| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2006-2009 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include <linux/i2c.h> |
| #include <linux/mii.h> |
| #include <linux/slab.h> |
| #include "net_driver.h" |
| #include "bitfield.h" |
| #include "efx.h" |
| #include "mac.h" |
| #include "spi.h" |
| #include "nic.h" |
| #include "regs.h" |
| #include "io.h" |
| #include "mdio_10g.h" |
| #include "phy.h" |
| #include "workarounds.h" |
| |
| /* Hardware control for SFC4000 (aka Falcon). */ |
| |
| static const unsigned int |
| /* "Large" EEPROM device: Atmel AT25640 or similar |
| * 8 KB, 16-bit address, 32 B write block */ |
| large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN) |
| | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN) |
| | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)), |
| /* Default flash device: Atmel AT25F1024 |
| * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */ |
| default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN) |
| | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN) |
| | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN) |
| | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN) |
| | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)); |
| |
| /************************************************************************** |
| * |
| * I2C bus - this is a bit-bashing interface using GPIO pins |
| * Note that it uses the output enables to tristate the outputs |
| * SDA is the data pin and SCL is the clock |
| * |
| ************************************************************************** |
| */ |
| static void falcon_setsda(void *data, int state) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| efx_reado(efx, ®, FR_AB_GPIO_CTL); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state); |
| efx_writeo(efx, ®, FR_AB_GPIO_CTL); |
| } |
| |
| static void falcon_setscl(void *data, int state) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| efx_reado(efx, ®, FR_AB_GPIO_CTL); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state); |
| efx_writeo(efx, ®, FR_AB_GPIO_CTL); |
| } |
| |
| static int falcon_getsda(void *data) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| efx_reado(efx, ®, FR_AB_GPIO_CTL); |
| return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN); |
| } |
| |
| static int falcon_getscl(void *data) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| efx_reado(efx, ®, FR_AB_GPIO_CTL); |
| return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN); |
| } |
| |
| static struct i2c_algo_bit_data falcon_i2c_bit_operations = { |
| .setsda = falcon_setsda, |
| .setscl = falcon_setscl, |
| .getsda = falcon_getsda, |
| .getscl = falcon_getscl, |
| .udelay = 5, |
| /* Wait up to 50 ms for slave to let us pull SCL high */ |
| .timeout = DIV_ROUND_UP(HZ, 20), |
| }; |
| |
| static void falcon_push_irq_moderation(struct efx_channel *channel) |
| { |
| efx_dword_t timer_cmd; |
| struct efx_nic *efx = channel->efx; |
| |
| /* Set timer register */ |
| if (channel->irq_moderation) { |
| EFX_POPULATE_DWORD_2(timer_cmd, |
| FRF_AB_TC_TIMER_MODE, |
| FFE_BB_TIMER_MODE_INT_HLDOFF, |
| FRF_AB_TC_TIMER_VAL, |
| channel->irq_moderation - 1); |
| } else { |
| EFX_POPULATE_DWORD_2(timer_cmd, |
| FRF_AB_TC_TIMER_MODE, |
| FFE_BB_TIMER_MODE_DIS, |
| FRF_AB_TC_TIMER_VAL, 0); |
| } |
| BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0); |
| efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0, |
| channel->channel); |
| } |
| |
| static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx); |
| |
| static void falcon_prepare_flush(struct efx_nic *efx) |
| { |
| falcon_deconfigure_mac_wrapper(efx); |
| |
| /* Wait for the tx and rx fifo's to get to the next packet boundary |
| * (~1ms without back-pressure), then to drain the remainder of the |
| * fifo's at data path speeds (negligible), with a healthy margin. */ |
| msleep(10); |
| } |
| |
| /* Acknowledge a legacy interrupt from Falcon |
| * |
| * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG. |
| * |
| * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the |
| * BIU. Interrupt acknowledge is read sensitive so must write instead |
| * (then read to ensure the BIU collector is flushed) |
| * |
| * NB most hardware supports MSI interrupts |
| */ |
| inline void falcon_irq_ack_a1(struct efx_nic *efx) |
| { |
| efx_dword_t reg; |
| |
| EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e); |
| efx_writed(efx, ®, FR_AA_INT_ACK_KER); |
| efx_readd(efx, ®, FR_AA_WORK_AROUND_BROKEN_PCI_READS); |
| } |
| |
| |
| irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id) |
| { |
| struct efx_nic *efx = dev_id; |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| struct efx_channel *channel; |
| int syserr; |
| int queues; |
| |
| /* Check to see if this is our interrupt. If it isn't, we |
| * exit without having touched the hardware. |
| */ |
| if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) { |
| EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq, |
| raw_smp_processor_id()); |
| return IRQ_NONE; |
| } |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| |
| /* Check to see if we have a serious error condition */ |
| syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| if (unlikely(syserr)) |
| return efx_nic_fatal_interrupt(efx); |
| |
| /* Determine interrupting queues, clear interrupt status |
| * register and acknowledge the device interrupt. |
| */ |
| BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS); |
| queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q); |
| EFX_ZERO_OWORD(*int_ker); |
| wmb(); /* Ensure the vector is cleared before interrupt ack */ |
| falcon_irq_ack_a1(efx); |
| |
| /* Schedule processing of any interrupting queues */ |
| channel = &efx->channel[0]; |
| while (queues) { |
| if (queues & 0x01) |
| efx_schedule_channel(channel); |
| channel++; |
| queues >>= 1; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| /************************************************************************** |
| * |
| * EEPROM/flash |
| * |
| ************************************************************************** |
| */ |
| |
| #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t) |
| |
| static int falcon_spi_poll(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| efx_reado(efx, ®, FR_AB_EE_SPI_HCMD); |
| return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0; |
| } |
| |
| /* Wait for SPI command completion */ |
| static int falcon_spi_wait(struct efx_nic *efx) |
| { |
| /* Most commands will finish quickly, so we start polling at |
| * very short intervals. Sometimes the command may have to |
