blob: c0747b2e3474299cb4b2b1972c3f0288172d3f32 [file] [log] [blame]
/*
* OMAP2PLUS cpufreq driver
*
* CPU frequency scaling for OMAP using OPP information
*
* Copyright (C) 2005 Nokia Corporation
* Written by Tony Lindgren <tony@atomide.com>
*
* Based on cpu-sa1110.c, Copyright (C) 2001 Russell King
*
* Copyright (C) 2007-2011 Texas Instruments, Inc.
* Updated to support OMAP3
* Rajendra Nayak <rnayak@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/opp.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/thermal_framework.h>
#include <asm/system.h>
#include <asm/smp_plat.h>
#include <asm/cpu.h>
#include <plat/clock.h>
#include <plat/omap-pm.h>
#include <plat/common.h>
#include <plat/omap_device.h>
#include <mach/hardware.h>
#include "dvfs.h"
#ifdef CONFIG_SMP
struct lpj_info {
unsigned long ref;
unsigned int freq;
};
static DEFINE_PER_CPU(struct lpj_info, lpj_ref);
static struct lpj_info global_lpj_ref;
#endif
#include "dvfs.h"
static struct cpufreq_frequency_table *freq_table;
static atomic_t freq_table_users = ATOMIC_INIT(0);
static struct clk *mpu_clk;
static char *mpu_clk_name;
static struct device *mpu_dev;
static DEFINE_MUTEX(omap_cpufreq_lock);
static unsigned int max_thermal;
static unsigned int max_freq;
static unsigned int current_target_freq;
static unsigned int current_cooling_level;
static bool omap_cpufreq_ready;
static unsigned int omap_getspeed(unsigned int cpu)
{
unsigned long rate;
if (cpu >= NR_CPUS)
return 0;
rate = clk_get_rate(mpu_clk) / 1000;
return rate;
}
static int omap_cpufreq_scale(unsigned int target_freq,
unsigned int cur_freq)
{
unsigned int i;
int ret = 0;
struct cpufreq_freqs freqs;
freqs.new = target_freq;
freqs.old = omap_getspeed(0);
/*
* If the new frequency is more than the thermal max allowed
* frequency, go ahead and scale the mpu device to proper frequency.
*/
if (freqs.new > max_thermal)
freqs.new = max_thermal;
if (freqs.old == freqs.new && cur_freq == freqs.new)
return 0;
if (!is_smp()) {
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
goto set_freq;
}
/* notifiers */
for_each_online_cpu(freqs.cpu)
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
set_freq:
#ifdef CONFIG_CPU_FREQ_DEBUG
pr_info("cpufreq-omap: transition: %u --> %u\n", freqs.old, freqs.new);
#endif
ret = omap_device_scale(mpu_dev, mpu_dev, freqs.new * 1000);
freqs.new = omap_getspeed(0);
/*
* Generic CPUFREQ driver jiffy update is under !SMP. So jiffies
* won't get updated when UP machine cpufreq build with
* CONFIG_SMP enabled. Below code is added only to manage that
* scenario
*/
if (!is_smp()) {
loops_per_jiffy =
cpufreq_scale(loops_per_jiffy, freqs.old, freqs.new);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
goto skip_lpj;
}
#ifdef CONFIG_SMP
/*
* Note that loops_per_jiffy is not updated on SMP systems in
* cpufreq driver. So, update the per-CPU loops_per_jiffy value
* on frequency transition. We need to update all dependent CPUs.
