |
| } |
| } |
| } |
| /* Verify the remaining pages */ |
| cmp: |
| this->data_poi = bufstart; |
| ret = nand_verify_pages(mtd, this, startpage, totalpages, oobbuf, oobsel, chipnr, (eccbuf != NULL)); |
| if (!ret) |
| *retlen = written; |
| else |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_write: verify_pages failed %d\n", ret); |
| |
| out: |
| /* Deselect and wake up anyone waiting on the device */ |
| nand_release_device(mtd); |
| |
| return ret; |
| } |
| |
| /** |
| * nand_write_oob - [MTD Interface] NAND write out-of-band |
| * @mtd: MTD device structure |
| * @to: offset to write to |
| * @len: number of bytes to write |
| * @retlen: pointer to variable to store the number of written bytes |
| * @buf: the data to write |
| * |
| * NAND write out-of-band |
| */ |
| static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) |
| { |
| int column, page, status, ret = -EIO, chipnr; |
| struct nand_chip *this = mtd->priv; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len); |
| |
| /* Shift to get page */ |
| page = (int)(to >> this->page_shift); |
| chipnr = (int)(to >> this->chip_shift); |
| |
| /* Mask to get column */ |
| column = to & (mtd->oobsize - 1); |
| |
| /* Initialize return length value */ |
| *retlen = 0; |
| |
| /* Do not allow write past end of page */ |
| if ((column + len) > mtd->oobsize) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n"); |
| return -EINVAL; |
| } |
| |
| /* Grab the lock and see if the device is available */ |
| nand_get_device(this, mtd, FL_WRITING); |
| |
| /* Select the NAND device */ |
| this->select_chip(mtd, chipnr); |
| |
| /* Reset the chip. Some chips (like the Toshiba TC5832DC found |
| in one of my DiskOnChip 2000 test units) will clear the whole |
| data page too if we don't do this. I have no clue why, but |
| I seem to have 'fixed' it in the doc2000 driver in |
| August 1999. dwmw2. */ |
| this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); |
| |
| /* Check, if it is write protected */ |
| if (nand_check_wp(mtd)) |
| goto out; |
| |
| /* Invalidate the page cache, if we write to the cached page */ |
| if (page == this->pagebuf) |
| this->pagebuf = -1; |
| |
| if (NAND_MUST_PAD(this)) { |
| /* Write out desired data */ |
| this->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page & this->pagemask); |
| /* prepad 0xff for partial programming */ |
| this->write_buf(mtd, ffchars, column); |
| /* write data */ |
| this->write_buf(mtd, buf, len); |
| /* postpad 0xff for partial programming */ |
| this->write_buf(mtd, ffchars, mtd->oobsize - (len + column)); |
| } else { |
| /* Write out desired data */ |
| this->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + column, page & this->pagemask); |
| /* write data */ |
| this->write_buf(mtd, buf, len); |
| } |
| /* Send command to program the OOB data */ |
| this->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| |
| status = this->waitfunc(mtd, this, FL_WRITING); |
| |
| /* See if device thinks it succeeded */ |
| if (status & NAND_STATUS_FAIL) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page); |
| ret = -EIO; |
| goto out; |
| } |
| /* Return happy */ |
| *retlen = len; |
| |
| #ifdef CONFIG_MTD_NAND_VERIFY_WRITE |
| /* Send command to read back the data */ |
| this->cmdfunc(mtd, NAND_CMD_READOOB, column, page & this->pagemask); |
| |
| if (this->verify_buf(mtd, buf, len)) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page); |
| ret = -EIO; |
| goto out; |
| } |
| #endif |
| ret = 0; |
| out: |
| /* Deselect and wake up anyone waiting on the device */ |
| nand_release_device(mtd); |
| |
| return ret; |
| } |
| |
| /** |
| * single_erease_cmd - [GENERIC] NAND standard block erase command function |
