blob: 92d646cc9edcfc2e773332ce71b722b6be46b3c0 [file] [log] [blame]
/*********************************************************************
*
* vlsi_ir.c: VLSI82C147 PCI IrDA controller driver for Linux
*
* Copyright (c) 2001-2003 Martin Diehl
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
********************************************************************/
#include <linux/module.h>
#define DRIVER_NAME "vlsi_ir"
#define DRIVER_VERSION "v0.5"
#define DRIVER_DESCRIPTION "IrDA SIR/MIR/FIR driver for VLSI 82C147"
#define DRIVER_AUTHOR "Martin Diehl <info@mdiehl.de>"
MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");
/********************************************************/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/time.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/smp_lock.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>
#include <net/irda/irda.h>
#include <net/irda/irda_device.h>
#include <net/irda/wrapper.h>
#include <net/irda/crc.h>
#include "vlsi_ir.h"
/********************************************************/
static /* const */ char drivername[] = DRIVER_NAME;
static struct pci_device_id vlsi_irda_table [] = {
{
.class = PCI_CLASS_WIRELESS_IRDA << 8,
.class_mask = PCI_CLASS_SUBCLASS_MASK << 8,
.vendor = PCI_VENDOR_ID_VLSI,
.device = PCI_DEVICE_ID_VLSI_82C147,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},
{ /* all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, vlsi_irda_table);
/********************************************************/
/* clksrc: which clock source to be used
* 0: auto - try PLL, fallback to 40MHz XCLK
* 1: on-chip 48MHz PLL
* 2: external 48MHz XCLK
* 3: external 40MHz XCLK (HP OB-800)
*/
static int clksrc = 0; /* default is 0(auto) */
module_param(clksrc, int, 0);
MODULE_PARM_DESC(clksrc, "clock input source selection");
/* ringsize: size of the tx and rx descriptor rings
* independent for tx and rx
* specify as ringsize=tx[,rx]
* allowed values: 4, 8, 16, 32, 64
* Due to the IrDA 1.x max. allowed window size=7,
* there should be no gain when using rings larger than 8
*/
static int ringsize[] = {8,8}; /* default is tx=8 / rx=8 */
module_param_array(ringsize, int, NULL, 0);
MODULE_PARM_DESC(ringsize, "TX, RX ring descriptor size");
/* sirpulse: tuning of the SIR pulse width within IrPHY 1.3 limits
* 0: very short, 1.5us (exception: 6us at 2.4 kbaud)
* 1: nominal 3/16 bittime width
* note: IrDA compliant peer devices should be happy regardless
* which one is used. Primary goal is to save some power
* on the sender's side - at 9.6kbaud for example the short
* pulse width saves more than 90% of the transmitted IR power.
*/
static int sirpulse = 1; /* default is 3/16 bittime */
module_param(sirpulse, int, 0);
MODULE_PARM_DESC(sirpulse, "SIR pulse width tuning");
/* qos_mtt_bits: encoded min-turn-time value we require the peer device
* to use before transmitting to us. "Type 1" (per-station)
* bitfield according to IrLAP definition (section 6.6.8)
* Don't know which transceiver is used by my OB800 - the
* pretty common HP HDLS-1100 requires 1 msec - so lets use this.
*/
static int qos_mtt_bits = 0x07; /* default is 1 ms or more */
module_param(qos_mtt_bits, int, 0);
MODULE_PARM_DESC(qos_mtt_bits, "IrLAP bitfield representing min-turn-time");
/********************************************************/
static void vlsi_reg_debug(unsigned iobase, const char *s)
{
int i;
printk(KERN_DEBUG "%s: ", s);
for (i = 0; i < 0x20; i++)
printk("%02x", (unsigned)inb((iobase+i)));
printk("\n");
}
static void vlsi_ring_debug(struct vlsi_ring *r)
{
struct ring_descr *rd;
unsigned i;
printk(KERN_DEBUG "%s - ring %p / size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
__FUNCTION__, r, r->size, r->mask, r->len, r->dir, r->rd[0].hw);
printk(KERN_DEBUG "%s - head = %d / tail = %d\n", __FUNCTION__,
atomic_read(&r->head) & r->mask, atomic_read(&r->tail) & r->mask);
for (i = 0; i < r->size; i++) {
rd = &r->rd[i];
printk(KERN_DEBUG "%s - ring descr %u: ", __FUNCTION__, i);
printk("skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
printk(KERN_DEBUG "%s - hw: status=%02x count=%u addr=0x%08x\n",
__FUNCTION__, (unsigned) rd_get_status(rd),
(unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
}
}
/********************************************************/
/* needed regardless of CONFIG_PROC_FS */
static struct proc_dir_entry *vlsi_proc_root = NULL;
#ifdef CONFIG_PROC_FS
static void vlsi_proc_pdev(struct seq_file *seq, struct pci_dev *pdev)
{
unsigned iobase = pci_resource_start(pdev, 0);
unsigned i;
seq_printf(seq, "\n%s (vid/did: %04x/%04x)\n",
PCIDEV_NAME(pdev), (int)pdev->vendor, (int)pdev->device);
seq_printf(seq, "pci-power-state: %u\n", (unsigned) pdev->current_state);
seq_printf(seq, "resources: irq=%u / io=0x%04x / dma_mask=0x%016Lx\n",
pdev->irq, (unsigned)pci_resource_start(pdev, 0), (unsigned long long)pdev->dma_mask);
seq_printf(seq, "hw registers: ");
for (i = 0; i < 0x20; i++)
seq_printf(seq, "%02x", (unsigned)inb((iobase+i)));
seq_printf(seq, "\n");
}
static void vlsi_proc_ndev(struct seq_file *seq, struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
u8 byte;
u16 word;
unsigned delta1, delta2;
struct timeval now;
unsigned iobase = ndev->base_addr;
seq_printf(seq, "\n%s link state: %s / %s / %s / %s\n", ndev->name,
netif_device_present(ndev) ? "attached" : "detached",
netif_running(ndev) ? "running" : "not running",
netif_carrier_ok(ndev) ? "carrier ok" : "no carrier",
netif_queue_stopped(ndev) ? "queue stopped" : "queue running");
if (!netif_running(ndev))
return;
seq_printf(seq, "\nhw-state:\n");