*/
for_each_possible_cpu(i) {
struct lpj_info *lpj = &per_cpu(lpj_ref, i);
if (!lpj->freq) {
lpj->ref = per_cpu(cpu_data, i).loops_per_jiffy;
lpj->freq = freqs.old;
}
per_cpu(cpu_data, i).loops_per_jiffy =
cpufreq_scale(lpj->ref, lpj->freq, freqs.new);
}
/* And don't forget to adjust the global one */
if (!global_lpj_ref.freq) {
global_lpj_ref.ref = loops_per_jiffy;
global_lpj_ref.freq = freqs.old;
}
loops_per_jiffy = cpufreq_scale(global_lpj_ref.ref, global_lpj_ref.freq,
freqs.new);
#endif
/* notifiers */
for_each_online_cpu(freqs.cpu)
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
skip_lpj:
return ret;
}
static unsigned int omap_thermal_lower_speed(void)
{
unsigned int max = 0;
unsigned int curr;
int i;
curr = max_thermal;
for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
if (freq_table[i].frequency > max &&
freq_table[i].frequency < curr)
max = freq_table[i].frequency;
if (!max)
return curr;
return max;
}
void omap_thermal_throttle(void)
{
unsigned int cur;
if (!omap_cpufreq_ready) {
pr_warn_once("%s: Thermal throttle prior to CPUFREQ ready\n",
__func__);
return;
}
mutex_lock(&omap_cpufreq_lock);
max_thermal = omap_thermal_lower_speed();
pr_err("%s: temperature too high, cpu throttle at max %u\n",
__func__, max_thermal);
cur = omap_getspeed(0);
if (cur > max_thermal)
omap_cpufreq_scale(max_thermal, cur);
mutex_unlock(&omap_cpufreq_lock);
}
void omap_thermal_unthrottle(void)
{
unsigned int cur;
if (!omap_cpufreq_ready)
return;
mutex_lock(&omap_cpufreq_lock);
if (max_thermal == max_freq) {
pr_err("%s: not throttling\n", __func__);
goto out;
}
max_thermal = max_freq;
pr_err("%s: temperature reduced, ending cpu throttling\n", __func__);
cur = omap_getspeed(0);
omap_cpufreq_scale(current_target_freq, cur);
out:
mutex_unlock(&omap_cpufreq_lock);
}
static int omap_verify_speed(struct cpufreq_policy *policy)
{
if (!freq_table)
return -EINVAL;
return cpufreq_frequency_table_verify(policy, freq_table);
}
static int omap_target(struct cpufreq_policy *policy,
unsigned int target_freq, unsigned int relation)
{
unsigned int i;
int ret = 0;
if (!freq_table) {
dev_err(mpu_dev, "%s: cpu%d: no freq table!\n", __func__,
policy->cpu);
return -EINVAL;
}
ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
relation, &i);
if (ret) {
dev_dbg(mpu_dev, "%s: cpu%d: no freq match for %d(ret=%d)\n",
__func__, policy->cpu, target_freq, ret);
return ret;
}
mutex_lock(&omap_cpufreq_lock);
current_target_freq = freq_table[i].frequency;
ret = omap_cpufreq_scale(current_target_freq, policy->cur);
mutex_unlock(&omap_cpufreq_lock);
return ret;
}
static inline void freq_table_free(void)
{
if (atomic_dec_and_test(&freq_table_users))
opp_free_cpufreq_table(mpu_dev, &freq_table);
}
#ifdef CONFIG_THERMAL_FRAMEWORK
void omap_thermal_step_freq_down(void)
{
unsigned int cur;
mutex_lock(&omap_cpufreq_lock);
max_thermal = omap_thermal_lower_speed();
pr_info("%s: temperature too high, starting cpu throttling at max %u\n",
__func__, max_thermal);
cur = omap_getspeed(0);
if (cur > max_thermal)
omap_cpufreq_scale(max_thermal, cur);
mutex_unlock(&omap_cpufreq_lock);
}
void omap_thermal_step_freq_up(void)
{
unsigned int cur;
mutex_lock(&omap_cpufreq_lock);
max_thermal = max_freq;
pr_info("%s: temperature reduced, stepping up to %i\n",
__func__, current_target_freq);
if (current_target_freq) {
cur = omap_getspeed(0);
omap_cpufreq_scale(current_target_freq, cur);
}
mutex_unlock(&omap_cpufreq_lock);
}
/*
* cpufreq_apply_cooling: based on requested cooling level, throttle the cpu
* @param cooling_level: percentage of required cooling at the moment
*
* The maximum cpu frequency will be readjusted based on the required
* cooling_level.
