blob: 9ee38db977ac970581d9dedb60cc21c6793e547f [file] [log] [blame]
/*
* linux/drivers/video/omap2/dss/manager.c
*
* Copyright (C) 2009 Nokia Corporation
* Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
*
* Some code and ideas taken from drivers/video/omap/ driver
* by Imre Deak.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define DSS_SUBSYS_NAME "MANAGER"
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/jiffies.h>
#include <linux/ratelimit.h>
#include <linux/seq_file.h>
#include <video/omapdss.h>
#include <plat/cpu.h>
#include "dss.h"
#include "dss_features.h"
static int num_managers;
static struct list_head manager_list;
static struct omap_overlay_manager *mgrs[MAX_DSS_MANAGERS];
static ssize_t manager_name_show(struct omap_overlay_manager *mgr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", mgr->name);
}
static ssize_t manager_display_show(struct omap_overlay_manager *mgr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n",
mgr->device ? mgr->device->name : "<none>");
}
static ssize_t manager_display_store(struct omap_overlay_manager *mgr,
const char *buf, size_t size)
{
int r = 0;
size_t len = size;
struct omap_dss_device *dssdev = NULL;
int match(struct omap_dss_device *dssdev, void *data)
{
const char *str = data;
return sysfs_streq(dssdev->name, str);
}
if (buf[size-1] == '\n')
--len;
if (len > 0)
dssdev = omap_dss_find_device((void *)buf, match);
if (len > 0 && dssdev == NULL)
return -EINVAL;
if (dssdev)
DSSDBG("display %s found\n", dssdev->name);
if (mgr->device) {
r = mgr->unset_device(mgr);
if (r) {
DSSERR("failed to unset display\n");
goto put_device;
}
}
if (dssdev) {
r = mgr->set_device(mgr, dssdev);
if (r) {
DSSERR("failed to set manager\n");
goto put_device;
}
r = mgr->apply(mgr);
if (r) {
DSSERR("failed to apply dispc config\n");
goto put_device;
}
}
put_device:
if (dssdev)
omap_dss_put_device(dssdev);
return r ? r : size;
}
static ssize_t manager_default_color_show(struct omap_overlay_manager *mgr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", mgr->info.default_color);
}
static ssize_t manager_default_color_store(struct omap_overlay_manager *mgr,
const char *buf, size_t size)
{
struct omap_overlay_manager_info info;
u32 color;
int r;
if (sscanf(buf, "%d", &color) != 1)
return -EINVAL;
mgr->get_manager_info(mgr, &info);
info.default_color = color;
r = mgr->set_manager_info(mgr, &info);
if (r)
return r;
r = mgr->apply(mgr);
if (r)
return r;
return size;
}
static const char *trans_key_type_str[] = {
"gfx-destination",
"video-source",
};
static ssize_t manager_trans_key_type_show(struct omap_overlay_manager *mgr,
char *buf)
{
enum omap_dss_trans_key_type key_type;
key_type = mgr->info.trans_key_type;
BUG_ON(key_type >= ARRAY_SIZE(trans_key_type_str));
return snprintf(buf, PAGE_SIZE, "%s\n", trans_key_type_str[key_type]);
}
static ssize_t manager_trans_key_type_store(struct omap_overlay_manager *mgr,
const char *buf, size_t size)
{
enum omap_dss_trans_key_type key_type;
struct omap_overlay_manager_info info;
int r;
for (key_type = OMAP_DSS_COLOR_KEY_GFX_DST;
key_type < ARRAY_SIZE(trans_key_type_str); key_type++) {
if (sysfs_streq(buf, trans_key_type_str[key_type]))
break;
}
if (key_type == ARRAY_SIZE(trans_key_type_str))
return -EINVAL;
mgr->get_manager_info(mgr, &info);
info.trans_key_type = key_type;
r = mgr->set_manager_info(mgr, &info);
if (r)
return r;
r = mgr->apply(mgr);
if (r)
return r;
return size;