| * wait for VPD or expansion ROM access outside of our |
| * control, so we allow up to 100 ms. */ |
| unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10); |
| int i; |
| |
| for (i = 0; i < 10; i++) { |
| if (!falcon_spi_poll(efx)) |
| return 0; |
| udelay(10); |
| } |
| |
| for (;;) { |
| if (!falcon_spi_poll(efx)) |
| return 0; |
| if (time_after_eq(jiffies, timeout)) { |
| EFX_ERR(efx, "timed out waiting for SPI\n"); |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } |
| } |
| |
| int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi, |
| unsigned int command, int address, |
| const void *in, void *out, size_t len) |
| { |
| bool addressed = (address >= 0); |
| bool reading = (out != NULL); |
| efx_oword_t reg; |
| int rc; |
| |
| /* Input validation */ |
| if (len > FALCON_SPI_MAX_LEN) |
| return -EINVAL; |
| BUG_ON(!mutex_is_locked(&efx->spi_lock)); |
| |
| /* Check that previous command is not still running */ |
| rc = falcon_spi_poll(efx); |
| if (rc) |
| return rc; |
| |
| /* Program address register, if we have an address */ |
| if (addressed) { |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address); |
| efx_writeo(efx, ®, FR_AB_EE_SPI_HADR); |
| } |
| |
| /* Program data register, if we have data */ |
| if (in != NULL) { |
| memcpy(®, in, len); |
| efx_writeo(efx, ®, FR_AB_EE_SPI_HDATA); |
| } |
| |
| /* Issue read/write command */ |
| EFX_POPULATE_OWORD_7(reg, |
| FRF_AB_EE_SPI_HCMD_CMD_EN, 1, |
| FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id, |
| FRF_AB_EE_SPI_HCMD_DABCNT, len, |
| FRF_AB_EE_SPI_HCMD_READ, reading, |
| FRF_AB_EE_SPI_HCMD_DUBCNT, 0, |
| FRF_AB_EE_SPI_HCMD_ADBCNT, |
| (addressed ? spi->addr_len : 0), |
| FRF_AB_EE_SPI_HCMD_ENC, command); |
| efx_writeo(efx, ®, FR_AB_EE_SPI_HCMD); |
| |
| /* Wait for read/write to complete */ |
| rc = falcon_spi_wait(efx); |
| if (rc) |
| return rc; |
| |
| /* Read data */ |
| if (out != NULL) { |
| efx_reado(efx, ®, FR_AB_EE_SPI_HDATA); |
| memcpy(out, ®, len); |
| } |
| |
| return 0; |
| } |
| |
| static size_t |
| falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start) |
| { |
| return min(FALCON_SPI_MAX_LEN, |
| (spi->block_size - (start & (spi->block_size - 1)))); |
| } |
| |
| static inline u8 |
| efx_spi_munge_command(const struct efx_spi_device *spi, |
| const u8 command, const unsigned int address) |
| { |
| return command | (((address >> 8) & spi->munge_address) << 3); |
| } |
| |
| /* Wait up to 10 ms for buffered write completion */ |
| int |
| falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi) |
| { |
| unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100); |
| u8 status; |
| int rc; |
| |
| for (;;) { |
| rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, |
| &status, sizeof(status)); |
| if (rc) |
| return rc; |
| if (!(status & SPI_STATUS_NRDY)) |
| return 0; |
| if (time_after_eq(jiffies, timeout)) { |
| EFX_ERR(efx, "SPI write timeout on device %d" |
| " last status=0x%02x\n", |
| spi->device_id, status); |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } |
| } |
| |
| int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi, |
| loff_t start, size_t len, size_t *retlen, u8 *buffer) |
| { |
| size_t block_len, pos = 0; |
| unsigned int command; |
| int rc = 0; |
| |
| while (pos < len) { |
| block_len = min(len - pos, FALCON_SPI_MAX_LEN); |
| |
| command = efx_spi_munge_command(spi, SPI_READ, start + pos); |
| rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL, |
| buffer + pos, block_len); |
| if (rc) |
| break; |
| pos += block_len; |
| |
| /* Avoid locking up the system */ |
| cond_resched(); |
| if (signal_pending(current)) { |
| rc = -EINTR; |
| break; |
| } |
| } |
| |
| if (retlen) |
| *retlen = pos; |
| return rc; |
| } |
| |
| int |
| falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi, |
| loff_t start, size_t len, size_t *retlen, const u8 *buffer) |
| { |
| u8 verify_buffer[FALCON_SPI_MAX_LEN]; |
| size_t block_len, pos = 0; |
| unsigned int command; |
| int rc = 0; |
| |
| while (pos < len) { |
| rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); |
| if (rc) |
| break; |
| |
| block_len = min(len - pos, |
| falcon_spi_write_limit(spi, start + pos)); |
| command = efx_spi_munge_command(spi, SPI_WRITE, start + pos); |
| rc = falcon_spi_cmd(efx, spi, command, start + pos, |
| buffer + pos, NULL, block_len); |
| if (rc) |
| break; |
| |
| rc = falcon_spi_wait_write(efx, spi); |
| if (rc) |
| break; |
| |
| command = efx_spi_munge_command(spi, SPI_READ, start + pos); |
| rc = falcon_spi_cmd(efx, spi, command, start + pos, |
| NULL, verify_buffer, block_len); |
| if (memcmp(verify_buffer, buffer + pos, block_len)) { |
| rc = -EIO; |
| break; |
| } |
| |
| pos += block_len; |
| |
| /* Avoid locking up the system */ |
| cond_resched(); |
| if (signal_pending(current)) { |
| rc = -EINTR; |
| break; |
| } |
| } |
| |
| if (retlen) |
| *retlen = pos; |
| return rc; |
| } |
| |
| /************************************************************************** |
| * |
| * MAC wrapper |
| * |
| ************************************************************************** |
| */ |
| |
| static void falcon_push_multicast_hash(struct efx_nic *efx) |
| { |
| union efx_multicast_hash *mc_hash = &efx->multicast_hash; |
| |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| |
| efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0); |
| efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1); |
| } |
| |
| static void falcon_reset_macs(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t reg, mac_ctrl; |
| int count; |
| |
| if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { |
| /* It's not safe to use GLB_CTL_REG to reset the |
| * macs, so instead use the internal MAC resets |
| */ |
| if (!EFX_IS10G(efx)) { |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1); |
| efx_writeo(efx, ®, FR_AB_GM_CFG1); |
| udelay(1000); |
| |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0); |
| efx_writeo(efx, ®, FR_AB_GM_CFG1); |
| udelay(1000); |
| return; |
| } else { |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1); |
| efx_writeo(efx, ®, FR_AB_XM_GLB_CFG); |
| |
| for (count = 0; count < 10000; count++) { |
| efx_reado(efx, ®, FR_AB_XM_GLB_CFG); |
| if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) == |
| 0) |
| return; |
| udelay(10); |
| } |
| |
| EFX_ERR(efx, "timed out waiting for XMAC core reset\n"); |
| } |
| } |
| |
| /* Mac stats will fail whist the TX fifo is draining */ |
| WARN_ON(nic_data->stats_disable_count == 0); |
| |
| efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL); |
| EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1); |
| efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL); |
| |
| efx_reado(efx, ®, FR_AB_GLB_CTL); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1); |
| efx_writeo(efx, ®, FR_AB_GLB_CTL); |
| |
| count = 0; |
| while (1) { |
| efx_reado(efx, ®, FR_AB_GLB_CTL); |
| if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) && |
| !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) && |
| !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) { |
| EFX_LOG(efx, "Completed MAC reset after %d loops\n", |
| count); |
| break; |
| } |
| if (count > 20) { |
| EFX_ERR(efx, "MAC reset failed\n"); |
| break; |
| } |
| count++; |
| udelay(10); |
| } |
| |
| /* Ensure the correct MAC is selected before statistics |
| * are re-enabled by the caller */ |
| efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL); |
| } |
| |
| void falcon_drain_tx_fifo(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| |
| if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) || |
| (efx->loopback_mode != LOOPBACK_NONE)) |
| return; |
| |
| efx_reado(efx, ®, FR_AB_MAC_CTRL); |
| /* There is no point in draining more than once */ |
| if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN)) |
| return; |
| |
| falcon_reset_macs(efx); |
| } |
| |
| static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| |
| if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) |
| return; |
| |
| /* Isolate the MAC -> RX */ |
| efx_reado(efx, ®, FR_AZ_RX_CFG); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0); |
| efx_writeo(efx, ®, FR_AZ_RX_CFG); |
| |
| /* Isolate TX -> MAC */ |
| falcon_drain_tx_fifo(efx); |
| } |
| |
| void falcon_reconfigure_mac_wrapper(struct efx_nic *efx) |
| { |
| struct efx_link_state *link_state = &efx->link_state; |
| efx_oword_t reg; |
| int link_speed; |
| |
| switch (link_state->speed) { |
| case 10000: link_speed = 3; break; |
| case 1000: link_speed = 2; break; |
| case 100: link_speed = 1; break; |
| default: link_speed = 0; break; |
| } |
| /* MAC_LINK_STATUS controls MAC backpressure but doesn't work |
| * as advertised. Disable to ensure packets are not |
| * indefinitely held and TX queue can be flushed at any point |
| * while the link is down. */ |
| EFX_POPULATE_OWORD_5(reg, |
| FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */, |
| FRF_AB_MAC_BCAD_ACPT, 1, |
| FRF_AB_MAC_UC_PROM, efx->promiscuous, |
| FRF_AB_MAC_LINK_STATUS, 1, /* always set */ |
| FRF_AB_MAC_SPEED, link_speed); |
| /* On B0, MAC backpressure can be disabled and packets get |
| * discarded. */ |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, |
| !link_state->up); |
| } |
| |
| efx_writeo(efx, ®, FR_AB_MAC_CTRL); |
| |
| /* Restore the multicast hash registers. */ |
| falcon_push_multicast_hash(efx); |
| |
| efx_reado(efx, ®, FR_AZ_RX_CFG); |
| /* Enable XOFF signal from RX FIFO (we enabled it during NIC |
| * initialisation but it may read back as 0) */ |
| EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1); |
| /* Unisolate the MAC -> RX */ |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1); |
| efx_writeo(efx, ®, FR_AZ_RX_CFG); |
| } |
| |
| static void falcon_stats_request(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t reg; |
| |
| WARN_ON(nic_data->stats_pending); |
| WARN_ON(nic_data->stats_disable_count); |
| |
| if (nic_data->stats_dma_done == NULL) |
| return; /* no mac selected */ |
| |
| *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE; |
| nic_data->stats_pending = true; |
| wmb(); /* ensure done flag is clear */ |
| |
| /* Initiate DMA transfer of stats */ |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AB_MAC_STAT_DMA_CMD, 1, |
| FRF_AB_MAC_STAT_DMA_ADR, |
| efx->stats_buffer.dma_addr); |
| efx_writeo(efx, ®, FR_AB_MAC_STAT_DMA); |
| |
| mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2)); |
| } |
| |
| static void falcon_stats_complete(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| |
| if (!nic_data->stats_pending) |
| return; |
| |
| nic_data->stats_pending = 0; |
| if (*nic_data->stats_dma_done == FALCON_STATS_DONE) { |
| rmb(); /* read the done flag before the stats */ |
| efx->mac_op->update_stats(efx); |
| } else { |
| EFX_ERR(efx, "timed out waiting for statistics\n"); |
| } |
| } |
| |
| static void falcon_stats_timer_func(unsigned long context) |
| { |
| struct efx_nic *efx = (struct efx_nic *)context; |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| |
| spin_lock(&efx->stats_lock); |
| |
| falcon_stats_complete(efx); |
| if (nic_data->stats_disable_count == 0) |
| falcon_stats_request(efx); |
| |
| spin_unlock(&efx->stats_lock); |
| } |
| |
| static void falcon_switch_mac(struct efx_nic *efx); |
| |
| static bool falcon_loopback_link_poll(struct efx_nic *efx) |
| { |
| struct efx_link_state old_state = efx->link_state; |
| |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| WARN_ON(!LOOPBACK_INTERNAL(efx)); |
| |
| efx->link_state.fd = true; |
| efx->link_state.fc = efx->wanted_fc; |
| efx->link_state.up = true; |
| |
| if (efx->loopback_mode == LOOPBACK_GMAC) |
| efx->link_state.speed = 1000; |
| else |
| efx->link_state.speed = 10000; |
| |
| return !efx_link_state_equal(&efx->link_state, &old_state); |
| } |
| |
| static int falcon_reconfigure_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0); |
| |
| /* Poll the PHY link state *before* reconfiguring it. This means we |
| * will pick up the correct speed (in loopback) to select the correct |
| * MAC. |
| */ |
| if (LOOPBACK_INTERNAL(efx)) |
| falcon_loopback_link_poll(efx); |
| else |
| efx->phy_op->poll(efx); |
| |
| falcon_stop_nic_stats(efx); |
| falcon_deconfigure_mac_wrapper(efx); |
| |
| falcon_switch_mac(efx); |
| |
| efx->phy_op->reconfigure(efx); |
| rc = efx->mac_op->reconfigure(efx); |
| BUG_ON(rc); |
| |
| falcon_start_nic_stats(efx); |
| |
| /* Synchronise efx->link_state with the kernel */ |
| efx_link_status_changed(efx); |
| |
| return 0; |
| } |
| |
| /************************************************************************** |
| * |
| * PHY access via GMII |
| * |
| ************************************************************************** |
| */ |
| |
| /* Wait for GMII access to complete */ |
| static int falcon_gmii_wait(struct efx_nic *efx) |
| { |
| efx_oword_t md_stat; |
| int count; |
| |
| /* wait upto 50ms - taken max from datasheet */ |
| for (count = 0; count < 5000; count++) { |
| efx_reado(efx, &md_stat, FR_AB_MD_STAT); |
| if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) { |
| if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 || |
| EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) { |
