blob: eda73ba735a6e388ed8d9f68d22668af84ead912 [file] [log] [blame]
/*
Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 generic device routines.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
/*
* Radio control handlers.
*/
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
int status;
/*
* Don't enable the radio twice.
* And check if the hardware button has been disabled.
*/
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return 0;
/*
* Initialize all data queues.
*/
rt2x00queue_init_queues(rt2x00dev);
/*
* Enable radio.
*/
status =
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
if (status)
return status;
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
rt2x00leds_led_radio(rt2x00dev, true);
rt2x00led_led_activity(rt2x00dev, true);
set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
/*
* Enable RX.
*/
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
/*
* Start the TX queues.
*/
ieee80211_wake_queues(rt2x00dev->hw);
return 0;
}
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Stop the TX queues in mac80211.
*/
ieee80211_stop_queues(rt2x00dev->hw);
rt2x00queue_stop_queues(rt2x00dev);
/*
* Disable RX.
*/
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
/*
* Disable radio.
*/
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
rt2x00led_led_activity(rt2x00dev, false);
rt2x00leds_led_radio(rt2x00dev, false);
}
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
/*
* When we are disabling the RX, we should also stop the link tuner.
*/
if (state == STATE_RADIO_RX_OFF)
rt2x00link_stop_tuner(rt2x00dev);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
/*
* When we are enabling the RX, we should also start the link tuner.
*/
if (state == STATE_RADIO_RX_ON)
rt2x00link_start_tuner(rt2x00dev);
}
static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = data;
struct rt2x00_intf *intf = vif_to_intf(vif);
int delayed_flags;
/*
* Copy all data we need during this action under the protection
* of a spinlock. Otherwise race conditions might occur which results
* into an invalid configuration.
*/
spin_lock(&intf->lock);
delayed_flags = intf->delayed_flags;
intf->delayed_flags = 0;
spin_unlock(&intf->lock);
/*
* It is possible the radio was disabled while the work had been
* scheduled. If that happens we should return here immediately,
* note that in the spinlock protected area above the delayed_flags
* have been cleared correctly.
*/
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
if (delayed_flags & DELAYED_UPDATE_BEACON)
rt2x00queue_update_beacon(rt2x00dev, vif, true);
}
static void rt2x00lib_intf_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, intf_work);
/*
* Iterate over each interface and perform the
* requested configurations.
*/
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
rt2x00lib_intf_scheduled_iter,
rt2x00dev);
}
/*
* Interrupt context handlers.
*/
static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_intf *intf = vif_to_intf(vif);
if (vif->type != NL80211_IFTYPE_AP &&
vif->type != NL80211_IFTYPE_ADHOC &&
vif->type != NL80211_IFTYPE_MESH_POINT &&
vif->type != NL80211_IFTYPE_WDS)
return;
spin_lock(&intf->lock);
intf->delayed_flags |= DELAYED_UPDATE_BEACON;
spin_unlock(&intf->lock);
}
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
rt2x00lib_beacondone_iter,
rt2x00dev);
ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
}
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
void rt2x00lib_txdone(struct queue_entry *entry,
struct txdone_entry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
u8 rate_idx, rate_flags, retry_rates;
u8 skbdesc_flags = skbdesc->flags;
unsigned int i;
bool success;
/*
* Unmap the skb.
*/
rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
/*
* Remove L2 padding which was added during
*/
if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
rt2x00queue_remove_l2pad(entry->skb, header_length);
/*
* If the IV/EIV data was stripped from the frame before it was
* passed to the hardware, we should now reinsert it again because
* mac80211 will expect the the same data to be present it the
* frame as it was passed to us.
*/
if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
rt2x00crypto_tx_insert_iv(entry->skb, header_length);
/*
* Send frame to debugfs immediately, after this call is completed
* we are going to overwrite the skb->cb array.
*/
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
/*
* Determine if the frame has been successfully transmitted.
*/
success =
test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
test_bit(TXDONE_UNKNOWN, &txdesc->flags) ||
test_bit(TXDONE_FALLBACK, &txdesc->flags);
/*
* Update TX statistics.
*/
rt2x00dev->link.qual.tx_success += success;
rt2x00dev->link.qual.tx_failed += !success;
rate_idx = skbdesc->tx_rate_idx;
rate_flags = skbdesc->tx_rate_flags;
retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
(txdesc->retry + 1) : 1;
/*
* Initialize TX status
*/
memset(&tx_info->status, 0, sizeof(tx_info->status));
tx_info->status.ack_signal = 0;
/*
* Frame was send with retries, hardware tried
* different rates to send out the frame, at each
* retry it lowered the rate 1 step.