}
static ssize_t manager_trans_key_value_show(struct omap_overlay_manager *mgr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", mgr->info.trans_key);
}
static ssize_t manager_trans_key_value_store(struct omap_overlay_manager *mgr,
const char *buf, size_t size)
{
struct omap_overlay_manager_info info;
u32 key_value;
int r;
if (sscanf(buf, "%d", &key_value) != 1)
return -EINVAL;
mgr->get_manager_info(mgr, &info);
info.trans_key = key_value;
r = mgr->set_manager_info(mgr, &info);
if (r)
return r;
r = mgr->apply(mgr);
if (r)
return r;
return size;
}
static ssize_t manager_trans_key_enabled_show(struct omap_overlay_manager *mgr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", mgr->info.trans_enabled);
}
static ssize_t manager_trans_key_enabled_store(struct omap_overlay_manager *mgr,
const char *buf, size_t size)
{
struct omap_overlay_manager_info info;
int enable;
int r;
if (sscanf(buf, "%d", &enable) != 1)
return -EINVAL;
mgr->get_manager_info(mgr, &info);
info.trans_enabled = enable ? true : false;
r = mgr->set_manager_info(mgr, &info);
if (r)
return r;
r = mgr->apply(mgr);
if (r)
return r;
return size;
}
static ssize_t manager_alpha_blending_enabled_show(
struct omap_overlay_manager *mgr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", mgr->info.alpha_enabled);
}
static ssize_t manager_alpha_blending_enabled_store(
struct omap_overlay_manager *mgr,
const char *buf, size_t size)
{
struct omap_overlay_manager_info info;
int enable;
int r;
if (sscanf(buf, "%d", &enable) != 1)
return -EINVAL;
/* if we have OMAP3 alpha compatibility, alpha blending is always on */
if (dss_has_feature(FEAT_ALPHA_OMAP3_COMPAT) && !enable)
return -EINVAL;
mgr->get_manager_info(mgr, &info);
info.alpha_enabled = enable ? true : false;
r = mgr->set_manager_info(mgr, &info);
if (r)
return r;
r = mgr->apply(mgr);
if (r)
return r;
return size;
}
static ssize_t manager_cpr_enable_show(struct omap_overlay_manager *mgr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", mgr->info.cpr_enable);
}
static ssize_t manager_cpr_enable_store(struct omap_overlay_manager *mgr,
const char *buf, size_t size)
{
struct omap_overlay_manager_info info;
int v;
int r;
bool enable;
if (!dss_has_feature(FEAT_CPR))
return -ENODEV;
r = kstrtoint(buf, 0, &v);
if (r)
return r;
enable = !!v;
mgr->get_manager_info(mgr, &info);
if (info.cpr_enable == enable)
return size;
info.cpr_enable = enable;
r = mgr->set_manager_info(mgr, &info);
if (r)
return r;
r = mgr->apply(mgr);
if (r)
return r;
return size;
}
static ssize_t manager_cpr_coef_show(struct omap_overlay_manager *mgr,
char *buf)
{
struct omap_overlay_manager_info info;
mgr->get_manager_info(mgr, &info);
return snprintf(buf, PAGE_SIZE,
"%d %d %d %d %d %d %d %d %d\n",
info.cpr_coefs.rr,
info.cpr_coefs.rg,
info.cpr_coefs.rb,
info.cpr_coefs.gr,
info.cpr_coefs.gg,
info.cpr_coefs.gb,
info.cpr_coefs.br,
info.cpr_coefs.bg,
info.cpr_coefs.bb);
}
static ssize_t manager_cpr_coef_store(struct omap_overlay_manager *mgr,
const char *buf, size_t size)
{
struct omap_overlay_manager_info info;
struct omap_dss_cpr_coefs coefs;
int r, i;
s16 *arr;
if (!dss_has_feature(FEAT_CPR))
return -ENODEV;
if (sscanf(buf, "%hd %hd %hd %hd %hd %hd %hd %hd %hd",
&coefs.rr, &coefs.rg, &coefs.rb,
&coefs.gr, &coefs.gg, &coefs.gb,
&coefs.br, &coefs.bg, &coefs.bb) != 9)
return -EINVAL;
arr = (s16[]){ coefs.rr, coefs.rg, coefs.rb,
coefs.gr, coefs.gg, coefs.gb,