| * @mtd: MTD device structure |
| * @page: the page address of the block which will be erased |
| * |
| * Standard erase command for NAND chips |
| */ |
| static void single_erase_cmd(struct mtd_info *mtd, int page) |
| { |
| struct nand_chip *this = mtd->priv; |
| /* Send commands to erase a block */ |
| this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); |
| this->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); |
| } |
| |
| /** |
| * multi_erease_cmd - [GENERIC] AND specific block erase command function |
| * @mtd: MTD device structure |
| * @page: the page address of the block which will be erased |
| * |
| * AND multi block erase command function |
| * Erase 4 consecutive blocks |
| */ |
| static void multi_erase_cmd(struct mtd_info *mtd, int page) |
| { |
| struct nand_chip *this = mtd->priv; |
| /* Send commands to erase a block */ |
| this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); |
| this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); |
| this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); |
| this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); |
| this->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); |
| } |
| |
| /** |
| * nand_erase - [MTD Interface] erase block(s) |
| * @mtd: MTD device structure |
| * @instr: erase instruction |
| * |
| * Erase one ore more blocks |
| */ |
| static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| return nand_erase_nand(mtd, instr, 0); |
| } |
| |
| #define BBT_PAGE_MASK 0xffffff3f |
| /** |
| * nand_erase_intern - [NAND Interface] erase block(s) |
| * @mtd: MTD device structure |
| * @instr: erase instruction |
| * @allowbbt: allow erasing the bbt area |
| * |
| * Erase one ore more blocks |
| */ |
| int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt) |
| { |
| int page, len, status, pages_per_block, ret, chipnr; |
| struct nand_chip *this = mtd->priv; |
| int rewrite_bbt[NAND_MAX_CHIPS]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */ |
| unsigned int bbt_masked_page; /* bbt mask to compare to page being erased. */ |
| /* It is used to see if the current page is in the same */ |
| /* 256 block group and the same bank as the bbt. */ |
| |
| DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n", (unsigned int)instr->addr, (unsigned int)instr->len); |
| |
| /* Start address must align on block boundary */ |
| if (instr->addr & ((1 << this->phys_erase_shift) - 1)) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n"); |
| return -EINVAL; |
| } |
| |
| /* Length must align on block boundary */ |
| if (instr->len & ((1 << this->phys_erase_shift) - 1)) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n"); |
| return -EINVAL; |
| } |
| |
| /* Do not allow erase past end of device */ |
| if ((instr->len + instr->addr) > mtd->size) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n"); |
| return -EINVAL; |
| } |
| |
| instr->fail_addr = 0xffffffff; |
| |
| /* Grab the lock and see if the device is available */ |
| nand_get_device(this, mtd, FL_ERASING); |
| |
| /* Shift to get first page */ |
| page = (int)(instr->addr >> this->page_shift); |
| chipnr = (int)(instr->addr >> this->chip_shift); |
| |
| /* Calculate pages in each block */ |
| pages_per_block = 1 << (this->phys_erase_shift - this->page_shift); |
| |
| /* Select the NAND device */ |
| this->select_chip(mtd, chipnr); |
| |
| /* Check the WP bit */ |
| /* Check, if it is write protected */ |
| if (nand_check_wp(mtd)) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n"); |
| instr->state = MTD_ERASE_FAILED; |
| goto erase_exit; |
| } |
| |
| /* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */ |
| if (this->options & BBT_AUTO_REFRESH) { |
| bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK; |
| } else { |
| bbt_masked_page = 0xffffffff; /* should not match anything */ |
| } |
| |
| /* Loop through the pages */ |
| len = instr->len; |
| |
| instr->state = MTD_ERASING; |
| |
| while (len) { |
| /* Check if we have a bad block, we do not erase bad blocks ! */ |
| if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) { |
| printk(KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page); |
| instr->state = MTD_ERASE_FAILED; |
| goto erase_exit; |
| } |
| |
| /* Invalidate the page cache, if we erase the block which contains |
| the current cached page */ |
| if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block)) |
| this->pagebuf = -1; |
| |
| this->erase_cmd(mtd, page & this->pagemask); |
| |
| status = this->waitfunc(mtd, this, FL_ERASING); |
| |
| /* See if operation failed and additional status checks are available */ |
| if ((status & NAND_STATUS_FAIL) && (this->errstat)) { |
| status = this->errstat(mtd, this, FL_ERASING, status, page); |
| } |
| |
| /* See if block erase succeeded */ |
| if (status & NAND_STATUS_FAIL) { |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page); |
| instr->state = MTD_ERASE_FAILED; |
| instr->fail_addr = (page << this->page_shift); |
| goto erase_exit; |
| } |
| |
| /* if BBT requires refresh, set the BBT rewrite flag to the page being erased */ |
| if (this->options & BBT_AUTO_REFRESH) { |
| if (((page & BBT_PAGE_MASK) == bbt_masked_page) && |
| (page != this->bbt_td->pages[chipnr])) { |
| rewrite_bbt[chipnr] = (page << this->page_shift); |
| } |
| } |
| |
| /* Increment page address and decrement length */ |
| len -= (1 << this->phys_erase_shift); |
| page += pages_per_block; |
| |
| /* Check, if we cross a chip boundary */ |
| if (len && !(page & this->pagemask)) { |
| chipnr++; |
| this->select_chip(mtd, -1); |
| this->select_chip(mtd, chipnr); |
| |
| /* if BBT requires refresh and BBT-PERCHIP, |
| * set the BBT page mask to see if this BBT should be rewritten */ |
| if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) { |
| bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK; |
| } |
| |
| } |
| } |
| instr->state = MTD_ERASE_DONE; |
| |
| erase_exit: |
| |
| ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; |
| /* Do call back function */ |
| if (!ret) |
| mtd_erase_callback(instr); |
| |
| /* Deselect and wake up anyone waiting on the device */ |
| nand_release_device(mtd); |
| |
| /* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */ |
| if ((this->options & BBT_AUTO_REFRESH) && (!ret)) { |
| for (chipnr = 0; chipnr < this->numchips; chipnr++) { |
| if (rewrite_bbt[chipnr]) { |
| /* update the BBT for chip */ |
| DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n", |
| chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]); |
| nand_update_bbt(mtd, rewrite_bbt[chipnr]); |
| } |
| } |
| } |
| |
| /* Return more or less happy */ |
| return ret; |
| } |
| |
| /** |
| * nand_sync - [MTD Interface] sync |
| * @mtd: MTD device structure |
| * |
| * Sync is actually a wait for chip ready function |
| */ |
| static void nand_sync(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n"); |
| |
| /* Grab the lock and see if the device is available */ |
| nand_get_device(this, mtd, FL_SYNCING); |
| /* Release it and go back */ |
| nand_release_device(mtd); |
| } |
| |
| /** |
| * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad |
| * @mtd: MTD device structure |
| * @ofs: offset relative to mtd start |
| */ |
| static int nand_block_isbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| /* Check for invalid offset */ |
| if (ofs > mtd->size) |
| return -EINVAL; |
| |
| return nand_block_checkbad(mtd, ofs, 1, 0); |
| } |
| |