*/
for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
tx_info->status.rates[i].idx = rate_idx - i;
tx_info->status.rates[i].flags = rate_flags;
tx_info->status.rates[i].count = 1;
}
if (i < (IEEE80211_TX_MAX_RATES - 1))
tx_info->status.rates[i].idx = -1; /* terminate */
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
if (success)
tx_info->flags |= IEEE80211_TX_STAT_ACK;
else
rt2x00dev->low_level_stats.dot11ACKFailureCount++;
}
if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
if (success)
rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
else
rt2x00dev->low_level_stats.dot11RTSFailureCount++;
}
/*
* Only send the status report to mac80211 when it's a frame
* that originated in mac80211. If this was a extra frame coming
* through a mac80211 library call (RTS/CTS) then we should not
* send the status report back.
*/
if (!(skbdesc_flags & SKBDESC_NOT_MAC80211))
ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
else
dev_kfree_skb_irq(entry->skb);
/*
* Make this entry available for reuse.
*/
entry->skb = NULL;
entry->flags = 0;
rt2x00dev->ops->lib->clear_entry(entry);
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
/*
* If the data queue was below the threshold before the txdone
* handler we must make sure the packet queue in the mac80211 stack
* is reenabled when the txdone handler has finished.
*/
if (!rt2x00queue_threshold(entry->queue))
ieee80211_wake_queue(rt2x00dev->hw, qid);
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
struct rxdone_entry_desc *rxdesc)
{
struct ieee80211_supported_band *sband;
const struct rt2x00_rate *rate;
unsigned int i;
int signal;
int type;
/*
* For non-HT rates the MCS value needs to contain the
* actually used rate modulation (CCK or OFDM).
*/
if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
else
signal = rxdesc->signal;
type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
sband = &rt2x00dev->bands[rt2x00dev->curr_band];
for (i = 0; i < sband->n_bitrates; i++) {
rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
if (((type == RXDONE_SIGNAL_PLCP) &&
(rate->plcp == signal)) ||
((type == RXDONE_SIGNAL_BITRATE) &&
(rate->bitrate == signal)) ||
((type == RXDONE_SIGNAL_MCS) &&
(rate->mcs == signal))) {
return i;
}
}
WARNING(rt2x00dev, "Frame received with unrecognized signal, "
"signal=0x%.4x, type=%d.\n", signal, type);
return 0;
}
void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
struct queue_entry *entry)
{
struct rxdone_entry_desc rxdesc;
struct sk_buff *skb;
struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
unsigned int header_length;
int rate_idx;
/*
* Allocate a new sk_buffer. If no new buffer available, drop the
* received frame and reuse the existing buffer.
*/
skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
if (!skb)
return;
/*
* Unmap the skb.
*/
rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
/*
* Extract the RXD details.
*/
memset(&rxdesc, 0, sizeof(rxdesc));
rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
/*
* The data behind the ieee80211 header must be
* aligned on a 4 byte boundary.
*/
header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
/*
* Hardware might have stripped the IV/EIV/ICV data,
* in that case it is possible that the data was
* provided separately (through hardware descriptor)
* in which case we should reinsert the data into the frame.
*/
if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
(rxdesc.flags & RX_FLAG_IV_STRIPPED))
rt2x00crypto_rx_insert_iv(entry->skb, header_length,
&rxdesc);
else if (header_length &&
(rxdesc.size > header_length) &&
(rxdesc.dev_flags & RXDONE_L2PAD))
rt2x00queue_remove_l2pad(entry->skb, header_length);
else
rt2x00queue_align_payload(entry->skb, header_length);
/* Trim buffer to correct size */
skb_trim(entry->skb, rxdesc.size);
/*
* Check if the frame was received using HT. In that case,
* the rate is the MCS index and should be passed to mac80211
* directly. Otherwise we need to translate the signal to
* the correct bitrate index.
*/
if (rxdesc.rate_mode == RATE_MODE_CCK ||
rxdesc.rate_mode == RATE_MODE_OFDM) {
rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
} else {
rxdesc.flags |= RX_FLAG_HT;
rate_idx = rxdesc.signal;
}
/*
* Update extra components
*/
rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
rx_status->mactime = rxdesc.timestamp;
rx_status->rate_idx = rate_idx;
rx_status->signal = rxdesc.rssi;
rx_status->noise = rxdesc.noise;
rx_status->flag = rxdesc.flags;
rx_status->antenna = rt2x00dev->link.ant.active.rx;
/*
* Send frame to mac80211 & debugfs.
* mac80211 will clean up the skb structure.
*/
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
/*
* Replace the skb with the freshly allocated one.