pci_read_config_byte(idev->pdev, VLSI_PCI_IRMISC, &byte);
seq_printf(seq, "IRMISC:%s%s%s uart%s",
(byte&IRMISC_IRRAIL) ? " irrail" : "",
(byte&IRMISC_IRPD) ? " irpd" : "",
(byte&IRMISC_UARTTST) ? " uarttest" : "",
(byte&IRMISC_UARTEN) ? "@" : " disabled\n");
if (byte&IRMISC_UARTEN) {
seq_printf(seq, "0x%s\n",
(byte&2) ? ((byte&1) ? "3e8" : "2e8")
: ((byte&1) ? "3f8" : "2f8"));
}
pci_read_config_byte(idev->pdev, VLSI_PCI_CLKCTL, &byte);
seq_printf(seq, "CLKCTL: PLL %s%s%s / clock %s / wakeup %s\n",
(byte&CLKCTL_PD_INV) ? "powered" : "down",
(byte&CLKCTL_LOCK) ? " locked" : "",
(byte&CLKCTL_EXTCLK) ? ((byte&CLKCTL_XCKSEL)?" / 40 MHz XCLK":" / 48 MHz XCLK") : "",
(byte&CLKCTL_CLKSTP) ? "stopped" : "running",
(byte&CLKCTL_WAKE) ? "enabled" : "disabled");
pci_read_config_byte(idev->pdev, VLSI_PCI_MSTRPAGE, &byte);
seq_printf(seq, "MSTRPAGE: 0x%02x\n", (unsigned)byte);
byte = inb(iobase+VLSI_PIO_IRINTR);
seq_printf(seq, "IRINTR:%s%s%s%s%s%s%s%s\n",
(byte&IRINTR_ACTEN) ? " ACTEN" : "",
(byte&IRINTR_RPKTEN) ? " RPKTEN" : "",
(byte&IRINTR_TPKTEN) ? " TPKTEN" : "",
(byte&IRINTR_OE_EN) ? " OE_EN" : "",
(byte&IRINTR_ACTIVITY) ? " ACTIVITY" : "",
(byte&IRINTR_RPKTINT) ? " RPKTINT" : "",
(byte&IRINTR_TPKTINT) ? " TPKTINT" : "",
(byte&IRINTR_OE_INT) ? " OE_INT" : "");
word = inw(iobase+VLSI_PIO_RINGPTR);
seq_printf(seq, "RINGPTR: rx=%u / tx=%u\n", RINGPTR_GET_RX(word), RINGPTR_GET_TX(word));
word = inw(iobase+VLSI_PIO_RINGBASE);
seq_printf(seq, "RINGBASE: busmap=0x%08x\n",
((unsigned)word << 10)|(MSTRPAGE_VALUE<<24));
word = inw(iobase+VLSI_PIO_RINGSIZE);
seq_printf(seq, "RINGSIZE: rx=%u / tx=%u\n", RINGSIZE_TO_RXSIZE(word),
RINGSIZE_TO_TXSIZE(word));
word = inw(iobase+VLSI_PIO_IRCFG);
seq_printf(seq, "IRCFG:%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
(word&IRCFG_LOOP) ? " LOOP" : "",
(word&IRCFG_ENTX) ? " ENTX" : "",
(word&IRCFG_ENRX) ? " ENRX" : "",
(word&IRCFG_MSTR) ? " MSTR" : "",
(word&IRCFG_RXANY) ? " RXANY" : "",
(word&IRCFG_CRC16) ? " CRC16" : "",
(word&IRCFG_FIR) ? " FIR" : "",
(word&IRCFG_MIR) ? " MIR" : "",
(word&IRCFG_SIR) ? " SIR" : "",
(word&IRCFG_SIRFILT) ? " SIRFILT" : "",
(word&IRCFG_SIRTEST) ? " SIRTEST" : "",
(word&IRCFG_TXPOL) ? " TXPOL" : "",
(word&IRCFG_RXPOL) ? " RXPOL" : "");
word = inw(iobase+VLSI_PIO_IRENABLE);
seq_printf(seq, "IRENABLE:%s%s%s%s%s%s%s%s\n",
(word&IRENABLE_PHYANDCLOCK) ? " PHYANDCLOCK" : "",
(word&IRENABLE_CFGER) ? " CFGERR" : "",
(word&IRENABLE_FIR_ON) ? " FIR_ON" : "",
(word&IRENABLE_MIR_ON) ? " MIR_ON" : "",
(word&IRENABLE_SIR_ON) ? " SIR_ON" : "",
(word&IRENABLE_ENTXST) ? " ENTXST" : "",
(word&IRENABLE_ENRXST) ? " ENRXST" : "",
(word&IRENABLE_CRC16_ON) ? " CRC16_ON" : "");
word = inw(iobase+VLSI_PIO_PHYCTL);
seq_printf(seq, "PHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
(unsigned)PHYCTL_TO_BAUD(word),
(unsigned)PHYCTL_TO_PLSWID(word),
(unsigned)PHYCTL_TO_PREAMB(word));
word = inw(iobase+VLSI_PIO_NPHYCTL);
seq_printf(seq, "NPHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
(unsigned)PHYCTL_TO_BAUD(word),
(unsigned)PHYCTL_TO_PLSWID(word),
(unsigned)PHYCTL_TO_PREAMB(word));
word = inw(iobase+VLSI_PIO_MAXPKT);
seq_printf(seq, "MAXPKT: max. rx packet size = %u\n", word);
word = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
seq_printf(seq, "RCVBCNT: rx-fifo filling level = %u\n", word);
seq_printf(seq, "\nsw-state:\n");
seq_printf(seq, "IrPHY setup: %d baud - %s encoding\n", idev->baud,
(idev->mode==IFF_SIR)?"SIR":((idev->mode==IFF_MIR)?"MIR":"FIR"));
do_gettimeofday(&now);
if (now.tv_usec >= idev->last_rx.tv_usec) {
delta2 = now.tv_usec - idev->last_rx.tv_usec;
delta1 = 0;
}
else {
delta2 = 1000000 + now.tv_usec - idev->last_rx.tv_usec;
delta1 = 1;
}
seq_printf(seq, "last rx: %lu.%06u sec\n",
now.tv_sec - idev->last_rx.tv_sec - delta1, delta2);
seq_printf(seq, "RX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu",
idev->stats.rx_packets, idev->stats.rx_bytes, idev->stats.rx_errors,
idev->stats.rx_dropped);
seq_printf(seq, " / overrun=%lu / length=%lu / frame=%lu / crc=%lu\n",
idev->stats.rx_over_errors, idev->stats.rx_length_errors,
idev->stats.rx_frame_errors, idev->stats.rx_crc_errors);
seq_printf(seq, "TX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu / fifo=%lu\n",
idev->stats.tx_packets, idev->stats.tx_bytes, idev->stats.tx_errors,
idev->stats.tx_dropped, idev->stats.tx_fifo_errors);
}
static void vlsi_proc_ring(struct seq_file *seq, struct vlsi_ring *r)
{
struct ring_descr *rd;
unsigned i, j;
int h, t;
seq_printf(seq, "size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
r->size, r->mask, r->len, r->dir, r->rd[0].hw);
h = atomic_read(&r->head) & r->mask;
t = atomic_read(&r->tail) & r->mask;
seq_printf(seq, "head = %d / tail = %d ", h, t);
if (h == t)
seq_printf(seq, "(empty)\n");
else {
if (((t+1)&r->mask) == h)
seq_printf(seq, "(full)\n");
else
seq_printf(seq, "(level = %d)\n", ((unsigned)(t-h) & r->mask));
rd = &r->rd[h];
j = (unsigned) rd_get_count(rd);
seq_printf(seq, "current: rd = %d / status = %02x / len = %u\n",
h, (unsigned)rd_get_status(rd), j);
if (j > 0) {
seq_printf(seq, " data:");
if (j > 20)
j = 20;
for (i = 0; i < j; i++)
seq_printf(seq, " %02x", (unsigned)((unsigned char *)rd->buf)[i]);
seq_printf(seq, "\n");
}
}
for (i = 0; i < r->size; i++) {
rd = &r->rd[i];
seq_printf(seq, "> ring descr %u: ", i);
seq_printf(seq, "skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
seq_printf(seq, " hw: status=%02x count=%u busaddr=0x%08x\n",
(unsigned) rd_get_status(rd),
(unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
}
}
static int vlsi_seq_show(struct seq_file *seq, void *v)
{
struct net_device *ndev = seq->private;