| EFX_ERR(efx, "error from GMII access " |
| EFX_OWORD_FMT"\n", |
| EFX_OWORD_VAL(md_stat)); |
| return -EIO; |
| } |
| return 0; |
| } |
| udelay(10); |
| } |
| EFX_ERR(efx, "timed out waiting for GMII\n"); |
| return -ETIMEDOUT; |
| } |
| |
| /* Write an MDIO register of a PHY connected to Falcon. */ |
| static int falcon_mdio_write(struct net_device *net_dev, |
| int prtad, int devad, u16 addr, u16 value) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| efx_oword_t reg; |
| int rc; |
| |
| EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n", |
| prtad, devad, addr, value); |
| |
| mutex_lock(&efx->mdio_lock); |
| |
| /* Check MDIO not currently being accessed */ |
| rc = falcon_gmii_wait(efx); |
| if (rc) |
| goto out; |
| |
| /* Write the address/ID register */ |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); |
| efx_writeo(efx, ®, FR_AB_MD_PHY_ADR); |
| |
| EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, |
| FRF_AB_MD_DEV_ADR, devad); |
| efx_writeo(efx, ®, FR_AB_MD_ID); |
| |
| /* Write data */ |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value); |
| efx_writeo(efx, ®, FR_AB_MD_TXD); |
| |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AB_MD_WRC, 1, |
| FRF_AB_MD_GC, 0); |
| efx_writeo(efx, ®, FR_AB_MD_CS); |
| |
| /* Wait for data to be written */ |
| rc = falcon_gmii_wait(efx); |
| if (rc) { |
| /* Abort the write operation */ |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AB_MD_WRC, 0, |
| FRF_AB_MD_GC, 1); |
| efx_writeo(efx, ®, FR_AB_MD_CS); |
| udelay(10); |
| } |
| |
| out: |
| mutex_unlock(&efx->mdio_lock); |
| return rc; |
| } |
| |
| /* Read an MDIO register of a PHY connected to Falcon. */ |
| static int falcon_mdio_read(struct net_device *net_dev, |
| int prtad, int devad, u16 addr) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| efx_oword_t reg; |
| int rc; |
| |
| mutex_lock(&efx->mdio_lock); |
| |
| /* Check MDIO not currently being accessed */ |
| rc = falcon_gmii_wait(efx); |
| if (rc) |
| goto out; |
| |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); |
| efx_writeo(efx, ®, FR_AB_MD_PHY_ADR); |
| |
| EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, |
| FRF_AB_MD_DEV_ADR, devad); |
| efx_writeo(efx, ®, FR_AB_MD_ID); |
| |
| /* Request data to be read */ |
| EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0); |
| efx_writeo(efx, ®, FR_AB_MD_CS); |
| |
| /* Wait for data to become available */ |
| rc = falcon_gmii_wait(efx); |
| if (rc == 0) { |
| efx_reado(efx, ®, FR_AB_MD_RXD); |
| rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD); |
| EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n", |
| prtad, devad, addr, rc); |
| } else { |
| /* Abort the read operation */ |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AB_MD_RIC, 0, |
| FRF_AB_MD_GC, 1); |
| efx_writeo(efx, ®, FR_AB_MD_CS); |
| |
| EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n", |
| prtad, devad, addr, rc); |
| } |
| |
| out: |
| mutex_unlock(&efx->mdio_lock); |
| return rc; |
| } |
| |
| static void falcon_clock_mac(struct efx_nic *efx) |
| { |
| unsigned strap_val; |
| efx_oword_t nic_stat; |
| |
| /* Configure the NIC generated MAC clock correctly */ |
| efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); |
| strap_val = EFX_IS10G(efx) ? 5 : 3; |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1); |
| EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val); |
| efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT); |
| } else { |
| /* Falcon A1 does not support 1G/10G speed switching |
| * and must not be used with a PHY that does. */ |
| BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) != |
| strap_val); |
| } |
| } |
| |
| static void falcon_switch_mac(struct efx_nic *efx) |
| { |
| struct efx_mac_operations *old_mac_op = efx->mac_op; |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| unsigned int stats_done_offset; |
| |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| WARN_ON(nic_data->stats_disable_count == 0); |
| |
| efx->mac_op = (EFX_IS10G(efx) ? |
| &falcon_xmac_operations : &falcon_gmac_operations); |
| |
| if (EFX_IS10G(efx)) |
| stats_done_offset = XgDmaDone_offset; |
| else |
| stats_done_offset = GDmaDone_offset; |
| nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset; |
| |
| if (old_mac_op == efx->mac_op) |
| return; |
| |
| falcon_clock_mac(efx); |
| |
| EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G'); |
| /* Not all macs support a mac-level link state */ |
| efx->xmac_poll_required = false; |
| falcon_reset_macs(efx); |
| } |
| |
| /* This call is responsible for hooking in the MAC and PHY operations */ |
| static int falcon_probe_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| switch (efx->phy_type) { |
| case PHY_TYPE_SFX7101: |
| efx->phy_op = &falcon_sfx7101_phy_ops; |
| break; |
| case PHY_TYPE_SFT9001A: |
| case PHY_TYPE_SFT9001B: |
| efx->phy_op = &falcon_sft9001_phy_ops; |
| break; |
| case PHY_TYPE_QT2022C2: |
| case PHY_TYPE_QT2025C: |
| efx->phy_op = &falcon_qt202x_phy_ops; |
| break; |
| default: |
| EFX_ERR(efx, "Unknown PHY type %d\n", |
| efx->phy_type); |
| return -ENODEV; |
| } |
| |
| /* Fill out MDIO structure and loopback modes */ |
| efx->mdio.mdio_read = falcon_mdio_read; |
| efx->mdio.mdio_write = falcon_mdio_write; |
| rc = efx->phy_op->probe(efx); |
| if (rc != 0) |
| return rc; |
| |
| /* Initial assumption */ |
| efx->link_state.speed = 10000; |
| efx->link_state.fd = true; |
| |
| /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */ |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; |
| else |
| efx->wanted_fc = EFX_FC_RX; |
| if (efx->mdio.mmds & MDIO_DEVS_AN) |
| efx->wanted_fc |= EFX_FC_AUTO; |
| |
| /* Allocate buffer for stats */ |
| rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer, |
| FALCON_MAC_STATS_SIZE); |
| if (rc) |
| return rc; |
| EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n", |
| (u64)efx->stats_buffer.dma_addr, |
| efx->stats_buffer.addr, |
| (u64)virt_to_phys(efx->stats_buffer.addr)); |
| |
| return 0; |
| } |
| |
| static void falcon_remove_port(struct efx_nic *efx) |
| { |
| efx->phy_op->remove(efx); |
| efx_nic_free_buffer(efx, &efx->stats_buffer); |
| } |
| |
| /************************************************************************** |
| * |
| * Falcon test code |
| * |
| **************************************************************************/ |
| |
| static int |
| falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out) |
| { |
| struct falcon_nvconfig *nvconfig; |
| struct efx_spi_device *spi; |
| void *region; |
| int rc, magic_num, struct_ver; |
| __le16 *word, *limit; |
| u32 csum; |