coefs.br, coefs.bg, coefs.bb };
for (i = 0; i < 9; ++i) {
if (arr[i] < -512 || arr[i] > 511)
return -EINVAL;
}
mgr->get_manager_info(mgr, &info);
info.cpr_coefs = coefs;
r = mgr->set_manager_info(mgr, &info);
if (r)
return r;
r = mgr->apply(mgr);
if (r)
return r;
return size;
}
struct manager_attribute {
struct attribute attr;
ssize_t (*show)(struct omap_overlay_manager *, char *);
ssize_t (*store)(struct omap_overlay_manager *, const char *, size_t);
};
#define MANAGER_ATTR(_name, _mode, _show, _store) \
struct manager_attribute manager_attr_##_name = \
__ATTR(_name, _mode, _show, _store)
static MANAGER_ATTR(name, S_IRUGO, manager_name_show, NULL);
static MANAGER_ATTR(display, S_IRUGO|S_IWUSR,
manager_display_show, manager_display_store);
static MANAGER_ATTR(default_color, S_IRUGO|S_IWUSR,
manager_default_color_show, manager_default_color_store);
static MANAGER_ATTR(trans_key_type, S_IRUGO|S_IWUSR,
manager_trans_key_type_show, manager_trans_key_type_store);
static MANAGER_ATTR(trans_key_value, S_IRUGO|S_IWUSR,
manager_trans_key_value_show, manager_trans_key_value_store);
static MANAGER_ATTR(trans_key_enabled, S_IRUGO|S_IWUSR,
manager_trans_key_enabled_show,
manager_trans_key_enabled_store);
static MANAGER_ATTR(alpha_blending_enabled, S_IRUGO|S_IWUSR,
manager_alpha_blending_enabled_show,
manager_alpha_blending_enabled_store);
static MANAGER_ATTR(cpr_enable, S_IRUGO|S_IWUSR,
manager_cpr_enable_show,
manager_cpr_enable_store);
static MANAGER_ATTR(cpr_coef, S_IRUGO|S_IWUSR,
manager_cpr_coef_show,
manager_cpr_coef_store);
static struct attribute *manager_sysfs_attrs[] = {
&manager_attr_name.attr,
&manager_attr_display.attr,
&manager_attr_default_color.attr,
&manager_attr_trans_key_type.attr,
&manager_attr_trans_key_value.attr,
&manager_attr_trans_key_enabled.attr,
&manager_attr_alpha_blending_enabled.attr,
&manager_attr_cpr_enable.attr,
&manager_attr_cpr_coef.attr,
NULL
};
static ssize_t manager_attr_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct omap_overlay_manager *manager;
struct manager_attribute *manager_attr;
manager = container_of(kobj, struct omap_overlay_manager, kobj);
manager_attr = container_of(attr, struct manager_attribute, attr);
if (!manager_attr->show)
return -ENOENT;
return manager_attr->show(manager, buf);
}
static ssize_t manager_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t size)
{
struct omap_overlay_manager *manager;
struct manager_attribute *manager_attr;
manager = container_of(kobj, struct omap_overlay_manager, kobj);
manager_attr = container_of(attr, struct manager_attribute, attr);
if (!manager_attr->store)
return -ENOENT;
return manager_attr->store(manager, buf, size);
}
static const struct sysfs_ops manager_sysfs_ops = {
.show = manager_attr_show,
.store = manager_attr_store,
};
static struct kobj_type manager_ktype = {
.sysfs_ops = &manager_sysfs_ops,
.default_attrs = manager_sysfs_attrs,
};
struct callback_states {
/*
* Keep track of callbacks at the last 3 levels of pipeline:
* cache, shadow registers and in DISPC registers.
*
* Note: We zero the function pointer when moving from one level to
* another to avoid checking for dirty and shadow_dirty fields that
* are not common between overlay and manager cache structures.
*/
struct omapdss_ovl_cb cache, shadow, dispc;
bool dispc_displayed;
bool shadow_enabled;
};
/*
* We have 4 levels of cache for the dispc settings. First two are in SW and
* the latter two in HW.