vlsi_irda_dev_t *idev = ndev->priv;
unsigned long flags;
seq_printf(seq, "\n%s %s\n\n", DRIVER_NAME, DRIVER_VERSION);
seq_printf(seq, "clksrc: %s\n",
(clksrc>=2) ? ((clksrc==3)?"40MHz XCLK":"48MHz XCLK")
: ((clksrc==1)?"48MHz PLL":"autodetect"));
seq_printf(seq, "ringsize: tx=%d / rx=%d\n",
ringsize[0], ringsize[1]);
seq_printf(seq, "sirpulse: %s\n", (sirpulse)?"3/16 bittime":"short");
seq_printf(seq, "qos_mtt_bits: 0x%02x\n", (unsigned)qos_mtt_bits);
spin_lock_irqsave(&idev->lock, flags);
if (idev->pdev != NULL) {
vlsi_proc_pdev(seq, idev->pdev);
if (idev->pdev->current_state == 0)
vlsi_proc_ndev(seq, ndev);
else
seq_printf(seq, "\nPCI controller down - resume_ok = %d\n",
idev->resume_ok);
if (netif_running(ndev) && idev->rx_ring && idev->tx_ring) {
seq_printf(seq, "\n--------- RX ring -----------\n\n");
vlsi_proc_ring(seq, idev->rx_ring);
seq_printf(seq, "\n--------- TX ring -----------\n\n");
vlsi_proc_ring(seq, idev->tx_ring);
}
}
seq_printf(seq, "\n");
spin_unlock_irqrestore(&idev->lock, flags);
return 0;
}
static int vlsi_seq_open(struct inode *inode, struct file *file)
{
return single_open(file, vlsi_seq_show, PDE(inode)->data);
}
static struct file_operations vlsi_proc_fops = {
.owner = THIS_MODULE,
.open = vlsi_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#define VLSI_PROC_FOPS (&vlsi_proc_fops)
#else /* CONFIG_PROC_FS */
#define VLSI_PROC_FOPS NULL
#endif
/********************************************************/
static struct vlsi_ring *vlsi_alloc_ring(struct pci_dev *pdev, struct ring_descr_hw *hwmap,
unsigned size, unsigned len, int dir)
{
struct vlsi_ring *r;
struct ring_descr *rd;
unsigned i, j;
dma_addr_t busaddr;
if (!size || ((size-1)&size)!=0) /* must be >0 and power of 2 */
return NULL;
r = kmalloc(sizeof(*r) + size * sizeof(struct ring_descr), GFP_KERNEL);
if (!r)
return NULL;
memset(r, 0, sizeof(*r));
r->pdev = pdev;
r->dir = dir;
r->len = len;
r->rd = (struct ring_descr *)(r+1);
r->mask = size - 1;
r->size = size;
atomic_set(&r->head, 0);
atomic_set(&r->tail, 0);
for (i = 0; i < size; i++) {
rd = r->rd + i;
memset(rd, 0, sizeof(*rd));
rd->hw = hwmap + i;
rd->buf = kmalloc(len, GFP_KERNEL|GFP_DMA);
if (rd->buf == NULL
|| !(busaddr = pci_map_single(pdev, rd->buf, len, dir))) {
if (rd->buf) {
IRDA_ERROR("%s: failed to create PCI-MAP for %p",
__FUNCTION__, rd->buf);
kfree(rd->buf);
rd->buf = NULL;
}
for (j = 0; j < i; j++) {
rd = r->rd + j;
busaddr = rd_get_addr(rd);
rd_set_addr_status(rd, 0, 0);
if (busaddr)
pci_unmap_single(pdev, busaddr, len, dir);
kfree(rd->buf);
rd->buf = NULL;
}
kfree(r);
return NULL;
}
rd_set_addr_status(rd, busaddr, 0);
/* initially, the dma buffer is owned by the CPU */
rd->skb = NULL;
}
return r;
}
static int vlsi_free_ring(struct vlsi_ring *r)
{
struct ring_descr *rd;
unsigned i;
dma_addr_t busaddr;
for (i = 0; i < r->size; i++) {
rd = r->rd + i;
if (rd->skb)
dev_kfree_skb_any(rd->skb);
busaddr = rd_get_addr(rd);
rd_set_addr_status(rd, 0, 0);
if (busaddr)
pci_unmap_single(r->pdev, busaddr, r->len, r->dir);
kfree(rd->buf);
}
kfree(r);
return 0;
}
static int vlsi_create_hwif(vlsi_irda_dev_t *idev)
{
char *ringarea;
struct ring_descr_hw *hwmap;
idev->virtaddr = NULL;
idev->busaddr = 0;
ringarea = pci_alloc_consistent(idev->pdev, HW_RING_AREA_SIZE, &idev->busaddr);
if (!ringarea) {
IRDA_ERROR("%s: insufficient memory for descriptor rings\n",
__FUNCTION__);
goto out;
}
memset(ringarea, 0, HW_RING_AREA_SIZE);
hwmap = (struct ring_descr_hw *)ringarea;
idev->rx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[1],
XFER_BUF_SIZE, PCI_DMA_FROMDEVICE);
if (idev->rx_ring == NULL)
goto out_unmap;
hwmap += MAX_RING_DESCR;
idev->tx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[0],
XFER_BUF_SIZE, PCI_DMA_TODEVICE);
if (idev->tx_ring == NULL)
goto out_free_rx;
idev->virtaddr = ringarea;
return 0;
out_free_rx:
vlsi_free_ring(idev->rx_ring);
out_unmap:
idev->rx_ring = idev->tx_ring = NULL;
pci_free_consistent(idev->pdev, HW_RING_AREA_SIZE, ringarea, idev->busaddr);
idev->busaddr = 0;
out:
return -ENOMEM;
}
static int vlsi_destroy_hwif(vlsi_irda_dev_t *idev)
{
vlsi_free_ring(idev->rx_ring);
vlsi_free_ring(idev->tx_ring);
idev->rx_ring = idev->tx_ring = NULL;
if (idev->busaddr)
pci_free_consistent(idev->pdev,HW_RING_AREA_SIZE,idev->virtaddr,idev->busaddr);
idev->virtaddr = NULL;
idev->busaddr = 0;
return 0;
}
/********************************************************/
static int vlsi_process_rx(struct vlsi_ring *r, struct ring_descr *rd)
{
u16 status;
int crclen, len = 0;
struct sk_buff *skb;
int ret = 0;
struct net_device *ndev = (struct net_device *)pci_get_drvdata(r->pdev);
vlsi_irda_dev_t *idev = ndev->priv;
pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
/* dma buffer now owned by the CPU */
status = rd_get_status(rd);
if (status & RD_RX_ERROR) {
if (status & RD_RX_OVER)
ret |= VLSI_RX_OVER;
if (status & RD_RX_LENGTH)
ret |= VLSI_RX_LENGTH;
if (status & RD_RX_PHYERR)
ret |= VLSI_RX_FRAME;
if (status & RD_RX_CRCERR)
ret |= VLSI_RX_CRC;
goto done;
}
len = rd_get_count(rd);
crclen = (idev->mode==IFF_FIR) ? sizeof(u32) : sizeof(u16);
len -= crclen; /* remove trailing CRC */
if (len <= 0) {
IRDA_DEBUG(0, "%s: strange frame (len=%d)\n", __FUNCTION__, len);
ret |= VLSI_RX_DROP;
goto done;
}
if (idev->mode == IFF_SIR) { /* hw checks CRC in MIR, FIR mode */
/* rd->buf is a streaming PCI_DMA_FROMDEVICE map. Doing the
* endian-adjustment there just in place will dirty a cache line
* which belongs to the map and thus we must be sure it will
* get flushed before giving the buffer back to hardware.
* vlsi_fill_rx() will do this anyway - but here we rely on.