| |
| spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom; |
| if (!spi) |
| return -EINVAL; |
| |
| region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL); |
| if (!region) |
| return -ENOMEM; |
| nvconfig = region + FALCON_NVCONFIG_OFFSET; |
| |
| mutex_lock(&efx->spi_lock); |
| rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region); |
| mutex_unlock(&efx->spi_lock); |
| if (rc) { |
| EFX_ERR(efx, "Failed to read %s\n", |
| efx->spi_flash ? "flash" : "EEPROM"); |
| rc = -EIO; |
| goto out; |
| } |
| |
| magic_num = le16_to_cpu(nvconfig->board_magic_num); |
| struct_ver = le16_to_cpu(nvconfig->board_struct_ver); |
| |
| rc = -EINVAL; |
| if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) { |
| EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num); |
| goto out; |
| } |
| if (struct_ver < 2) { |
| EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver); |
| goto out; |
| } else if (struct_ver < 4) { |
| word = &nvconfig->board_magic_num; |
| limit = (__le16 *) (nvconfig + 1); |
| } else { |
| word = region; |
| limit = region + FALCON_NVCONFIG_END; |
| } |
| for (csum = 0; word < limit; ++word) |
| csum += le16_to_cpu(*word); |
| |
| if (~csum & 0xffff) { |
| EFX_ERR(efx, "NVRAM has incorrect checksum\n"); |
| goto out; |
| } |
| |
| rc = 0; |
| if (nvconfig_out) |
| memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig)); |
| |
| out: |
| kfree(region); |
| return rc; |
| } |
| |
| static int falcon_test_nvram(struct efx_nic *efx) |
| { |
| return falcon_read_nvram(efx, NULL); |
| } |
| |
| static const struct efx_nic_register_test falcon_b0_register_tests[] = { |
| { FR_AZ_ADR_REGION, |
| EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) }, |
| { FR_AZ_RX_CFG, |
| EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) }, |
| { FR_AZ_TX_CFG, |
| EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_TX_RESERVED, |
| EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) }, |
| { FR_AB_MAC_CTRL, |
| EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_SRM_TX_DC_CFG, |
| EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_RX_DC_CFG, |
| EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_RX_DC_PF_WM, |
| EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_BZ_DP_CTRL, |
| EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_GM_CFG2, |
| EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_GMF_CFG0, |
| EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_GLB_CFG, |
| EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_TX_CFG, |
| EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_RX_CFG, |
| EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_RX_PARAM, |
| EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_FC, |
| EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_ADR_LO, |
| EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XX_SD_CTL, |
| EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) }, |
| }; |
| |
| static int falcon_b0_test_registers(struct efx_nic *efx) |
| { |
| return efx_nic_test_registers(efx, falcon_b0_register_tests, |
| ARRAY_SIZE(falcon_b0_register_tests)); |
| } |
| |
| /************************************************************************** |
| * |
| * Device reset |
| * |
| ************************************************************************** |
| */ |
| |
| /* Resets NIC to known state. This routine must be called in process |
| * context and is allowed to sleep. */ |
| static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t glb_ctl_reg_ker; |
| int rc; |
| |
| EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method)); |
| |
| /* Initiate device reset */ |
| if (method == RESET_TYPE_WORLD) { |
| rc = pci_save_state(efx->pci_dev); |
| if (rc) { |
| EFX_ERR(efx, "failed to backup PCI state of primary " |
| "function prior to hardware reset\n"); |
| goto fail1; |
| } |
| if (efx_nic_is_dual_func(efx)) { |
| rc = pci_save_state(nic_data->pci_dev2); |
| if (rc) { |
| EFX_ERR(efx, "failed to backup PCI state of " |
| "secondary function prior to " |
| "hardware reset\n"); |
| goto fail2; |
| } |
| } |
| |
| EFX_POPULATE_OWORD_2(glb_ctl_reg_ker, |
| FRF_AB_EXT_PHY_RST_DUR, |
| FFE_AB_EXT_PHY_RST_DUR_10240US, |
| FRF_AB_SWRST, 1); |
| } else { |
| EFX_POPULATE_OWORD_7(glb_ctl_reg_ker, |
| /* exclude PHY from "invisible" reset */ |
| FRF_AB_EXT_PHY_RST_CTL, |
| method == RESET_TYPE_INVISIBLE, |
| /* exclude EEPROM/flash and PCIe */ |
| FRF_AB_PCIE_CORE_RST_CTL, 1, |
| FRF_AB_PCIE_NSTKY_RST_CTL, 1, |
| FRF_AB_PCIE_SD_RST_CTL, 1, |
| FRF_AB_EE_RST_CTL, 1, |
| FRF_AB_EXT_PHY_RST_DUR, |
| FFE_AB_EXT_PHY_RST_DUR_10240US, |
| FRF_AB_SWRST, 1); |
| } |
| efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); |
| |
| EFX_LOG(efx, "waiting for hardware reset\n"); |
| schedule_timeout_uninterruptible(HZ / 20); |
| |
| /* Restore PCI configuration if needed */ |
| if (method == RESET_TYPE_WORLD) { |
| if (efx_nic_is_dual_func(efx)) { |
| rc = pci_restore_state(nic_data->pci_dev2); |
| if (rc) { |
| EFX_ERR(efx, "failed to restore PCI config for " |
| "the secondary function\n"); |
| goto fail3; |
| } |
| } |
| rc = pci_restore_state(efx->pci_dev); |
| if (rc) { |
| EFX_ERR(efx, "failed to restore PCI config for the " |
| "primary function\n"); |
| goto fail4; |
| } |
| EFX_LOG(efx, "successfully restored PCI config\n"); |
| } |
| |
| /* Assert that reset complete */ |
| efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); |
| if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) { |
| rc = -ETIMEDOUT; |
| EFX_ERR(efx, "timed out waiting for hardware reset\n"); |
| goto fail5; |
| } |
| EFX_LOG(efx, "hardware reset complete\n"); |
| |
| return 0; |
| |
| /* pci_save_state() and pci_restore_state() MUST be called in pairs */ |
| fail2: |
| fail3: |
| pci_restore_state(efx->pci_dev); |
| fail1: |
| fail4: |
| fail5: |
| return rc; |
| } |
| |
| static void falcon_monitor(struct efx_nic *efx) |
| { |
| bool link_changed; |
| int rc; |
| |
| BUG_ON(!mutex_is_locked(&efx->mac_lock)); |
| |
| rc = falcon_board(efx)->type->monitor(efx); |
| if (rc) { |
| EFX_ERR(efx, "Board sensor %s; shutting down PHY\n", |
| (rc == -ERANGE) ? "reported fault" : "failed"); |
| efx->phy_mode |= PHY_MODE_LOW_POWER; |
| rc = __efx_reconfigure_port(efx); |
| WARN_ON(rc); |
| } |
| |
| if (LOOPBACK_INTERNAL(efx)) |
| link_changed = falcon_loopback_link_poll(efx); |
| else |
| link_changed = efx->phy_op->poll(efx); |
| |
| if (link_changed) { |
| falcon_stop_nic_stats(efx); |
| falcon_deconfigure_mac_wrapper(efx); |
| |
| falcon_switch_mac(efx); |
| rc = efx->mac_op->reconfigure(efx); |
| BUG_ON(rc); |
| |
| falcon_start_nic_stats(efx); |