*/
entry->skb = skb;
entry->flags = 0;
rt2x00dev->ops->lib->clear_entry(entry);
rt2x00queue_index_inc(entry->queue, Q_INDEX);
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
/*
* Driver initialization handlers.
*/
const struct rt2x00_rate rt2x00_supported_rates[12] = {
{
.flags = DEV_RATE_CCK,
.bitrate = 10,
.ratemask = BIT(0),
.plcp = 0x00,
.mcs = RATE_MCS(RATE_MODE_CCK, 0),
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
.bitrate = 20,
.ratemask = BIT(1),
.plcp = 0x01,
.mcs = RATE_MCS(RATE_MODE_CCK, 1),
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
.bitrate = 55,
.ratemask = BIT(2),
.plcp = 0x02,
.mcs = RATE_MCS(RATE_MODE_CCK, 2),
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
.bitrate = 110,
.ratemask = BIT(3),
.plcp = 0x03,
.mcs = RATE_MCS(RATE_MODE_CCK, 3),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 60,
.ratemask = BIT(4),
.plcp = 0x0b,
.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 90,
.ratemask = BIT(5),
.plcp = 0x0f,
.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 120,
.ratemask = BIT(6),
.plcp = 0x0a,
.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 180,
.ratemask = BIT(7),
.plcp = 0x0e,
.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 240,
.ratemask = BIT(8),
.plcp = 0x09,
.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 360,
.ratemask = BIT(9),
.plcp = 0x0d,
.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 480,
.ratemask = BIT(10),
.plcp = 0x08,
.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 540,
.ratemask = BIT(11),
.plcp = 0x0c,
.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
},
};
static void rt2x00lib_channel(struct ieee80211_channel *entry,
const int channel, const int tx_power,
const int value)
{
entry->center_freq = ieee80211_channel_to_frequency(channel);
entry->hw_value = value;
entry->max_power = tx_power;
entry->max_antenna_gain = 0xff;
}
static void rt2x00lib_rate(struct ieee80211_rate *entry,
const u16 index, const struct rt2x00_rate *rate)
{
entry->flags = 0;
entry->bitrate = rate->bitrate;
entry->hw_value =index;
entry->hw_value_short = index;
if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
}
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
struct hw_mode_spec *spec)
{
struct ieee80211_hw *hw = rt2x00dev->hw;
struct ieee80211_channel *channels;
struct ieee80211_rate *rates;
unsigned int num_rates;
unsigned int i;
num_rates = 0;
if (spec->supported_rates & SUPPORT_RATE_CCK)
num_rates += 4;
if (spec->supported_rates & SUPPORT_RATE_OFDM)
num_rates += 8;
channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
if (!channels)
return -ENOMEM;
rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
if (!rates)
goto exit_free_channels;
/*
* Initialize Rate list.
*/
for (i = 0; i < num_rates; i++)
rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
/*
* Initialize Channel list.
*/
for (i = 0; i < spec->num_channels; i++) {
rt2x00lib_channel(&channels[i],
spec->channels[i].channel,
spec->channels_info[i].tx_power1, i);
}
/*
* Intitialize 802.11b, 802.11g
* Rates: CCK, OFDM.
* Channels: 2.4 GHz
*/
if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
&rt2x00dev->bands[IEEE80211_BAND_2GHZ];
memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
&spec->ht, sizeof(spec->ht));
}
/*
* Intitialize 802.11a
* Rates: OFDM.
* Channels: OFDM, UNII, HiperLAN2.
*/
if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
spec->num_channels - 14;
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
num_rates - 4;
rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&rt2x00dev->bands[IEEE80211_BAND_5GHZ];
memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
&spec->ht, sizeof(spec->ht));
}
return 0;
exit_free_channels:
kfree(channels);
ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
return -ENOMEM;
}
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
{
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
ieee80211_unregister_hw(rt2x00dev->hw);
if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
}
kfree(rt2x00dev->spec.channels_info);
}
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
int status;
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
return 0;
/*
* Initialize HW modes.
*/
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
if (status)
return status;
/*
* Initialize HW fields.
*/
rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
/*
* Initialize extra TX headroom required.
*/
rt2x00dev->hw->extra_tx_headroom =
max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
rt2x00dev->ops->extra_tx_headroom);
/*
* Take TX headroom required for alignment into account.
*/
if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
/*
* Register HW.
*/
status = ieee80211_register_hw(rt2x00dev->hw);
if (status)
return status;
set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
return 0;
}
/*
* Initialization/uninitialization handlers.
*/
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
{
if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
return;
/*
* Unregister extra components.
*/
rt2x00rfkill_unregister(rt2x00dev);
/*
* Allow the HW to uninitialize.
*/
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
/*
* Free allocated queue entries.