*/
le16_to_cpus(rd->buf+len);
if (irda_calc_crc16(INIT_FCS,rd->buf,len+crclen) != GOOD_FCS) {
IRDA_DEBUG(0, "%s: crc error\n", __FUNCTION__);
ret |= VLSI_RX_CRC;
goto done;
}
}
if (!rd->skb) {
IRDA_WARNING("%s: rx packet lost\n", __FUNCTION__);
ret |= VLSI_RX_DROP;
goto done;
}
skb = rd->skb;
rd->skb = NULL;
skb->dev = ndev;
memcpy(skb_put(skb,len), rd->buf, len);
skb->mac.raw = skb->data;
if (in_interrupt())
netif_rx(skb);
else
netif_rx_ni(skb);
ndev->last_rx = jiffies;
done:
rd_set_status(rd, 0);
rd_set_count(rd, 0);
/* buffer still owned by CPU */
return (ret) ? -ret : len;
}
static void vlsi_fill_rx(struct vlsi_ring *r)
{
struct ring_descr *rd;
for (rd = ring_last(r); rd != NULL; rd = ring_put(r)) {
if (rd_is_active(rd)) {
IRDA_WARNING("%s: driver bug: rx descr race with hw\n",
__FUNCTION__);
vlsi_ring_debug(r);
break;
}
if (!rd->skb) {
rd->skb = dev_alloc_skb(IRLAP_SKB_ALLOCSIZE);
if (rd->skb) {
skb_reserve(rd->skb,1);
rd->skb->protocol = htons(ETH_P_IRDA);
}
else
break; /* probably not worth logging? */
}
/* give dma buffer back to busmaster */
pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
rd_activate(rd);
}
}
static void vlsi_rx_interrupt(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
struct vlsi_ring *r = idev->rx_ring;
struct ring_descr *rd;
int ret;
for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
if (rd_is_active(rd))
break;
ret = vlsi_process_rx(r, rd);
if (ret < 0) {
ret = -ret;
idev->stats.rx_errors++;
if (ret & VLSI_RX_DROP)
idev->stats.rx_dropped++;
if (ret & VLSI_RX_OVER)
idev->stats.rx_over_errors++;
if (ret & VLSI_RX_LENGTH)
idev->stats.rx_length_errors++;
if (ret & VLSI_RX_FRAME)
idev->stats.rx_frame_errors++;
if (ret & VLSI_RX_CRC)
idev->stats.rx_crc_errors++;
}
else if (ret > 0) {
idev->stats.rx_packets++;
idev->stats.rx_bytes += ret;
}
}
do_gettimeofday(&idev->last_rx); /* remember "now" for later mtt delay */
vlsi_fill_rx(r);
if (ring_first(r) == NULL) {
/* we are in big trouble, if this should ever happen */
IRDA_ERROR("%s: rx ring exhausted!\n", __FUNCTION__);
vlsi_ring_debug(r);
}
else
outw(0, ndev->base_addr+VLSI_PIO_PROMPT);
}
/* caller must have stopped the controller from busmastering */
static void vlsi_unarm_rx(vlsi_irda_dev_t *idev)
{
struct vlsi_ring *r = idev->rx_ring;
struct ring_descr *rd;
int ret;
for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
ret = 0;
if (rd_is_active(rd)) {
rd_set_status(rd, 0);
if (rd_get_count(rd)) {
IRDA_DEBUG(0, "%s - dropping rx packet\n", __FUNCTION__);
ret = -VLSI_RX_DROP;
}
rd_set_count(rd, 0);
pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
if (rd->skb) {
dev_kfree_skb_any(rd->skb);
rd->skb = NULL;
}
}
else
ret = vlsi_process_rx(r, rd);
if (ret < 0) {
ret = -ret;
idev->stats.rx_errors++;
if (ret & VLSI_RX_DROP)
idev->stats.rx_dropped++;
if (ret & VLSI_RX_OVER)
idev->stats.rx_over_errors++;
if (ret & VLSI_RX_LENGTH)
idev->stats.rx_length_errors++;
if (ret & VLSI_RX_FRAME)
idev->stats.rx_frame_errors++;
if (ret & VLSI_RX_CRC)
idev->stats.rx_crc_errors++;
}
else if (ret > 0) {
idev->stats.rx_packets++;
idev->stats.rx_bytes += ret;
}
}
}
/********************************************************/
static int vlsi_process_tx(struct vlsi_ring *r, struct ring_descr *rd)
{
u16 status;
int len;
int ret;
pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
/* dma buffer now owned by the CPU */
status = rd_get_status(rd);
if (status & RD_TX_UNDRN)
ret = VLSI_TX_FIFO;
else
ret = 0;
rd_set_status(rd, 0);
if (rd->skb) {
len = rd->skb->len;
dev_kfree_skb_any(rd->skb);
rd->skb = NULL;
}
else /* tx-skb already freed? - should never happen */
len = rd_get_count(rd); /* incorrect for SIR! (due to wrapping) */
rd_set_count(rd, 0);
/* dma buffer still owned by the CPU */
return (ret) ? -ret : len;
}
static int vlsi_set_baud(vlsi_irda_dev_t *idev, unsigned iobase)
{
u16 nphyctl;
u16 config;
unsigned mode;
int ret;
int baudrate;
int fifocnt;
baudrate = idev->new_baud;
IRDA_DEBUG(2, "%s: %d -> %d\n", __FUNCTION__, idev->baud, idev->new_baud);
if (baudrate == 4000000) {
mode = IFF_FIR;
config = IRCFG_FIR;
nphyctl = PHYCTL_FIR;
}
else if (baudrate == 1152000) {
mode = IFF_MIR;
config = IRCFG_MIR | IRCFG_CRC16;
nphyctl = PHYCTL_MIR(clksrc==3);
}
else {
mode = IFF_SIR;
config = IRCFG_SIR | IRCFG_SIRFILT | IRCFG_RXANY;
switch(baudrate) {
default:
IRDA_WARNING("%s: undefined baudrate %d - fallback to 9600!\n",
__FUNCTION__, baudrate);
baudrate = 9600;
/* fallthru */
case 2400:
case 9600:
case 19200:
case 38400:
case 57600:
case 115200:
nphyctl = PHYCTL_SIR(baudrate,sirpulse,clksrc==3);
break;
}
}
config |= IRCFG_MSTR | IRCFG_ENRX;
fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
if (fifocnt != 0) {
IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __FUNCTION__, fifocnt);
}
outw(0, iobase+VLSI_PIO_IRENABLE);
outw(config, iobase+VLSI_PIO_IRCFG);
outw(nphyctl, iobase+VLSI_PIO_NPHYCTL);
wmb();
outw(IRENABLE_PHYANDCLOCK, iobase+VLSI_PIO_IRENABLE);
mb();
udelay(1); /* chip applies IRCFG on next rising edge of its 8MHz clock */
/* read back settings for validation */
config = inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_MASK;
if (mode == IFF_FIR)
config ^= IRENABLE_FIR_ON;
else if (mode == IFF_MIR)
config ^= (IRENABLE_MIR_ON|IRENABLE_CRC16_ON);
else
config ^= IRENABLE_SIR_ON;
if (config != (IRENABLE_PHYANDCLOCK|IRENABLE_ENRXST)) {
IRDA_WARNING("%s: failed to set %s mode!\n", __FUNCTION__,
(mode==IFF_SIR)?"SIR":((mode==IFF_MIR)?"MIR":"FIR"));
ret = -1;
}
else {
if (inw(iobase+VLSI_PIO_PHYCTL) != nphyctl) {
IRDA_WARNING("%s: failed to apply baudrate %d\n",
__FUNCTION__, baudrate);
ret = -1;
}
else {
idev->mode = mode;
idev->baud = baudrate;
idev->new_baud = 0;
ret = 0;
}
}
if (ret)
vlsi_reg_debug(iobase,__FUNCTION__);
return ret;
}
static int vlsi_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
struct vlsi_ring *r = idev->tx_ring;
struct ring_descr *rd;
unsigned long flags;
unsigned iobase = ndev->base_addr;
u8 status;
u16 config;
int mtt;
int len, speed;
struct timeval now, ready;
char *msg = NULL;
speed = irda_get_next_speed(skb);
spin_lock_irqsave(&idev->lock, flags);
if (speed != -1 && speed != idev->baud) {
netif_stop_queue(ndev);
idev->new_baud = speed;
status = RD_TX_CLRENTX; /* stop tx-ring after this frame */
}
else
status = 0;
if (skb->len == 0) {
/* handle zero packets - should be speed change */
if (status == 0) {
msg = "bogus zero-length packet";
goto drop_unlock;
}
/* due to the completely asynch tx operation we might have
* IrLAP racing with the hardware here, f.e. if the controller
* is just sending the last packet with current speed while
* the LAP is already switching the speed using synchronous
* len=0 packet. Immediate execution would lead to hw lockup
* requiring a powercycle to reset. Good candidate to trigger
* this is the final UA:RSP packet after receiving a DISC:CMD
* when getting the LAP down.