| /** |
| * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad |
| * @mtd: MTD device structure |
| * @ofs: offset relative to mtd start |
| */ |
| static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct nand_chip *this = mtd->priv; |
| int ret; |
| |
| if ((ret = nand_block_isbad(mtd, ofs))) { |
| /* If it was bad already, return success and do nothing. */ |
| if (ret > 0) |
| return 0; |
| return ret; |
| } |
| |
| return this->block_markbad(mtd, ofs); |
| } |
| |
| /** |
| * nand_suspend - [MTD Interface] Suspend the NAND flash |
| * @mtd: MTD device structure |
| */ |
| static int nand_suspend(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| return nand_get_device(this, mtd, FL_PM_SUSPENDED); |
| } |
| |
| /** |
| * nand_resume - [MTD Interface] Resume the NAND flash |
| * @mtd: MTD device structure |
| */ |
| static void nand_resume(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| if (this->state == FL_PM_SUSPENDED) |
| nand_release_device(mtd); |
| else |
| printk(KERN_ERR "nand_resume() called for a chip which is not " |
| "in suspended state\n"); |
| } |
| |
| /* |
| * Free allocated data structures |
| */ |
| static void nand_free_kmem(struct nand_chip *this) |
| { |
| /* Buffer allocated by nand_scan ? */ |
| if (this->options & NAND_OOBBUF_ALLOC) |
| kfree(this->oob_buf); |
| /* Buffer allocated by nand_scan ? */ |
| if (this->options & NAND_DATABUF_ALLOC) |
| kfree(this->data_buf); |
| /* Controller allocated by nand_scan ? */ |
| if (this->options & NAND_CONTROLLER_ALLOC) |
| kfree(this->controller); |
| } |
| |
| /* |
| * Allocate buffers and data structures |
| */ |
| static int nand_allocate_kmem(struct mtd_info *mtd, struct nand_chip *this) |
| { |
| size_t len; |
| |
| if (!this->oob_buf) { |
| len = mtd->oobsize << |
| (this->phys_erase_shift - this->page_shift); |
| this->oob_buf = kmalloc(len, GFP_KERNEL); |
| if (!this->oob_buf) |
| goto outerr; |
| this->options |= NAND_OOBBUF_ALLOC; |
| } |
| |
| if (!this->data_buf) { |
| len = mtd->writesize + mtd->oobsize; |
| this->data_buf = kmalloc(len, GFP_KERNEL); |
| if (!this->data_buf) |
| goto outerr; |
| this->options |= NAND_DATABUF_ALLOC; |
| } |
| |
| if (!this->controller) { |
| this->controller = kzalloc(sizeof(struct nand_hw_control), |
| GFP_KERNEL); |
| if (!this->controller) |
| goto outerr; |
| this->options |= NAND_CONTROLLER_ALLOC; |
| } |
| return 0; |
| |
| outerr: |
| printk(KERN_ERR "nand_scan(): Cannot allocate buffers\n"); |
| nand_free_kmem(this); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Set default functions |
| */ |
| static void nand_set_defaults(struct nand_chip *this, int busw) |
| { |
| /* check for proper chip_delay setup, set 20us if not */ |
| if (!this->chip_delay) |
| this->chip_delay = 20; |
| |
| /* check, if a user supplied command function given */ |
| if (this->cmdfunc == NULL) |
| this->cmdfunc = nand_command; |
| |
| /* check, if a user supplied wait function given */ |
| if (this->waitfunc == NULL) |
| this->waitfunc = nand_wait; |
| |
| if (!this->select_chip) |
| this->select_chip = nand_select_chip; |
| if (!this->write_byte) |
| this->write_byte = busw ? nand_write_byte16 : nand_write_byte; |
| if (!this->read_byte) |
| this->read_byte = busw ? nand_read_byte16 : nand_read_byte; |
| if (!this->write_word) |
| this->write_word = nand_write_word; |
| if (!this->read_word) |
| this->read_word = nand_read_word; |
| if (!this->block_bad) |
| this->block_bad = nand_block_bad; |
| if (!this->block_markbad) |
| this->block_markbad = nand_default_block_markbad; |
| if (!this->write_buf) |
| this->write_buf = busw ? nand_write_buf16 : nand_write_buf; |
| if (!this->read_buf) |
| this->read_buf = busw ? nand_read_buf16 : nand_read_buf; |