*
* +--------------------+
* |overlay/manager_info|
* +--------------------+
* v
* apply()
* v
* +--------------------+
* | dss_cache |
* +--------------------+
* v
* configure()
* v
* +--------------------+
* | shadow registers |
* +--------------------+
* v
* VFP or lcd/digit_enable
* v
* +--------------------+
* | registers |
* +--------------------+
*/
struct overlay_cache_data {
/* If true, cache changed, but not written to shadow registers. Set
* in apply(), cleared when registers written. */
bool dirty;
/* If true, shadow registers contain changed values not yet in real
* registers. Set when writing to shadow registers, cleared at
* VSYNC/EVSYNC */
bool shadow_dirty;
bool enabled;
u32 paddr;
void __iomem *vaddr;
u32 p_uv_addr; /* relevant for NV12 format only */
u16 screen_width;
u16 width;
u16 height;
enum omap_color_mode color_mode;
u8 rotation;
enum omap_dss_rotation_type rotation_type;
bool mirror;
u16 pos_x;
u16 pos_y;
u16 out_width; /* if 0, out_width == width */
u16 out_height; /* if 0, out_height == height */
u8 global_alpha;
u8 pre_mult_alpha;
struct callback_states cb; /* callback data for the last 3 states */
int dispc_channel; /* overlay's channel in DISPC */
enum omap_channel channel;
bool replication;
bool ilace;
u16 min_x_decim, max_x_decim, min_y_decim, max_y_decim;
enum omap_burst_size burst_size;
u32 fifo_low;
u32 fifo_high;
bool manual_update;
enum omap_overlay_zorder zorder;
struct omap_dss_cconv_coefs cconv;
};
struct manager_cache_data {
/* If true, cache changed, but not written to shadow registers. Set
* in apply(), cleared when registers written. */
bool dirty;
/* If true, shadow registers contain changed values not yet in real
* registers. Set when writing to shadow registers, cleared at
* VSYNC/EVSYNC */
bool shadow_dirty;
u32 default_color;
enum omap_dss_trans_key_type trans_key_type;
u32 trans_key;
bool trans_enabled;
bool alpha_enabled;
bool manual_upd_display;
bool manual_update;
bool do_manual_update;
/* manual update region */
u16 x, y, w, h;
/* enlarge the update area if the update area contains scaled
* overlays */
bool enlarge_update_area;
struct callback_states cb; /* callback data for the last 3 states */
bool cpr_enable;
struct omap_dss_cpr_coefs cpr_coefs;
bool skip_init;
};
static struct {
spinlock_t lock;
struct overlay_cache_data overlay_cache[MAX_DSS_OVERLAYS];
struct manager_cache_data manager_cache[MAX_DSS_MANAGERS];
bool irq_enabled;
u32 comp_irq_enabled;
} dss_cache;
/* propagating callback info between states */
static inline void
dss_ovl_configure_cb(struct callback_states *st, int i, bool enabled)
{
/* complete info in shadow */
dss_ovl_cb(&st->shadow, i, DSS_COMPLETION_ECLIPSED_SHADOW);
/* propagate cache to shadow */
st->shadow = st->cache;
st->shadow_enabled = enabled;
st->cache.fn = NULL; /* info traveled to shadow */
}
static inline void
dss_ovl_program_cb(struct callback_states *st, int i)
{
/* mark previous programming as completed */
dss_ovl_cb(&st->dispc, i, st->dispc_displayed ?