* Note that we are not protected by the queue_stop approach
* because the final UA:RSP arrives _without_ request to apply
* new-speed-after-this-packet - hence the driver doesn't know
* this was the last packet and doesn't stop the queue. So the
* forced switch to default speed from LAP gets through as fast
* as only some 10 usec later while the UA:RSP is still processed
* by the hardware and we would get screwed.
*/
if (ring_first(idev->tx_ring) == NULL) {
/* no race - tx-ring already empty */
vlsi_set_baud(idev, iobase);
netif_wake_queue(ndev);
}
else
;
/* keep the speed change pending like it would
* for any len>0 packet. tx completion interrupt
* will apply it when the tx ring becomes empty.
*/
spin_unlock_irqrestore(&idev->lock, flags);
dev_kfree_skb_any(skb);
return 0;
}
/* sanity checks - simply drop the packet */
rd = ring_last(r);
if (!rd) {
msg = "ring full, but queue wasn't stopped";
goto drop_unlock;
}
if (rd_is_active(rd)) {
msg = "entry still owned by hw";
goto drop_unlock;
}
if (!rd->buf) {
msg = "tx ring entry without pci buffer";
goto drop_unlock;
}
if (rd->skb) {
msg = "ring entry with old skb still attached";
goto drop_unlock;
}
/* no need for serialization or interrupt disable during mtt */
spin_unlock_irqrestore(&idev->lock, flags);
if ((mtt = irda_get_mtt(skb)) > 0) {
ready.tv_usec = idev->last_rx.tv_usec + mtt;
ready.tv_sec = idev->last_rx.tv_sec;
if (ready.tv_usec >= 1000000) {
ready.tv_usec -= 1000000;
ready.tv_sec++; /* IrLAP 1.1: mtt always < 1 sec */
}
for(;;) {
do_gettimeofday(&now);
if (now.tv_sec > ready.tv_sec
|| (now.tv_sec==ready.tv_sec && now.tv_usec>=ready.tv_usec))
break;
udelay(100);
/* must not sleep here - called under netif_tx_lock! */
}
}
/* tx buffer already owned by CPU due to pci_dma_sync_single_for_cpu()
* after subsequent tx-completion
*/
if (idev->mode == IFF_SIR) {
status |= RD_TX_DISCRC; /* no hw-crc creation */
len = async_wrap_skb(skb, rd->buf, r->len);
/* Some rare worst case situation in SIR mode might lead to
* potential buffer overflow. The wrapper detects this, returns
* with a shortened frame (without FCS/EOF) but doesn't provide
* any error indication about the invalid packet which we are
* going to transmit.
* Therefore we log if the buffer got filled to the point, where the
* wrapper would abort, i.e. when there are less than 5 bytes left to
* allow appending the FCS/EOF.
*/
if (len >= r->len-5)
IRDA_WARNING("%s: possible buffer overflow with SIR wrapping!\n",
__FUNCTION__);
}
else {
/* hw deals with MIR/FIR mode wrapping */
status |= RD_TX_PULSE; /* send 2 us highspeed indication pulse */
len = skb->len;
if (len > r->len) {
msg = "frame exceeds tx buffer length";
goto drop;
}
else
memcpy(rd->buf, skb->data, len);
}
rd->skb = skb; /* remember skb for tx-complete stats */
rd_set_count(rd, len);
rd_set_status(rd, status); /* not yet active! */
/* give dma buffer back to busmaster-hw (flush caches to make
* CPU-driven changes visible from the pci bus).
*/
pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
/* Switching to TX mode here races with the controller
* which may stop TX at any time when fetching an inactive descriptor
* or one with CLR_ENTX set. So we switch on TX only, if TX was not running
* _after_ the new descriptor was activated on the ring. This ensures
* we will either find TX already stopped or we can be sure, there
* will be a TX-complete interrupt even if the chip stopped doing
* TX just after we found it still running. The ISR will then find
* the non-empty ring and restart TX processing. The enclosing
* spinlock provides the correct serialization to prevent race with isr.
*/
spin_lock_irqsave(&idev->lock,flags);
rd_activate(rd);
if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
int fifocnt;
fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
if (fifocnt != 0) {
IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __FUNCTION__, fifocnt);
}
config = inw(iobase+VLSI_PIO_IRCFG);
mb();
outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
wmb();
outw(0, iobase+VLSI_PIO_PROMPT);
}
ndev->trans_start = jiffies;
if (ring_put(r) == NULL) {
netif_stop_queue(ndev);
IRDA_DEBUG(3, "%s: tx ring full - queue stopped\n", __FUNCTION__);
}
spin_unlock_irqrestore(&idev->lock, flags);
return 0;
drop_unlock:
spin_unlock_irqrestore(&idev->lock, flags);
drop:
IRDA_WARNING("%s: dropping packet - %s\n", __FUNCTION__, msg);
dev_kfree_skb_any(skb);
idev->stats.tx_errors++;
idev->stats.tx_dropped++;
/* Don't even think about returning NET_XMIT_DROP (=1) here!