| |
| efx_link_status_changed(efx); |
| } |
| |
| if (EFX_IS10G(efx)) |
| falcon_poll_xmac(efx); |
| } |
| |
| /* Zeroes out the SRAM contents. This routine must be called in |
| * process context and is allowed to sleep. |
| */ |
| static int falcon_reset_sram(struct efx_nic *efx) |
| { |
| efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker; |
| int count; |
| |
| /* Set the SRAM wake/sleep GPIO appropriately. */ |
| efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); |
| EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1); |
| EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1); |
| efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); |
| |
| /* Initiate SRAM reset */ |
| EFX_POPULATE_OWORD_2(srm_cfg_reg_ker, |
| FRF_AZ_SRM_INIT_EN, 1, |
| FRF_AZ_SRM_NB_SZ, 0); |
| efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); |
| |
| /* Wait for SRAM reset to complete */ |
| count = 0; |
| do { |
| EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count); |
| |
| /* SRAM reset is slow; expect around 16ms */ |
| schedule_timeout_uninterruptible(HZ / 50); |
| |
| /* Check for reset complete */ |
| efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); |
| if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) { |
| EFX_LOG(efx, "SRAM reset complete\n"); |
| |
| return 0; |
| } |
| } while (++count < 20); /* wait upto 0.4 sec */ |
| |
| EFX_ERR(efx, "timed out waiting for SRAM reset\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static int falcon_spi_device_init(struct efx_nic *efx, |
| struct efx_spi_device **spi_device_ret, |
| unsigned int device_id, u32 device_type) |
| { |
| struct efx_spi_device *spi_device; |
| |
| if (device_type != 0) { |
| spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL); |
| if (!spi_device) |
| return -ENOMEM; |
| spi_device->device_id = device_id; |
| spi_device->size = |
| 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE); |
| spi_device->addr_len = |
| SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN); |
| spi_device->munge_address = (spi_device->size == 1 << 9 && |
| spi_device->addr_len == 1); |
| spi_device->erase_command = |
| SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD); |
| spi_device->erase_size = |
| 1 << SPI_DEV_TYPE_FIELD(device_type, |
| SPI_DEV_TYPE_ERASE_SIZE); |
| spi_device->block_size = |
| 1 << SPI_DEV_TYPE_FIELD(device_type, |
| SPI_DEV_TYPE_BLOCK_SIZE); |
| } else { |
| spi_device = NULL; |
| } |
| |
| kfree(*spi_device_ret); |
| *spi_device_ret = spi_device; |
| return 0; |
| } |
| |
| static void falcon_remove_spi_devices(struct efx_nic *efx) |
| { |
| kfree(efx->spi_eeprom); |
| efx->spi_eeprom = NULL; |
| kfree(efx->spi_flash); |
| efx->spi_flash = NULL; |
| } |
| |
| /* Extract non-volatile configuration */ |
| static int falcon_probe_nvconfig(struct efx_nic *efx) |
| { |
| struct falcon_nvconfig *nvconfig; |
| int board_rev; |
| int rc; |
| |
| nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL); |
| if (!nvconfig) |
| return -ENOMEM; |
| |
| rc = falcon_read_nvram(efx, nvconfig); |
| if (rc == -EINVAL) { |
| EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n"); |
| efx->phy_type = PHY_TYPE_NONE; |
| efx->mdio.prtad = MDIO_PRTAD_NONE; |
| board_rev = 0; |
| rc = 0; |
| } else if (rc) { |
| goto fail1; |
| } else { |
| struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2; |
| struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3; |
| |
| efx->phy_type = v2->port0_phy_type; |
| efx->mdio.prtad = v2->port0_phy_addr; |
| board_rev = le16_to_cpu(v2->board_revision); |
| |
| if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) { |
| rc = falcon_spi_device_init( |
| efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH, |
| le32_to_cpu(v3->spi_device_type |
| [FFE_AB_SPI_DEVICE_FLASH])); |
| if (rc) |
| goto fail2; |
| rc = falcon_spi_device_init( |
| efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM, |
| le32_to_cpu(v3->spi_device_type |
| [FFE_AB_SPI_DEVICE_EEPROM])); |
| if (rc) |
| goto fail2; |
| } |
| } |
| |
| /* Read the MAC addresses */ |
| memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN); |
| |
| EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad); |
| |
| falcon_probe_board(efx, board_rev); |
| |
| kfree(nvconfig); |
| return 0; |
| |
| fail2: |
| falcon_remove_spi_devices(efx); |
| fail1: |
| kfree(nvconfig); |
| return rc; |
| } |
| |
| /* Probe all SPI devices on the NIC */ |
| static void falcon_probe_spi_devices(struct efx_nic *efx) |
| { |
| efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg; |
| int boot_dev; |
| |
| efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL); |
| efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); |
| efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); |
| |
| if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) { |
| boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ? |
| FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM); |
| EFX_LOG(efx, "Booted from %s\n", |
| boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM"); |
| } else { |
| /* Disable VPD and set clock dividers to safe |
| * values for initial programming. */ |
| boot_dev = -1; |
| EFX_LOG(efx, "Booted from internal ASIC settings;" |
| " setting SPI config\n"); |
| EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0, |
| /* 125 MHz / 7 ~= 20 MHz */ |
| FRF_AB_EE_SF_CLOCK_DIV, 7, |
| /* 125 MHz / 63 ~= 2 MHz */ |
| FRF_AB_EE_EE_CLOCK_DIV, 63); |
| efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); |
| } |
| |
| if (boot_dev == FFE_AB_SPI_DEVICE_FLASH) |
| falcon_spi_device_init(efx, &efx->spi_flash, |
| FFE_AB_SPI_DEVICE_FLASH, |
| default_flash_type); |
| if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM) |
| falcon_spi_device_init(efx, &efx->spi_eeprom, |
| FFE_AB_SPI_DEVICE_EEPROM, |
| large_eeprom_type); |
| } |
| |
| static int falcon_probe_nic(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data; |
| struct falcon_board *board; |
| int rc; |
| |
| /* Allocate storage for hardware specific data */ |
| nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); |
| if (!nic_data) |
| return -ENOMEM; |
| efx->nic_data = nic_data; |
| |
| rc = -ENODEV; |
| |
| if (efx_nic_fpga_ver(efx) != 0) { |
| EFX_ERR(efx, "Falcon FPGA not supported\n"); |
| goto fail1; |
| } |
| |
| if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) { |
| efx_oword_t nic_stat; |
| struct pci_dev *dev; |
| u8 pci_rev = efx->pci_dev->revision; |
| |
| if ((pci_rev == 0xff) || (pci_rev == 0)) { |
| EFX_ERR(efx, "Falcon rev A0 not supported\n"); |
| goto fail1; |
| } |
| efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); |
| if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) { |
| EFX_ERR(efx, "Falcon rev A1 1G not supported\n"); |
| goto fail1; |
| } |
| if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) { |
| EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n"); |
| goto fail1; |
| } |
| |
| dev = pci_dev_get(efx->pci_dev); |
| while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID, |
| dev))) { |
| if (dev->bus == efx->pci_dev->bus && |
| dev->devfn == efx->pci_dev->devfn + 1) { |
| nic_data->pci_dev2 = dev; |
| break; |
| } |
| } |
| if (!nic_data->pci_dev2) { |
| EFX_ERR(efx, "failed to find secondary function\n"); |
| rc = -ENODEV; |
| goto fail2; |
| } |
| } |
| |
| /* Now we can reset the NIC */ |
| rc = falcon_reset_hw(efx, RESET_TYPE_ALL); |
| if (rc) { |
| EFX_ERR(efx, "failed to reset NIC\n"); |
| goto fail3; |
| } |
| |
| /* Allocate memory for INT_KER */ |
| rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t)); |
| if (rc) |
| goto fail4; |
| BUG_ON(efx->irq_status.dma_addr & 0x0f); |
| |
| EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n", |
| (u64)efx->irq_status.dma_addr, |
| efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr)); |
| |
| falcon_probe_spi_devices(efx); |
| |
| /* Read in the non-volatile configuration */ |
| rc = falcon_probe_nvconfig(efx); |
| if (rc) |
| goto fail5; |
| |
| /* Initialise I2C adapter */ |
| board = falcon_board(efx); |
| board->i2c_adap.owner = THIS_MODULE; |
| board->i2c_data = falcon_i2c_bit_operations; |
| board->i2c_data.data = efx; |
| board->i2c_adap.algo_data = &board->i2c_data; |
| board->i2c_adap.dev.parent = &efx->pci_dev->dev; |
| strlcpy(board->i2c_adap.name, "SFC4000 GPIO", |
| sizeof(board->i2c_adap.name)); |
| rc = i2c_bit_add_bus(&board->i2c_adap); |
| if (rc) |
| goto fail5; |
| |
| rc = falcon_board(efx)->type->init(efx); |
| if (rc) { |
| EFX_ERR(efx, "failed to initialise board\n"); |
| goto fail6; |
| } |
| |
| nic_data->stats_disable_count = 1; |
| setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func, |
| (unsigned long)efx); |
| |
| return 0; |
| |
| fail6: |
| BUG_ON(i2c_del_adapter(&board->i2c_adap)); |
| memset(&board->i2c_adap, 0, sizeof(board->i2c_adap)); |
| fail5: |
| falcon_remove_spi_devices(efx); |
| efx_nic_free_buffer(efx, &efx->irq_status); |
| fail4: |
| fail3: |
| if (nic_data->pci_dev2) { |
| pci_dev_put(nic_data->pci_dev2); |
| nic_data->pci_dev2 = NULL; |
| } |
| fail2: |
| fail1: |
| kfree(efx->nic_data); |
| return rc; |
| } |
| |
| static void falcon_init_rx_cfg(struct efx_nic *efx) |
| { |
| /* Prior to Siena the RX DMA engine will split each frame at |
| * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to |
| * be so large that that never happens. */ |
| const unsigned huge_buf_size = (3 * 4096) >> 5; |
| /* RX control FIFO thresholds (32 entries) */ |
| const unsigned ctrl_xon_thr = 20; |
| const unsigned ctrl_xoff_thr = 25; |
| /* RX data FIFO thresholds (256-byte units; size varies) */ |
| int data_xon_thr = efx_nic_rx_xon_thresh >> 8; |
| int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8; |
| efx_oword_t reg; |
| |
| efx_reado(efx, ®, FR_AZ_RX_CFG); |
| if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) { |
| /* Data FIFO size is 5.5K */ |
| if (data_xon_thr < 0) |
| data_xon_thr = 512 >> 8; |
| if (data_xoff_thr < 0) |
| data_xoff_thr = 2048 >> 8; |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0); |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE, |
| huge_buf_size); |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr); |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr); |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr); |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr); |
| } else { |
| /* Data FIFO size is 80K; register fields moved */ |
| if (data_xon_thr < 0) |
| data_xon_thr = 27648 >> 8; /* ~3*max MTU */ |
| if (data_xoff_thr < 0) |
| data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */ |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE, |
| huge_buf_size); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1); |
| } |
| /* Always enable XOFF signal from RX FIFO. We enable |
| * or disable transmission of pause frames at the MAC. */ |
| EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1); |
| efx_writeo(efx, ®, FR_AZ_RX_CFG); |
| } |
| |
| /* This call performs hardware-specific global initialisation, such as |
| * defining the descriptor cache sizes and number of RSS channels. |
| * It does not set up any buffers, descriptor rings or event queues. |
| */ |
| static int falcon_init_nic(struct efx_nic *efx) |
| { |
| efx_oword_t temp; |
| int rc; |
| |
| /* Use on-chip SRAM */ |
| efx_reado(efx, &temp, FR_AB_NIC_STAT); |
| EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1); |
| efx_writeo(efx, &temp, FR_AB_NIC_STAT); |
| |
| /* Set the source of the GMAC clock */ |
| if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) { |
| efx_reado(efx, &temp, FR_AB_GPIO_CTL); |
| EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true); |
| efx_writeo(efx, &temp, FR_AB_GPIO_CTL); |
| } |
| |
| /* Select the correct MAC */ |
| falcon_clock_mac(efx); |
| |
| rc = falcon_reset_sram(efx); |
| if (rc) |
| return rc; |
| |
| /* Clear the parity enables on the TX data fifos as |
| * they produce false parity errors because of timing issues |
| */ |
| if (EFX_WORKAROUND_5129(efx)) { |
| efx_reado(efx, &temp, FR_AZ_CSR_SPARE); |
| EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0); |
| efx_writeo(efx, &temp, FR_AZ_CSR_SPARE); |
| } |
| |
| if (EFX_WORKAROUND_7244(efx)) { |
| efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8); |
| efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL); |
| } |
| |
| /* XXX This is documented only for Falcon A0/A1 */ |
| /* Setup RX. Wait for descriptor is broken and must |
| * be disabled. RXDP recovery shouldn't be needed, but is. |
| */ |
| efx_reado(efx, &temp, FR_AA_RX_SELF_RST); |
| EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1); |
| if (EFX_WORKAROUND_5583(efx)) |
| EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1); |
| efx_writeo(efx, &temp, FR_AA_RX_SELF_RST); |
| |
| /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 |
| * descriptors (which is bad). |
| */ |
| efx_reado(efx, &temp, FR_AZ_TX_CFG); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0); |
| efx_writeo(efx, &temp, FR_AZ_TX_CFG); |
| |
| falcon_init_rx_cfg(efx); |
| |
| /* Set destination of both TX and RX Flush events */ |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0); |
| efx_writeo(efx, &temp, FR_BZ_DP_CTRL); |
| } |
| |