DSS_COMPLETION_RELEASED : DSS_COMPLETION_TORN);
/* mark shadow info as programmed, not yet displayed */
dss_ovl_cb(&st->shadow, i, DSS_COMPLETION_PROGRAMMED);
/* if overlay/manager is not enabled, we are done now */
if (!st->shadow_enabled) {
dss_ovl_cb(&st->shadow, i, DSS_COMPLETION_RELEASED);
st->shadow.fn = NULL;
}
/* propagate shadow to dispc */
st->dispc = st->shadow;
st->shadow.fn = NULL;
st->dispc_displayed = false;
}
static int omap_dss_set_device(struct omap_overlay_manager *mgr,
struct omap_dss_device *dssdev)
{
int i;
int r;
if (dssdev->manager) {
DSSERR("display '%s' already has a manager '%s'\n",
dssdev->name, dssdev->manager->name);
return -EINVAL;
}
if ((mgr->supported_displays & dssdev->type) == 0) {
DSSERR("display '%s' does not support manager '%s'\n",
dssdev->name, mgr->name);
return -EINVAL;
}
for (i = 0; i < mgr->num_overlays; i++) {
struct omap_overlay *ovl = mgr->overlays[i];
if (ovl->manager != mgr || !ovl->info.enabled)
continue;
r = dss_check_overlay(ovl, dssdev);
if (r)
return r;
}
dssdev->manager = mgr;
mgr->device = dssdev;
mgr->device_changed = true;
if (dssdev->type == OMAP_DISPLAY_TYPE_DSI &&
!(dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE))
omap_dispc_set_irq_type(mgr->id, OMAP_DISPC_IRQ_TYPE_VSYNC);
else
omap_dispc_set_irq_type(mgr->id, OMAP_DISPC_IRQ_TYPE_FRAMEDONE);
return 0;
}
static int omap_dss_unset_device(struct omap_overlay_manager *mgr)
{
if (!mgr->device) {
DSSERR("failed to unset display, display not set.\n");
return -EINVAL;
}
mgr->device->manager = NULL;
mgr->device = NULL;
mgr->device_changed = true;
return 0;
}
static int dss_mgr_wait_for_vsync(struct omap_overlay_manager *mgr)
{
unsigned long timeout = msecs_to_jiffies(500);
u32 irq;
int r;
if (mgr->device->type == OMAP_DISPLAY_TYPE_VENC) {
irq = DISPC_IRQ_EVSYNC_ODD;
} else if (mgr->device->type == OMAP_DISPLAY_TYPE_HDMI) {
irq = DISPC_IRQ_EVSYNC_EVEN;
} else {
if (mgr->id == OMAP_DSS_CHANNEL_LCD)
irq = DISPC_IRQ_VSYNC;
else
irq = DISPC_IRQ_VSYNC2;
}
r = omap_dispc_wait_for_irq_interruptible_timeout(irq, timeout);
if (!r)
mgr->device->first_vsync = true;
return r;
}
static int dss_mgr_wait_for_go(struct omap_overlay_manager *mgr)
{
unsigned long timeout = msecs_to_jiffies(500);
struct manager_cache_data *mc;
u32 irq;
int r;
int i;
struct omap_dss_device *dssdev = mgr->device;
if (!dssdev || dssdev->state != OMAP_DSS_DISPLAY_ACTIVE)
return 0;
if (dssdev->type == OMAP_DISPLAY_TYPE_VENC
|| dssdev->type == OMAP_DISPLAY_TYPE_HDMI) {
irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN
| DISPC_IRQ_FRAMEDONETV;
} else {
if (dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE) {
enum omap_dss_update_mode mode;
mode = dssdev->driver->get_update_mode(dssdev);
if (mode != OMAP_DSS_UPDATE_AUTO)
return 0;
irq = (dssdev->manager->id == OMAP_DSS_CHANNEL_LCD) ?
DISPC_IRQ_FRAMEDONE
: DISPC_IRQ_FRAMEDONE2;
} else {
irq = (dssdev->manager->id == OMAP_DSS_CHANNEL_LCD) ?