* In fact any retval!=0 causes the packet scheduler to requeue the
* packet for later retry of transmission - which isn't exactly
* what we want after we've just called dev_kfree_skb_any ;-)
*/
return 0;
}
static void vlsi_tx_interrupt(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
struct vlsi_ring *r = idev->tx_ring;
struct ring_descr *rd;
unsigned iobase;
int ret;
u16 config;
for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
if (rd_is_active(rd))
break;
ret = vlsi_process_tx(r, rd);
if (ret < 0) {
ret = -ret;
idev->stats.tx_errors++;
if (ret & VLSI_TX_DROP)
idev->stats.tx_dropped++;
if (ret & VLSI_TX_FIFO)
idev->stats.tx_fifo_errors++;
}
else if (ret > 0){
idev->stats.tx_packets++;
idev->stats.tx_bytes += ret;
}
}
iobase = ndev->base_addr;
if (idev->new_baud && rd == NULL) /* tx ring empty and speed change pending */
vlsi_set_baud(idev, iobase);
config = inw(iobase+VLSI_PIO_IRCFG);
if (rd == NULL) /* tx ring empty: re-enable rx */
outw((config & ~IRCFG_ENTX) | IRCFG_ENRX, iobase+VLSI_PIO_IRCFG);
else if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
int fifocnt;
fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
if (fifocnt != 0) {
IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n",
__FUNCTION__, fifocnt);
}
outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
}
outw(0, iobase+VLSI_PIO_PROMPT);
if (netif_queue_stopped(ndev) && !idev->new_baud) {
netif_wake_queue(ndev);
IRDA_DEBUG(3, "%s: queue awoken\n", __FUNCTION__);
}
}
/* caller must have stopped the controller from busmastering */
static void vlsi_unarm_tx(vlsi_irda_dev_t *idev)
{
struct vlsi_ring *r = idev->tx_ring;
struct ring_descr *rd;
int ret;
for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
ret = 0;
if (rd_is_active(rd)) {
rd_set_status(rd, 0);
rd_set_count(rd, 0);
pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
if (rd->skb) {
dev_kfree_skb_any(rd->skb);
rd->skb = NULL;
}
IRDA_DEBUG(0, "%s - dropping tx packet\n", __FUNCTION__);
ret = -VLSI_TX_DROP;
}
else
ret = vlsi_process_tx(r, rd);
if (ret < 0) {
ret = -ret;
idev->stats.tx_errors++;
if (ret & VLSI_TX_DROP)
idev->stats.tx_dropped++;
if (ret & VLSI_TX_FIFO)
idev->stats.tx_fifo_errors++;
}
else if (ret > 0){
idev->stats.tx_packets++;
idev->stats.tx_bytes += ret;
}
}
}
/********************************************************/
static int vlsi_start_clock(struct pci_dev *pdev)
{
u8 clkctl, lock;
int i, count;
if (clksrc < 2) { /* auto or PLL: try PLL */
clkctl = CLKCTL_PD_INV | CLKCTL_CLKSTP;
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
/* procedure to detect PLL lock synchronisation:
* after 0.5 msec initial delay we expect to find 3 PLL lock
* indications within 10 msec for successful PLL detection.
*/
udelay(500);
count = 0;
for (i = 500; i <= 10000; i += 50) { /* max 10 msec */
pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &lock);
if (lock&CLKCTL_LOCK) {
if (++count >= 3)
break;
}
udelay(50);
}
if (count < 3) {
if (clksrc == 1) { /* explicitly asked for PLL hence bail out */
IRDA_ERROR("%s: no PLL or failed to lock!\n",
__FUNCTION__);
clkctl = CLKCTL_CLKSTP;
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
return -1;
}
else /* was: clksrc=0(auto) */
clksrc = 3; /* fallback to 40MHz XCLK (OB800) */
IRDA_DEBUG(0, "%s: PLL not locked, fallback to clksrc=%d\n",
__FUNCTION__, clksrc);
}
else
clksrc = 1; /* got successful PLL lock */
}
if (clksrc != 1) {
/* we get here if either no PLL detected in auto-mode or
an external clock source was explicitly specified */
clkctl = CLKCTL_EXTCLK | CLKCTL_CLKSTP;
if (clksrc == 3)
clkctl |= CLKCTL_XCKSEL;
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
/* no way to test for working XCLK */
}
else
pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
/* ok, now going to connect the chip with the clock source */
clkctl &= ~CLKCTL_CLKSTP;
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
return 0;
}
static void vlsi_stop_clock(struct pci_dev *pdev)
{
u8 clkctl;
/* disconnect chip from clock source */
pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
clkctl |= CLKCTL_CLKSTP;
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
/* disable all clock sources */
clkctl &= ~(CLKCTL_EXTCLK | CLKCTL_PD_INV);
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
}
/********************************************************/
/* writing all-zero to the VLSI PCI IO register area seems to prevent
* some occasional situations where the hardware fails (symptoms are
* what appears as stalled tx/rx state machines, i.e. everything ok for
* receive or transmit but hw makes no progress or is unable to access
* the bus memory locations).
* Best place to call this is immediately after/before the internal clock
* gets started/stopped.
*/
static inline void vlsi_clear_regs(unsigned iobase)
{
unsigned i;
const unsigned chip_io_extent = 32;
for (i = 0; i < chip_io_extent; i += sizeof(u16))
outw(0, iobase + i);
}
static int vlsi_init_chip(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
vlsi_irda_dev_t *idev = ndev->priv;
unsigned iobase;
u16 ptr;
/* start the clock and clean the registers */
if (vlsi_start_clock(pdev)) {
IRDA_ERROR("%s: no valid clock source\n", __FUNCTION__);
return -1;
}
iobase = ndev->base_addr;
vlsi_clear_regs(iobase);
outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* w/c pending IRQ, disable all INT */
outw(0, iobase+VLSI_PIO_IRENABLE); /* disable IrPHY-interface */
/* disable everything, particularly IRCFG_MSTR - (also resetting the RING_PTR) */
outw(0, iobase+VLSI_PIO_IRCFG);
wmb();
outw(MAX_PACKET_LENGTH, iobase+VLSI_PIO_MAXPKT); /* max possible value=0x0fff */
outw(BUS_TO_RINGBASE(idev->busaddr), iobase+VLSI_PIO_RINGBASE);
outw(TX_RX_TO_RINGSIZE(idev->tx_ring->size, idev->rx_ring->size),
iobase+VLSI_PIO_RINGSIZE);
ptr = inw(iobase+VLSI_PIO_RINGPTR);
atomic_set(&idev->rx_ring->head, RINGPTR_GET_RX(ptr));
atomic_set(&idev->rx_ring->tail, RINGPTR_GET_RX(ptr));
atomic_set(&idev->tx_ring->head, RINGPTR_GET_TX(ptr));
atomic_set(&idev->tx_ring->tail, RINGPTR_GET_TX(ptr));
vlsi_set_baud(idev, iobase); /* idev->new_baud used as provided by caller */
outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* just in case - w/c pending IRQ's */
wmb();
/* DO NOT BLINDLY ENABLE IRINTR_ACTEN!
* basically every received pulse fires an ACTIVITY-INT
* leading to >>1000 INT's per second instead of few 10
*/
outb(IRINTR_RPKTEN|IRINTR_TPKTEN, iobase+VLSI_PIO_IRINTR);
return 0;
}
static int vlsi_start_hw(vlsi_irda_dev_t *idev)
{
struct pci_dev *pdev = idev->pdev;
struct net_device *ndev = pci_get_drvdata(pdev);
unsigned iobase = ndev->base_addr;
u8 byte;
/* we don't use the legacy UART, disable its address decoding */
pci_read_config_byte(pdev, VLSI_PCI_IRMISC, &byte);
byte &= ~(IRMISC_UARTEN | IRMISC_UARTTST);
pci_write_config_byte(pdev, VLSI_PCI_IRMISC, byte);
/* enable PCI busmaster access to our 16MB page */
pci_write_config_byte(pdev, VLSI_PCI_MSTRPAGE, MSTRPAGE_VALUE);
pci_set_master(pdev);
if (vlsi_init_chip(pdev) < 0) {
pci_disable_device(pdev);
return -1;
}
vlsi_fill_rx(idev->rx_ring);
do_gettimeofday(&idev->last_rx); /* first mtt may start from now on */
outw(0, iobase+VLSI_PIO_PROMPT); /* kick hw state machine */
return 0;
}
static int vlsi_stop_hw(vlsi_irda_dev_t *idev)
{
struct pci_dev *pdev = idev->pdev;
struct net_device *ndev = pci_get_drvdata(pdev);
unsigned iobase = ndev->base_addr;
unsigned long flags;
spin_lock_irqsave(&idev->lock,flags);
outw(0, iobase+VLSI_PIO_IRENABLE);
outw(0, iobase+VLSI_PIO_IRCFG); /* disable everything */
/* disable and w/c irqs */
outb(0, iobase+VLSI_PIO_IRINTR);
wmb();
outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR);
spin_unlock_irqrestore(&idev->lock,flags);
vlsi_unarm_tx(idev);
vlsi_unarm_rx(idev);
vlsi_clear_regs(iobase);
vlsi_stop_clock(pdev);
pci_disable_device(pdev);
return 0;
}
/**************************************************************/
static struct net_device_stats * vlsi_get_stats(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
return &idev->stats;
}
static void vlsi_tx_timeout(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
vlsi_reg_debug(ndev->base_addr, __FUNCTION__);
vlsi_ring_debug(idev->tx_ring);
if (netif_running(ndev))
netif_stop_queue(ndev);
vlsi_stop_hw(idev);
/* now simply restart the whole thing */
if (!idev->new_baud)
idev->new_baud = idev->baud; /* keep current baudrate */
if (vlsi_start_hw(idev))
IRDA_ERROR("%s: failed to restart hw - %s(%s) unusable!\n",
__FUNCTION__, PCIDEV_NAME(idev->pdev), ndev->name);
else
netif_start_queue(ndev);
}
static int vlsi_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
{
vlsi_irda_dev_t *idev = ndev->priv;
struct if_irda_req *irq = (struct if_irda_req *) rq;
unsigned long flags;
u16 fifocnt;
int ret = 0;
switch (cmd) {
case SIOCSBANDWIDTH:
if (!capable(CAP_NET_ADMIN)) {
ret = -EPERM;
break;
}
spin_lock_irqsave(&idev->lock, flags);
idev->new_baud = irq->ifr_baudrate;
/* when called from userland there might be a minor race window here
* if the stack tries to change speed concurrently - which would be
* pretty strange anyway with the userland having full control...