| efx_nic_init_common(efx); |
| |
| return 0; |
| } |
| |
| static void falcon_remove_nic(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| struct falcon_board *board = falcon_board(efx); |
| int rc; |
| |
| board->type->fini(efx); |
| |
| /* Remove I2C adapter and clear it in preparation for a retry */ |
| rc = i2c_del_adapter(&board->i2c_adap); |
| BUG_ON(rc); |
| memset(&board->i2c_adap, 0, sizeof(board->i2c_adap)); |
| |
| falcon_remove_spi_devices(efx); |
| efx_nic_free_buffer(efx, &efx->irq_status); |
| |
| falcon_reset_hw(efx, RESET_TYPE_ALL); |
| |
| /* Release the second function after the reset */ |
| if (nic_data->pci_dev2) { |
| pci_dev_put(nic_data->pci_dev2); |
| nic_data->pci_dev2 = NULL; |
| } |
| |
| /* Tear down the private nic state */ |
| kfree(efx->nic_data); |
| efx->nic_data = NULL; |
| } |
| |
| static void falcon_update_nic_stats(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t cnt; |
| |
| if (nic_data->stats_disable_count) |
| return; |
| |
| efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP); |
| efx->n_rx_nodesc_drop_cnt += |
| EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT); |
| |
| if (nic_data->stats_pending && |
| *nic_data->stats_dma_done == FALCON_STATS_DONE) { |
| nic_data->stats_pending = false; |
| rmb(); /* read the done flag before the stats */ |
| efx->mac_op->update_stats(efx); |
| } |
| } |
| |
| void falcon_start_nic_stats(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| |
| spin_lock_bh(&efx->stats_lock); |
| if (--nic_data->stats_disable_count == 0) |
| falcon_stats_request(efx); |
| spin_unlock_bh(&efx->stats_lock); |
| } |
| |
| void falcon_stop_nic_stats(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| int i; |
| |
| might_sleep(); |
| |
| spin_lock_bh(&efx->stats_lock); |
| ++nic_data->stats_disable_count; |
| spin_unlock_bh(&efx->stats_lock); |
| |
| del_timer_sync(&nic_data->stats_timer); |
| |
| /* Wait enough time for the most recent transfer to |
| * complete. */ |
| for (i = 0; i < 4 && nic_data->stats_pending; i++) { |
| if (*nic_data->stats_dma_done == FALCON_STATS_DONE) |
| break; |
| msleep(1); |
| } |
| |
| spin_lock_bh(&efx->stats_lock); |
| falcon_stats_complete(efx); |
| spin_unlock_bh(&efx->stats_lock); |
| } |
| |
| static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) |
| { |
| falcon_board(efx)->type->set_id_led(efx, mode); |
| } |
| |
| /************************************************************************** |
| * |
| * Wake on LAN |
| * |
| ************************************************************************** |
| */ |
| |
| static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) |
| { |
| wol->supported = 0; |
| wol->wolopts = 0; |
| memset(&wol->sopass, 0, sizeof(wol->sopass)); |
| } |
| |
| static int falcon_set_wol(struct efx_nic *efx, u32 type) |
| { |
| if (type != 0) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /************************************************************************** |
| * |
| * Revision-dependent attributes used by efx.c and nic.c |
| * |
| ************************************************************************** |
| */ |
| |
| struct efx_nic_type falcon_a1_nic_type = { |
| .probe = falcon_probe_nic, |
| .remove = falcon_remove_nic, |
| .init = falcon_init_nic, |
| .fini = efx_port_dummy_op_void, |
| .monitor = falcon_monitor, |
| .reset = falcon_reset_hw, |
| .probe_port = falcon_probe_port, |
| .remove_port = falcon_remove_port, |
| .prepare_flush = falcon_prepare_flush, |
| .update_stats = falcon_update_nic_stats, |
| .start_stats = falcon_start_nic_stats, |
| .stop_stats = falcon_stop_nic_stats, |
| .set_id_led = falcon_set_id_led, |
| .push_irq_moderation = falcon_push_irq_moderation, |
| .push_multicast_hash = falcon_push_multicast_hash, |
| .reconfigure_port = falcon_reconfigure_port, |
| .get_wol = falcon_get_wol, |
| .set_wol = falcon_set_wol, |
| .resume_wol = efx_port_dummy_op_void, |
| .test_nvram = falcon_test_nvram, |
| .default_mac_ops = &falcon_xmac_operations, |
| |
| .revision = EFX_REV_FALCON_A1, |
| .mem_map_size = 0x20000, |
| .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER, |
| .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER, |
| .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER, |
| .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER, |
| .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER, |
| .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), |
| .rx_buffer_padding = 0x24, |
| .max_interrupt_mode = EFX_INT_MODE_MSI, |
| .phys_addr_channels = 4, |
| .tx_dc_base = 0x130000, |
| .rx_dc_base = 0x100000, |
| .offload_features = NETIF_F_IP_CSUM, |
| .reset_world_flags = ETH_RESET_IRQ, |
| }; |
| |
| struct efx_nic_type falcon_b0_nic_type = { |
| .probe = falcon_probe_nic, |
| .remove = falcon_remove_nic, |
| .init = falcon_init_nic, |
| .fini = efx_port_dummy_op_void, |
| .monitor = falcon_monitor, |
| .reset = falcon_reset_hw, |
| .probe_port = falcon_probe_port, |
| .remove_port = falcon_remove_port, |
| .prepare_flush = falcon_prepare_flush, |
| .update_stats = falcon_update_nic_stats, |
| .start_stats = falcon_start_nic_stats, |
| .stop_stats = falcon_stop_nic_stats, |
| .set_id_led = falcon_set_id_led, |
| .push_irq_moderation = falcon_push_irq_moderation, |
| .push_multicast_hash = falcon_push_multicast_hash, |
| .reconfigure_port = falcon_reconfigure_port, |
| .get_wol = falcon_get_wol, |
| .set_wol = falcon_set_wol, |
| .resume_wol = efx_port_dummy_op_void, |
| .test_registers = falcon_b0_test_registers, |
| .test_nvram = falcon_test_nvram, |
| .default_mac_ops = &falcon_xmac_operations, |
| |
| .revision = EFX_REV_FALCON_B0, |
| /* Map everything up to and including the RSS indirection |
| * table. Don't map MSI-X table, MSI-X PBA since Linux |
| * requires that they not be mapped. */ |
| .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL + |
| FR_BZ_RX_INDIRECTION_TBL_STEP * |
| FR_BZ_RX_INDIRECTION_TBL_ROWS), |
| .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL, |
| .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL, |
| .buf_tbl_base = FR_BZ_BUF_FULL_TBL, |
| .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL, |
| .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR, |
| .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), |
| .rx_buffer_padding = 0, |
| .max_interrupt_mode = EFX_INT_MODE_MSIX, |
| .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy |
| * interrupt handler only supports 32 |
| * channels */ |
| .tx_dc_base = 0x130000, |
| .rx_dc_base = 0x100000, |
| .offload_features = NETIF_F_IP_CSUM, |
| .reset_world_flags = ETH_RESET_IRQ, |
| }; |
| |