*/
rt2x00queue_uninitialize(rt2x00dev);
}
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
{
int status;
if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
return 0;
/*
* Allocate all queue entries.
*/
status = rt2x00queue_initialize(rt2x00dev);
if (status)
return status;
/*
* Initialize the device.
*/
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
if (status) {
rt2x00queue_uninitialize(rt2x00dev);
return status;
}
set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
/*
* Register the extra components.
*/
rt2x00rfkill_register(rt2x00dev);
return 0;
}
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
{
int retval;
if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
return 0;
/*
* If this is the first interface which is added,
* we should load the firmware now.
*/
retval = rt2x00lib_load_firmware(rt2x00dev);
if (retval)
return retval;
/*
* Initialize the device.
*/
retval = rt2x00lib_initialize(rt2x00dev);
if (retval)
return retval;
rt2x00dev->intf_ap_count = 0;
rt2x00dev->intf_sta_count = 0;
rt2x00dev->intf_associated = 0;
/* Enable the radio */
retval = rt2x00lib_enable_radio(rt2x00dev);
if (retval) {
rt2x00queue_uninitialize(rt2x00dev);
return retval;
}
set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
return 0;
}
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
{
if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
return;
/*
* Perhaps we can add something smarter here,
* but for now just disabling the radio should do.
*/
rt2x00lib_disable_radio(rt2x00dev);
rt2x00dev->intf_ap_count = 0;
rt2x00dev->intf_sta_count = 0;
rt2x00dev->intf_associated = 0;
}
/*
* driver allocation handlers.
*/
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
int retval = -ENOMEM;
mutex_init(&rt2x00dev->csr_mutex);
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
/*
* Make room for rt2x00_intf inside the per-interface
* structure ieee80211_vif.
*/
rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
/*
* Determine which operating modes are supported, all modes
* which require beaconing, depend on the availability of
* beacon entries.
*/
rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
if (rt2x00dev->ops->bcn->entry_num > 0)
rt2x00dev->hw->wiphy->interface_modes |=
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_MESH_POINT) |
BIT(NL80211_IFTYPE_WDS);
/*
* Let the driver probe the device to detect the capabilities.
*/
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to allocate device.\n");
goto exit;
}
/*
* Initialize configuration work.
*/
INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
/*
* Allocate queue array.
*/
retval = rt2x00queue_allocate(rt2x00dev);
if (retval)
goto exit;
/*
* Initialize ieee80211 structure.
*/
retval = rt2x00lib_probe_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to initialize hw.\n");
goto exit;
}
/*
* Register extra components.
*/
rt2x00link_register(rt2x00dev);
rt2x00leds_register(rt2x00dev);
rt2x00debug_register(rt2x00dev);
return 0;
exit:
rt2x00lib_remove_dev(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
/*
* Disable radio.
*/
rt2x00lib_disable_radio(rt2x00dev);
/*
* Stop all work.
*/
cancel_work_sync(&rt2x00dev->intf_work);
/*
* Uninitialize device.
*/
rt2x00lib_uninitialize(rt2x00dev);
/*
* Free extra components
*/
rt2x00debug_deregister(rt2x00dev);
rt2x00leds_unregister(rt2x00dev);
/*
* Free ieee80211_hw memory.
*/
rt2x00lib_remove_hw(rt2x00dev);
/*
* Free firmware image.
*/
rt2x00lib_free_firmware(rt2x00dev);
/*
* Free queue structures.
*/
rt2x00queue_free(rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
/*
* Device state handlers
*/
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
{
NOTICE(rt2x00dev, "Going to sleep.\n");
/*
* Prevent mac80211 from accessing driver while suspended.
*/
if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
return 0;
/*
* Cleanup as much as possible.
*/
rt2x00lib_uninitialize(rt2x00dev);
/*
* Suspend/disable extra components.
*/
rt2x00leds_suspend(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
/*
* Set device mode to sleep for power management,
* on some hardware this call seems to consistently fail.
* From the specifications it is hard to tell why it fails,
* and if this is a "bad thing".
* Overall it is safe to just ignore the failure and
* continue suspending. The only downside is that the
* device will not be in optimal power save mode, but with
* the radio and the other components already disabled the
* device is as good as disabled.
*/
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
WARNING(rt2x00dev, "Device failed to enter sleep state, "
"continue suspending.\n");
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
NOTICE(rt2x00dev, "Waking up.\n");
/*
* Restore/enable extra components.
*/
rt2x00debug_register(rt2x00dev);
rt2x00leds_resume(rt2x00dev);
/*
* We are ready again to receive requests from mac80211.
*/
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
#endif /* CONFIG_PM */
/*
* rt2x00lib module information.
*/
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");