*/
vlsi_set_baud(idev, ndev->base_addr);
spin_unlock_irqrestore(&idev->lock, flags);
break;
case SIOCSMEDIABUSY:
if (!capable(CAP_NET_ADMIN)) {
ret = -EPERM;
break;
}
irda_device_set_media_busy(ndev, TRUE);
break;
case SIOCGRECEIVING:
/* the best we can do: check whether there are any bytes in rx fifo.
* The trustable window (in case some data arrives just afterwards)
* may be as short as 1usec or so at 4Mbps.
*/
fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
irq->ifr_receiving = (fifocnt!=0) ? 1 : 0;
break;
default:
IRDA_WARNING("%s: notsupp - cmd=%04x\n",
__FUNCTION__, cmd);
ret = -EOPNOTSUPP;
}
return ret;
}
/********************************************************/
static irqreturn_t vlsi_interrupt(int irq, void *dev_instance,
struct pt_regs *regs)
{
struct net_device *ndev = dev_instance;
vlsi_irda_dev_t *idev = ndev->priv;
unsigned iobase;
u8 irintr;
int boguscount = 5;
unsigned long flags;
int handled = 0;
iobase = ndev->base_addr;
spin_lock_irqsave(&idev->lock,flags);
do {
irintr = inb(iobase+VLSI_PIO_IRINTR);
mb();
outb(irintr, iobase+VLSI_PIO_IRINTR); /* acknowledge asap */
if (!(irintr&=IRINTR_INT_MASK)) /* not our INT - probably shared */
break;
handled = 1;
if (unlikely(!(irintr & ~IRINTR_ACTIVITY)))
break; /* nothing todo if only activity */
if (irintr&IRINTR_RPKTINT)
vlsi_rx_interrupt(ndev);
if (irintr&IRINTR_TPKTINT)
vlsi_tx_interrupt(ndev);
} while (--boguscount > 0);
spin_unlock_irqrestore(&idev->lock,flags);
if (boguscount <= 0)
IRDA_MESSAGE("%s: too much work in interrupt!\n",
__FUNCTION__);
return IRQ_RETVAL(handled);
}
/********************************************************/
static int vlsi_open(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
int err = -EAGAIN;
char hwname[32];
if (pci_request_regions(idev->pdev, drivername)) {
IRDA_WARNING("%s: io resource busy\n", __FUNCTION__);
goto errout;
}
ndev->base_addr = pci_resource_start(idev->pdev,0);
ndev->irq = idev->pdev->irq;
/* under some rare occasions the chip apparently comes up with
* IRQ's pending. We better w/c pending IRQ and disable them all
*/
outb(IRINTR_INT_MASK, ndev->base_addr+VLSI_PIO_IRINTR);
if (request_irq(ndev->irq, vlsi_interrupt, IRQF_SHARED,
drivername, ndev)) {
IRDA_WARNING("%s: couldn't get IRQ: %d\n",
__FUNCTION__, ndev->irq);
goto errout_io;
}
if ((err = vlsi_create_hwif(idev)) != 0)
goto errout_irq;
sprintf(hwname, "VLSI-FIR @ 0x%04x", (unsigned)ndev->base_addr);
idev->irlap = irlap_open(ndev,&idev->qos,hwname);
if (!idev->irlap)
goto errout_free_ring;
do_gettimeofday(&idev->last_rx); /* first mtt may start from now on */
idev->new_baud = 9600; /* start with IrPHY using 9600(SIR) mode */
if ((err = vlsi_start_hw(idev)) != 0)
goto errout_close_irlap;
netif_start_queue(ndev);
IRDA_MESSAGE("%s: device %s operational\n", __FUNCTION__, ndev->name);
return 0;
errout_close_irlap:
irlap_close(idev->irlap);
errout_free_ring:
vlsi_destroy_hwif(idev);
errout_irq:
free_irq(ndev->irq,ndev);
errout_io:
pci_release_regions(idev->pdev);
errout:
return err;
}
static int vlsi_close(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
netif_stop_queue(ndev);
if (idev->irlap)
irlap_close(idev->irlap);
idev->irlap = NULL;
vlsi_stop_hw(idev);
vlsi_destroy_hwif(idev);
free_irq(ndev->irq,ndev);
pci_release_regions(idev->pdev);
IRDA_MESSAGE("%s: device %s stopped\n", __FUNCTION__, ndev->name);
return 0;
}
static int vlsi_irda_init(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
struct pci_dev *pdev = idev->pdev;
SET_MODULE_OWNER(ndev);
ndev->irq = pdev->irq;
ndev->base_addr = pci_resource_start(pdev,0);
/* PCI busmastering
* see include file for details why we need these 2 masks, in this order!