DISPC_IRQ_VSYNC
: DISPC_IRQ_VSYNC2;
}
}
mc = &dss_cache.manager_cache[mgr->id];
i = 0;
while (1) {
unsigned long flags;
bool shadow_dirty, dirty;
spin_lock_irqsave(&dss_cache.lock, flags);
dirty = mc->dirty;
shadow_dirty = mc->shadow_dirty;
spin_unlock_irqrestore(&dss_cache.lock, flags);
if (!dirty && !shadow_dirty) {
r = 0;
break;
}
/* 4 iterations is the worst case:
* 1 - initial iteration, dirty = true (between VFP and VSYNC)
* 2 - first VSYNC, dirty = true
* 3 - dirty = false, shadow_dirty = true
* 4 - shadow_dirty = false */
if (i++ == 3) {
DSSERR("mgr(%d)->wait_for_go() not finishing\n",
mgr->id);
r = 0;
break;
}
r = omap_dispc_wait_for_irq_interruptible_timeout(irq, timeout);
if (!r)
mgr->device->first_vsync = true;
if (r == -ERESTARTSYS)
break;
if (r) {
DSSERR("mgr(%d)->wait_for_go() timeout\n", mgr->id);
break;
}
}
return r;
}
int dss_mgr_wait_for_go_ovl(struct omap_overlay *ovl)
{
unsigned long timeout = msecs_to_jiffies(500);
struct overlay_cache_data *oc;
struct omap_dss_device *dssdev;
u32 irq;
int r;
int i;
if (!ovl->manager)
return 0;
dssdev = ovl->manager->device;
if (!dssdev || dssdev->state != OMAP_DSS_DISPLAY_ACTIVE)
return 0;
if (dssdev->type == OMAP_DISPLAY_TYPE_VENC
|| dssdev->type == OMAP_DISPLAY_TYPE_HDMI) {
irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN
| DISPC_IRQ_FRAMEDONETV;
} else {
if (dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE) {
enum omap_dss_update_mode mode;
mode = dssdev->driver->get_update_mode(dssdev);
if (mode != OMAP_DSS_UPDATE_AUTO)
return 0;
irq = (dssdev->manager->id == OMAP_DSS_CHANNEL_LCD) ?
DISPC_IRQ_FRAMEDONE
: DISPC_IRQ_FRAMEDONE2;
} else {
irq = (dssdev->manager->id == OMAP_DSS_CHANNEL_LCD) ?
DISPC_IRQ_VSYNC
: DISPC_IRQ_VSYNC2;
}
}
oc = &dss_cache.overlay_cache[ovl->id];
i = 0;
while (1) {
unsigned long flags;
bool shadow_dirty, dirty;
spin_lock_irqsave(&dss_cache.lock, flags);
dirty = oc->dirty;
shadow_dirty = oc->shadow_dirty;
spin_unlock_irqrestore(&dss_cache.lock, flags);
if (!dirty && !shadow_dirty) {
r = 0;
break;
}
/* 4 iterations is the worst case:
* 1 - initial iteration, dirty = true (between VFP and VSYNC)
* 2 - first VSYNC, dirty = true
* 3 - dirty = false, shadow_dirty = true
* 4 - shadow_dirty = false */
if (i++ == 3) {
DSSERR("ovl(%d)->wait_for_go() not finishing\n",
ovl->id);
r = 0;
break;
}
r = omap_dispc_wait_for_irq_interruptible_timeout(irq, timeout);
if (r == -ERESTARTSYS)
break;
if (r) {
DSSERR("ovl(%d)->wait_for_go() timeout\n", ovl->id);
break;
}
}
return r;
}
static int overlay_enabled(struct omap_overlay *ovl)
{
return ovl->info.enabled && ovl->manager && ovl->manager->device;
}
/* Is rect1 a subset of rect2? */
static bool rectangle_subset(int x1, int y1, int w1, int h1,
int x2, int y2, int w2, int h2)
{
if (x1 < x2 || y1 < y2)
return false;
if (x1 + w1 > x2 + w2)
return false;
if (y1 + h1 > y2 + h2)