| if (!this->verify_buf) |
| this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; |
| if (!this->scan_bbt) |
| this->scan_bbt = nand_default_bbt; |
| } |
| |
| /* |
| * Get the flash and manufacturer id and lookup if the typ is supported |
| */ |
| static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, |
| struct nand_chip *this, |
| int busw, int *maf_id) |
| { |
| struct nand_flash_dev *type = NULL; |
| int i, dev_id, maf_idx; |
| |
| /* Select the device */ |
| this->select_chip(mtd, 0); |
| |
| /* Send the command for reading device ID */ |
| this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); |
| |
| /* Read manufacturer and device IDs */ |
| *maf_id = this->read_byte(mtd); |
| dev_id = this->read_byte(mtd); |
| |
| /* Lookup the flash id */ |
| for (i = 0; nand_flash_ids[i].name != NULL; i++) { |
| if (dev_id == nand_flash_ids[i].id) { |
| type = &nand_flash_ids[i]; |
| break; |
| } |
| } |
| |
| if (!type) |
| return ERR_PTR(-ENODEV); |
| |
| this->chipsize = nand_flash_ids[i].chipsize << 20; |
| |
| /* Newer devices have all the information in additional id bytes */ |
| if (!nand_flash_ids[i].pagesize) { |
| int extid; |
| /* The 3rd id byte contains non relevant data ATM */ |
| extid = this->read_byte(mtd); |
| /* The 4th id byte is the important one */ |
| extid = this->read_byte(mtd); |
| /* Calc pagesize */ |
| mtd->writesize = 1024 << (extid & 0x3); |
| extid >>= 2; |
| /* Calc oobsize */ |
| mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); |
| extid >>= 2; |
| /* Calc blocksize. Blocksize is multiples of 64KiB */ |
| mtd->erasesize = (64 * 1024) << (extid & 0x03); |
| extid >>= 2; |
| /* Get buswidth information */ |
| busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; |
| |
| } else { |
| /* |
| * Old devices have this data hardcoded in the device id table |
| */ |
| mtd->erasesize = nand_flash_ids[i].erasesize; |
| mtd->writesize = nand_flash_ids[i].pagesize; |
| mtd->oobsize = mtd->writesize / 32; |
| busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16; |
| } |
| |
| /* Try to identify manufacturer */ |
| for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_id++) { |
| if (nand_manuf_ids[maf_idx].id == *maf_id) |
| break; |
| } |
| |
| /* |
| * Check, if buswidth is correct. Hardware drivers should set |
| * this correct ! |
| */ |
| if (busw != (this->options & NAND_BUSWIDTH_16)) { |
| printk(KERN_INFO "NAND device: Manufacturer ID:" |
| " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, |
| dev_id, nand_manuf_ids[maf_idx].name, mtd->name); |
| printk(KERN_WARNING "NAND bus width %d instead %d bit\n", |
| (this->options & NAND_BUSWIDTH_16) ? 16 : 8, |
| busw ? 16 : 8); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* Calculate the address shift from the page size */ |
| this->page_shift = ffs(mtd->writesize) - 1; |
| /* Convert chipsize to number of pages per chip -1. */ |
| this->pagemask = (this->chipsize >> this->page_shift) - 1; |
| |
| this->bbt_erase_shift = this->phys_erase_shift = |
| ffs(mtd->erasesize) - 1; |
| this->chip_shift = ffs(this->chipsize) - 1; |
| |
| /* Set the bad block position */ |
| this->badblockpos = mtd->writesize > 512 ? |
| NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS; |
| |
| /* Get chip options, preserve non chip based options */ |
| this->options &= ~NAND_CHIPOPTIONS_MSK; |
| this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK; |
| |
| /* |
| * Set this as a default. Board drivers can override it, if necessary |
| */ |
| this->options |= NAND_NO_AUTOINCR; |
| |
| /* Check if this is a not a samsung device. Do not clear the |
| * options for chips which are not having an extended id. |
| */ |