*/
static int cpufreq_apply_cooling(struct thermal_dev *dev, int cooling_level)
{
if (cooling_level < current_cooling_level) {
pr_info("%s: Unthrottle cool level %i curr cool %i\n",
__func__, cooling_level, current_cooling_level);
omap_thermal_step_freq_up();
} else if (cooling_level > current_cooling_level) {
pr_info("%s: Throttle cool level %i curr cool %i\n",
__func__, cooling_level, current_cooling_level);
omap_thermal_step_freq_down();
}
current_cooling_level = cooling_level;
return 0;
}
static struct thermal_dev_ops cpufreq_cooling_ops = {
.cool_device = cpufreq_apply_cooling,
};
static struct thermal_dev thermal_dev = {
.name = "cpufreq_cooling",
.domain_name = "cpu",
.dev_ops = &cpufreq_cooling_ops,
};
static int __init omap_cpufreq_cooling_init(void)
{
return thermal_cooling_dev_register(&thermal_dev);
}
static void __exit omap_cpufreq_cooling_exit(void)
{
thermal_governor_dev_unregister(&thermal_dev);
}
#else
static int __init omap_cpufreq_cooling_init(void)
{
return 0;
}
static void __exit omap_cpufreq_cooling_exit(void)
{
}
#endif
static int __cpuinit omap_cpu_init(struct cpufreq_policy *policy)
{
int result = 0;
int i;
if (!mpu_dev)
return -EINVAL;
mpu_clk = clk_get(NULL, mpu_clk_name);
if (IS_ERR(mpu_clk))
return PTR_ERR(mpu_clk);
if (policy->cpu >= NR_CPUS) {
result = -EINVAL;
goto fail_ck;
}
policy->cur = policy->min = policy->max = omap_getspeed(policy->cpu);
if (atomic_inc_return(&freq_table_users) == 1)
result = opp_init_cpufreq_table(mpu_dev, &freq_table);
if (result) {
dev_err(mpu_dev, "%s: cpu%d: failed creating freq table[%d]\n",
__func__, policy->cpu, result);
goto fail_ck;
}
result = cpufreq_frequency_table_cpuinfo(policy, freq_table);
if (result)
goto fail_table;
cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
policy->min = policy->cpuinfo.min_freq;
policy->max = policy->cpuinfo.max_freq;
policy->cur = omap_getspeed(policy->cpu);
for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
max_freq = max(freq_table[i].frequency, max_freq);
max_thermal = max_freq;
current_cooling_level = 125000;
/*
* On OMAP SMP configuartion, both processors share the voltage
* and clock. So both CPUs needs to be scaled together and hence
* needs software co-ordination. Use cpufreq affected_cpus
* interface to handle this scenario. Additional is_smp() check
* is to keep SMP_ON_UP build working.
*/
if (is_smp()) {
policy->shared_type = CPUFREQ_SHARED_TYPE_ANY;
cpumask_setall(policy->cpus);
}
omap_cpufreq_cooling_init();
/* FIXME: what's the actual transition time? */
policy->cpuinfo.transition_latency = 300 * 1000;
return 0;
fail_table:
freq_table_free();
fail_ck:
clk_put(mpu_clk);
return result;
}
static int omap_cpu_exit(struct cpufreq_policy *policy)
{
freq_table_free();
clk_put(mpu_clk);
return 0;
}
static struct freq_attr *omap_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
};
static struct cpufreq_driver omap_driver = {
.flags = CPUFREQ_STICKY,
.verify = omap_verify_speed,
.target = omap_target,
.get = omap_getspeed,
.init = omap_cpu_init,
.exit = omap_cpu_exit,
.name = "omap2plus",
.attr = omap_cpufreq_attr,
};
static int __init omap_cpufreq_init(void)
{
int ret;
if (cpu_is_omap24xx())
mpu_clk_name = "virt_prcm_set";
else if (cpu_is_omap34xx())
mpu_clk_name = "dpll1_ck";
else if (cpu_is_omap443x())
mpu_clk_name = "dpll_mpu_ck";
else if (cpu_is_omap446x())
mpu_clk_name = "virt_dpll_mpu_ck";
if (!mpu_clk_name) {
pr_err("%s: unsupported Silicon?\n", __func__);
return -EINVAL;
}
mpu_dev = omap_device_get_by_hwmod_name("mpu");
if (!mpu_dev) {
pr_err("%s: unable to get the mpu device\n", __func__);
return -EINVAL;
}
ret = cpufreq_register_driver(&omap_driver);
omap_cpufreq_ready = !ret;
return ret;
}
static void __exit omap_cpufreq_exit(void)
{
omap_cpufreq_cooling_exit();
cpufreq_unregister_driver(&omap_driver);
}
MODULE_DESCRIPTION("cpufreq driver for OMAP2PLUS SOCs");
MODULE_LICENSE("GPL");
late_initcall(omap_cpufreq_init);
module_exit(omap_cpufreq_exit);