*/
if (pci_set_dma_mask(pdev,DMA_MASK_USED_BY_HW)
|| pci_set_dma_mask(pdev,DMA_MASK_MSTRPAGE)) {
IRDA_ERROR("%s: aborting due to PCI BM-DMA address limitations\n", __FUNCTION__);
return -1;
}
irda_init_max_qos_capabilies(&idev->qos);
/* the VLSI82C147 does not support 576000! */
idev->qos.baud_rate.bits = IR_2400 | IR_9600
| IR_19200 | IR_38400 | IR_57600 | IR_115200
| IR_1152000 | (IR_4000000 << 8);
idev->qos.min_turn_time.bits = qos_mtt_bits;
irda_qos_bits_to_value(&idev->qos);
/* currently no public media definitions for IrDA */
ndev->flags |= IFF_PORTSEL | IFF_AUTOMEDIA;
ndev->if_port = IF_PORT_UNKNOWN;
ndev->open = vlsi_open;
ndev->stop = vlsi_close;
ndev->get_stats = vlsi_get_stats;
ndev->hard_start_xmit = vlsi_hard_start_xmit;
ndev->do_ioctl = vlsi_ioctl;
ndev->tx_timeout = vlsi_tx_timeout;
ndev->watchdog_timeo = 500*HZ/1000; /* max. allowed turn time for IrLAP */
SET_NETDEV_DEV(ndev, &pdev->dev);
return 0;
}
/**************************************************************/
static int __devinit
vlsi_irda_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct net_device *ndev;
vlsi_irda_dev_t *idev;
if (pci_enable_device(pdev))
goto out;
else
pdev->current_state = 0; /* hw must be running now */
IRDA_MESSAGE("%s: IrDA PCI controller %s detected\n",
drivername, PCIDEV_NAME(pdev));
if ( !pci_resource_start(pdev,0)
|| !(pci_resource_flags(pdev,0) & IORESOURCE_IO) ) {
IRDA_ERROR("%s: bar 0 invalid", __FUNCTION__);
goto out_disable;
}
ndev = alloc_irdadev(sizeof(*idev));
if (ndev==NULL) {
IRDA_ERROR("%s: Unable to allocate device memory.\n",
__FUNCTION__);
goto out_disable;
}
idev = ndev->priv;
spin_lock_init(&idev->lock);
init_MUTEX(&idev->sem);
down(&idev->sem);
idev->pdev = pdev;
if (vlsi_irda_init(ndev) < 0)
goto out_freedev;
if (register_netdev(ndev) < 0) {
IRDA_ERROR("%s: register_netdev failed\n", __FUNCTION__);
goto out_freedev;
}
if (vlsi_proc_root != NULL) {
struct proc_dir_entry *ent;
ent = create_proc_entry(ndev->name, S_IFREG|S_IRUGO, vlsi_proc_root);
if (!ent) {
IRDA_WARNING("%s: failed to create proc entry\n",
__FUNCTION__);
} else {
ent->data = ndev;
ent->proc_fops = VLSI_PROC_FOPS;
ent->size = 0;
}
idev->proc_entry = ent;
}
IRDA_MESSAGE("%s: registered device %s\n", drivername, ndev->name);
pci_set_drvdata(pdev, ndev);
up(&idev->sem);
return 0;
out_freedev:
up(&idev->sem);
free_netdev(ndev);
out_disable:
pci_disable_device(pdev);
out:
pci_set_drvdata(pdev, NULL);
return -ENODEV;
}
static void __devexit vlsi_irda_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
vlsi_irda_dev_t *idev;
if (!ndev) {
IRDA_ERROR("%s: lost netdevice?\n", drivername);
return;
}
unregister_netdev(ndev);
idev = ndev->priv;
down(&idev->sem);
if (idev->proc_entry) {
remove_proc_entry(ndev->name, vlsi_proc_root);
idev->proc_entry = NULL;
}
up(&idev->sem);
free_netdev(ndev);
pci_set_drvdata(pdev, NULL);
IRDA_MESSAGE("%s: %s removed\n", drivername, PCIDEV_NAME(pdev));
}
#ifdef CONFIG_PM
/* The Controller doesn't provide PCI PM capabilities as defined by PCI specs.
* Some of the Linux PCI-PM code however depends on this, for example in
* pci_set_power_state(). So we have to take care to perform the required
* operations on our own (particularly reflecting the pdev->current_state)
* otherwise we might get cheated by pci-pm.
*/
static int vlsi_irda_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *ndev = pci_get_drvdata(pdev);
vlsi_irda_dev_t *idev;
if (!ndev) {
IRDA_ERROR("%s - %s: no netdevice \n",
__FUNCTION__, PCIDEV_NAME(pdev));
return 0;
}
idev = ndev->priv;
down(&idev->sem);
if (pdev->current_state != 0) { /* already suspended */
if (state.event > pdev->current_state) { /* simply go deeper */
pci_set_power_state(pdev, pci_choose_state(pdev, state));
pdev->current_state = state.event;
}
else
IRDA_ERROR("%s - %s: invalid suspend request %u -> %u\n", __FUNCTION__, PCIDEV_NAME(pdev), pdev->current_state, state.event);
up(&idev->sem);
return 0;
}
if (netif_running(ndev)) {
netif_device_detach(ndev);
vlsi_stop_hw(idev);
pci_save_state(pdev);
if (!idev->new_baud)
/* remember speed settings to restore on resume */
idev->new_baud = idev->baud;
}
pci_set_power_state(pdev, pci_choose_state(pdev, state));
pdev->current_state = state.event;
idev->resume_ok = 1;
up(&idev->sem);
return 0;
}
static int vlsi_irda_resume(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
vlsi_irda_dev_t *idev;
if (!ndev) {
IRDA_ERROR("%s - %s: no netdevice \n",
__FUNCTION__, PCIDEV_NAME(pdev));
return 0;
}
idev = ndev->priv;
down(&idev->sem);
if (pdev->current_state == 0) {
up(&idev->sem);
IRDA_WARNING("%s - %s: already resumed\n",
__FUNCTION__, PCIDEV_NAME(pdev));
return 0;
}
pci_set_power_state(pdev, PCI_D0);
pdev->current_state = PM_EVENT_ON;
if (!idev->resume_ok) {
/* should be obsolete now - but used to happen due to:
* - pci layer initially setting pdev->current_state = 4 (unknown)
* - pci layer did not walk the save_state-tree (might be APM problem)
* so we could not refuse to suspend from undefined state
* - vlsi_irda_suspend detected invalid state and refused to save
* configuration for resume - but was too late to stop suspending
* - vlsi_irda_resume got screwed when trying to resume from garbage
*
* now we explicitly set pdev->current_state = 0 after enabling the
* device and independently resume_ok should catch any garbage config.
*/
IRDA_WARNING("%s - hm, nothing to resume?\n", __FUNCTION__);
up(&idev->sem);
return 0;
}
if (netif_running(ndev)) {
pci_restore_state(pdev);
vlsi_start_hw(idev);
netif_device_attach(ndev);
}
idev->resume_ok = 0;
up(&idev->sem);
return 0;
}
#endif /* CONFIG_PM */
/*********************************************************/
static struct pci_driver vlsi_irda_driver = {
.name = drivername,
.id_table = vlsi_irda_table,
.probe = vlsi_irda_probe,
.remove = __devexit_p(vlsi_irda_remove),
#ifdef CONFIG_PM
.suspend = vlsi_irda_suspend,
.resume = vlsi_irda_resume,
#endif
};
#define PROC_DIR ("driver/" DRIVER_NAME)
static int __init vlsi_mod_init(void)
{
int i, ret;
if (clksrc < 0 || clksrc > 3) {
IRDA_ERROR("%s: invalid clksrc=%d\n", drivername, clksrc);
return -1;
}
for (i = 0; i < 2; i++) {
switch(ringsize[i]) {
case 4:
case 8:
case 16:
case 32:
case 64:
break;
default:
IRDA_WARNING("%s: invalid %s ringsize %d, using default=8", drivername, (i)?"rx":"tx", ringsize[i]);
ringsize[i] = 8;
break;
}
}
sirpulse = !!sirpulse;
/* proc_mkdir returns NULL if !CONFIG_PROC_FS.
* Failure to create the procfs entry is handled like running
* without procfs - it's not required for the driver to work.
*/
vlsi_proc_root = proc_mkdir(PROC_DIR, NULL);
if (vlsi_proc_root) {
/* protect registered procdir against module removal.
* Because we are in the module init path there's no race
* window after create_proc_entry (and no barrier needed).
*/
vlsi_proc_root->owner = THIS_MODULE;
}
ret = pci_register_driver(&vlsi_irda_driver);
if (ret && vlsi_proc_root)
remove_proc_entry(PROC_DIR, NULL);
return ret;
}
static void __exit vlsi_mod_exit(void)
{
pci_unregister_driver(&vlsi_irda_driver);
if (vlsi_proc_root)
remove_proc_entry(PROC_DIR, NULL);
}
module_init(vlsi_mod_init);
module_exit(vlsi_mod_exit);