| if (*maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize) |
| this->options &= ~NAND_SAMSUNG_LP_OPTIONS; |
| |
| /* Check for AND chips with 4 page planes */ |
| if (this->options & NAND_4PAGE_ARRAY) |
| this->erase_cmd = multi_erase_cmd; |
| else |
| this->erase_cmd = single_erase_cmd; |
| |
| /* Do not replace user supplied command function ! */ |
| if (mtd->writesize > 512 && this->cmdfunc == nand_command) |
| this->cmdfunc = nand_command_lp; |
| |
| printk(KERN_INFO "NAND device: Manufacturer ID:" |
| " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id, |
| nand_manuf_ids[maf_idx].name, type->name); |
| |
| return type; |
| } |
| |
| /* module_text_address() isn't exported, and it's mostly a pointless |
| test if this is a module _anyway_ -- they'd have to try _really_ hard |
| to call us from in-kernel code if the core NAND support is modular. */ |
| #ifdef MODULE |
| #define caller_is_module() (1) |
| #else |
| #define caller_is_module() \ |
| module_text_address((unsigned long)__builtin_return_address(0)) |
| #endif |
| |
| /** |
| * nand_scan - [NAND Interface] Scan for the NAND device |
| * @mtd: MTD device structure |
| * @maxchips: Number of chips to scan for |
| * |
| * This fills out all the uninitialized function pointers |
| * with the defaults. |
| * The flash ID is read and the mtd/chip structures are |
| * filled with the appropriate values. Buffers are allocated if |
| * they are not provided by the board driver |
| * The mtd->owner field must be set to the module of the caller |
| * |
| */ |
| int nand_scan(struct mtd_info *mtd, int maxchips) |
| { |
| int i, busw, nand_maf_id; |
| struct nand_chip *this = mtd->priv; |
| struct nand_flash_dev *type; |
| |
| /* Many callers got this wrong, so check for it for a while... */ |
| if (!mtd->owner && caller_is_module()) { |
| printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n"); |
| BUG(); |
| } |
| |
| /* Get buswidth to select the correct functions */ |
| busw = this->options & NAND_BUSWIDTH_16; |
| /* Set the default functions */ |
| nand_set_defaults(this, busw); |
| |
| /* Read the flash type */ |
| type = nand_get_flash_type(mtd, this, busw, &nand_maf_id); |
| |
| if (IS_ERR(type)) { |
| printk(KERN_WARNING "No NAND device found!!!\n"); |
| this->select_chip(mtd, -1); |
| return PTR_ERR(type); |
| } |
| |
| /* Check for a chip array */ |
| for (i = 1; i < maxchips; i++) { |
| this->select_chip(mtd, i); |
| /* Send the command for reading device ID */ |
| this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); |
| /* Read manufacturer and device IDs */ |
| if (nand_maf_id != this->read_byte(mtd) || |
| type->id != this->read_byte(mtd)) |
| break; |
| } |
| if (i > 1) |
| printk(KERN_INFO "%d NAND chips detected\n", i); |
| |
| /* Store the number of chips and calc total size for mtd */ |
| this->numchips = i; |
| mtd->size = i * this->chipsize; |
| |
| /* Allocate buffers and data structures */ |
| if (nand_allocate_kmem(mtd, this)) |
| return -ENOMEM; |
| |
| /* Preset the internal oob buffer */ |
| memset(this->oob_buf, 0xff, |
| mtd->oobsize << (this->phys_erase_shift - this->page_shift)); |
| |
| /* |
| * If no default placement scheme is given, select an appropriate one |
| */ |
| if (!this->autooob) { |
| switch (mtd->oobsize) { |
| case 8: |
| this->autooob = &nand_oob_8; |
| break; |
| case 16: |
| this->autooob = &nand_oob_16; |
| break; |
| case 64: |
| this->autooob = &nand_oob_64; |
| break; |
| default: |
| printk(KERN_WARNING "No oob scheme defined for " |
| "oobsize %d\n", mtd->oobsize); |
| BUG(); |
| } |
| } |
| |
| /* |
| * The number of bytes available for the filesystem to place fs |
| * dependend oob data |
| */ |
| mtd->oobavail = 0; |