return false;
return true;
}
/* Do rect1 and rect2 overlap? */
static bool rectangle_intersects(int x1, int y1, int w1, int h1,
int x2, int y2, int w2, int h2)
{
if (x1 >= x2 + w2)
return false;
if (x2 >= x1 + w1)
return false;
if (y1 >= y2 + h2)
return false;
if (y2 >= y1 + h1)
return false;
return true;
}
static bool dispc_is_overlay_scaled(struct overlay_cache_data *oc)
{
if (oc->out_width != 0 && oc->width != oc->out_width)
return true;
if (oc->out_height != 0 && oc->height != oc->out_height)
return true;
return false;
}
static int configure_overlay(enum omap_plane plane)
{
struct overlay_cache_data *c;
struct manager_cache_data *mc;
u16 outw, outh;
u16 x, y, w, h;
u32 paddr;
int r;
u16 x_decim, y_decim;
bool five_taps;
u16 orig_w, orig_h, orig_outw, orig_outh;
DSSDBGF("%d", plane);
c = &dss_cache.overlay_cache[plane];
if (!c->enabled) {
dispc_enable_plane(plane, 0);
return 0;
}
mc = &dss_cache.manager_cache[c->channel];
x = c->pos_x;
y = c->pos_y;
w = c->width;
h = c->height;
outw = c->out_width == 0 ? c->width : c->out_width;
outh = c->out_height == 0 ? c->height : c->out_height;
paddr = c->paddr;
orig_w = w;
orig_h = h;
orig_outw = outw;
orig_outh = outh;
if (c->manual_update && mc->do_manual_update) {
unsigned bpp;
unsigned scale_x_m = w, scale_x_d = outw;
unsigned scale_y_m = h, scale_y_d = outh;
/* If the overlay is outside the update region, disable it */
if (!rectangle_intersects(mc->x, mc->y, mc->w, mc->h,
x, y, outw, outh)) {
dispc_enable_plane(plane, 0);
return 0;
}
switch (c->color_mode) {
case OMAP_DSS_COLOR_NV12:
bpp = 8;
break;
case OMAP_DSS_COLOR_CLUT1:
case OMAP_DSS_COLOR_CLUT2:
case OMAP_DSS_COLOR_CLUT4:
case OMAP_DSS_COLOR_CLUT8:
case OMAP_DSS_COLOR_RGB16:
case OMAP_DSS_COLOR_ARGB16:
case OMAP_DSS_COLOR_YUV2:
case OMAP_DSS_COLOR_UYVY:
case OMAP_DSS_COLOR_RGBA16:
case OMAP_DSS_COLOR_RGB12U:
case OMAP_DSS_COLOR_RGBX16:
case OMAP_DSS_COLOR_ARGB16_1555:
case OMAP_DSS_COLOR_XRGB16_1555:
bpp = 16;
break;
case OMAP_DSS_COLOR_RGB24P:
bpp = 24;
break;
case OMAP_DSS_COLOR_RGB24U:
case OMAP_DSS_COLOR_ARGB32:
case OMAP_DSS_COLOR_RGBA32:
case OMAP_DSS_COLOR_RGBX32:
bpp = 32;
break;
default:
BUG();
}
if (mc->x > c->pos_x) {
x = 0;
outw -= (mc->x - c->pos_x);
paddr += (mc->x - c->pos_x) *
scale_x_m / scale_x_d * bpp / 8;
} else {
x = c->pos_x - mc->x;
}
if (mc->y > c->pos_y) {
y = 0;
outh -= (mc->y - c->pos_y);
paddr += (mc->y - c->pos_y) *
scale_y_m / scale_y_d *
c->screen_width * bpp / 8;
} else {
y = c->pos_y - mc->y;
}
if (mc->w < (x + outw))
outw -= (x + outw) - (mc->w);
if (mc->h < (y + outh))
outh -= (y + outh) - (mc->h);
w = w * outw / orig_outw;
h = h * outh / orig_outh;
/* YUV mode overlay's input width has to be even and the
* algorithm above may adjust the width to be odd.
*
* Here we adjust the width if needed, preferring to increase
* the width if the original width was bigger.