| for (i = 0; this->autooob->oobfree[i][1]; i++) |
| mtd->oobavail += this->autooob->oobfree[i][1]; |
| |
| /* |
| * check ECC mode, default to software if 3byte/512byte hardware ECC is |
| * selected and we have 256 byte pagesize fallback to software ECC |
| */ |
| switch (this->ecc.mode) { |
| case NAND_ECC_HW: |
| case NAND_ECC_HW_SYNDROME: |
| if (!this->ecc.calculate || !this->ecc.correct || |
| !this->ecc.hwctl) { |
| printk(KERN_WARNING "No ECC functions supplied, " |
| "Hardware ECC not possible\n"); |
| BUG(); |
| } |
| if (mtd->writesize >= this->ecc.size) |
| break; |
| printk(KERN_WARNING "%d byte HW ECC not possible on " |
| "%d byte page size, fallback to SW ECC\n", |
| this->ecc.size, mtd->writesize); |
| this->ecc.mode = NAND_ECC_SOFT; |
| |
| case NAND_ECC_SOFT: |
| this->ecc.calculate = nand_calculate_ecc; |
| this->ecc.correct = nand_correct_data; |
| this->ecc.size = 256; |
| this->ecc.bytes = 3; |
| break; |
| |
| case NAND_ECC_NONE: |
| printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. " |
| "This is not recommended !!\n"); |
| this->ecc.size = mtd->writesize; |
| this->ecc.bytes = 0; |
| break; |
| default: |
| printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n", |
| this->ecc.mode); |
| BUG(); |
| } |
| |
| /* |
| * Set the number of read / write steps for one page depending on ECC |
| * mode |
| */ |
| this->ecc.steps = mtd->writesize / this->ecc.size; |
| if(this->ecc.steps * this->ecc.size != mtd->writesize) { |
| printk(KERN_WARNING "Invalid ecc parameters\n"); |
| BUG(); |
| } |
| |
| /* Initialize state, waitqueue and spinlock */ |
| this->state = FL_READY; |
| init_waitqueue_head(&this->controller->wq); |
| spin_lock_init(&this->controller->lock); |
| |
| /* De-select the device */ |
| this->select_chip(mtd, -1); |
| |
| /* Invalidate the pagebuffer reference */ |
| this->pagebuf = -1; |
| |
| /* Fill in remaining MTD driver data */ |
| mtd->type = MTD_NANDFLASH; |
| mtd->flags = MTD_CAP_NANDFLASH; |
| mtd->ecctype = MTD_ECC_SW; |
| mtd->erase = nand_erase; |
| mtd->point = NULL; |
| mtd->unpoint = NULL; |
| mtd->read = nand_read; |
| mtd->write = nand_write; |
| mtd->read_oob = nand_read_oob; |
| mtd->write_oob = nand_write_oob; |
| mtd->sync = nand_sync; |
| mtd->lock = NULL; |
| mtd->unlock = NULL; |
| mtd->suspend = nand_suspend; |
| mtd->resume = nand_resume; |
| mtd->block_isbad = nand_block_isbad; |
| mtd->block_markbad = nand_block_markbad; |
| |
| /* and make the autooob the default one */ |
| memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo)); |
| |
| /* Check, if we should skip the bad block table scan */ |
| if (this->options & NAND_SKIP_BBTSCAN) |
| return 0; |
| |
| /* Build bad block table */ |
| return this->scan_bbt(mtd); |
| } |
| |
| /** |
| * nand_release - [NAND Interface] Free resources held by the NAND device |
| * @mtd: MTD device structure |
| */ |
| void nand_release(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| #ifdef CONFIG_MTD_PARTITIONS |
| /* Deregister partitions */ |
| del_mtd_partitions(mtd); |
| #endif |
| /* Deregister the device */ |
| del_mtd_device(mtd); |
| |
| /* Free bad block table memory */ |
| kfree(this->bbt); |
| /* Free buffers */ |
| nand_free_kmem(this); |
| } |
| |
| EXPORT_SYMBOL_GPL(nand_scan); |
| EXPORT_SYMBOL_GPL(nand_release); |
| |
| static int __init nand_base_init(void) |
| { |
| led_trigger_register_simple("nand-disk", &nand_led_trigger); |
| return 0; |
| } |
| |
| static void __exit nand_base_exit(void) |
| { |
| led_trigger_unregister_simple(nand_led_trigger); |
| } |
| |
| module_init(nand_base_init); |
| module_exit(nand_base_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>"); |
| MODULE_DESCRIPTION("Generic NAND flash driver code"); |