*/
if ((w & 1) &&
(c->color_mode == OMAP_DSS_COLOR_YUV2 ||
c->color_mode == OMAP_DSS_COLOR_UYVY)) {
if (orig_w > w)
w += 1;
else
w -= 1;
}
}
r = dispc_scaling_decision(w, h, outw, outh,
plane, c->color_mode, c->channel,
c->rotation, c->rotation_type,
c->min_x_decim, c->max_x_decim,
c->min_y_decim, c->max_y_decim,
&x_decim, &y_decim, &five_taps);
r = r ? : dispc_setup_plane(plane,
paddr,
c->screen_width,
x, y,
w, h,
outw, outh,
c->color_mode,
c->ilace, x_decim, y_decim, five_taps,
c->rotation_type,
c->rotation,
c->mirror,
c->global_alpha,
c->pre_mult_alpha,
c->channel,
c->p_uv_addr);
if (r) {
/* this shouldn't happen */
DSSERR("dispc_setup_plane failed for ovl %d\n", plane);
dispc_enable_plane(plane, 0);
return r;
}
dispc_enable_replication(plane, c->replication);
dispc_set_burst_size(plane, c->burst_size);
dispc_set_zorder(plane, c->zorder);
dispc_enable_zorder(plane, 1);
if (!cpu_is_omap44xx())
dispc_setup_plane_fifo(plane, c->fifo_low, c->fifo_high);
if (plane != OMAP_DSS_GFX)
_dispc_setup_color_conv_coef(plane, &c->cconv);
dispc_enable_plane(plane, 1);
return 0;
}
static void configure_manager(enum omap_channel channel)
{
struct manager_cache_data *c;
DSSDBGF("%d", channel);
c = &dss_cache.manager_cache[channel];
dispc_set_default_color(channel, c->default_color);
dispc_set_trans_key(channel, c->trans_key_type, c->trans_key);
dispc_enable_trans_key(channel, c->trans_enabled);
/* if we have OMAP3 alpha compatibility, alpha blending is always on */
if (dss_has_feature(FEAT_ALPHA_OMAP3_COMPAT)) {
/* and alpha_blending bit enables OMAP3 compatibility mode */
dispc_enable_alpha_blending(channel, false);
c->alpha_enabled = true;
} else {
dispc_enable_alpha_blending(channel, c->alpha_enabled);
}
if (dss_has_feature(FEAT_CPR)) {
dispc_enable_cpr(channel, c->cpr_enable);
dispc_set_cpr_coef(channel, &c->cpr_coefs);
}
}
/* configure_dispc() tries to write values from cache to shadow registers.
* It writes only to those managers/overlays that are not busy.
* returns 0 if everything could be written to shadow registers.
* returns 1 if not everything could be written to shadow registers. */
static int configure_dispc(void)
{
struct overlay_cache_data *oc;
struct manager_cache_data *mc;
const int num_ovls = dss_feat_get_num_ovls();
const int num_mgrs = dss_feat_get_num_mgrs();
int i;
int r;
int used_ovls, j;
bool mgr_busy[MAX_DSS_MANAGERS];
bool mgr_go[MAX_DSS_MANAGERS];
bool busy;
r = 0;
busy = false;
for (i = 0; i < num_mgrs; i++) {
mgr_busy[i] = dispc_go_busy(i);
mgr_go[i] = false;
}
/* Commit overlay settings */
for (i = 0; i < num_ovls; ++i) {
oc = &dss_cache.overlay_cache[i];
mc = &dss_cache.manager_cache[oc->channel];
if (!oc->dirty)
continue;
if (oc->manual_update && !mc->do_manual_update)
continue;
if (mgr_busy[oc->channel]) {
busy = true;
continue;
}
r = configure_overlay(i);
if (r)
DSSERR("configure_overlay %d failed\n", i);
dss_ovl_configure_cb(&oc->cb, i, oc->enabled);
oc->dirty = false;
oc->shadow_dirty = true;
mgr_go[oc->channel] = true;
}
/* Commit manager settings */
for (i = 0; i < num_mgrs; ++i) {
mc = &dss_cache.manager_cache[i];
if (!mc->dirty)
continue;
if (mc->manual_update && !mc->do_manual_update)
continue;
if (mgr_busy[i]) {
busy = true;
continue;
}
for (j = used_ovls = 0; j < num_ovls; j++) {
oc = &dss_cache.overlay_cache[j];
if (oc->channel == i && oc->enabled)
used_ovls++;
}
configure_manager(i);
dss_ovl_configure_cb(&mc->cb, i, used_ovls);
mc->dirty = false;
mc->shadow_dirty = true;
mgr_go[i] = true;
}
/* set GO */
for (i = 0; i < num_mgrs; ++i) {
mc = &dss_cache.manager_cache[i];
if (!mgr_go[i])
continue;
/* We don't need GO with manual update display. LCD iface will
* always be turned off after frame, and new settings will be
* taken in to use at next update */
if (!mc->manual_upd_display){
if(mc->skip_init)
mc->skip_init = false;
else
dispc_go(i);
}
}
if (busy)
r = 1;
else
r = 0;
return r;
}
/* Make the coordinates even. There are some strange problems with OMAP and
* partial DSI update when the update widths are odd. */
static void make_even(u16 *x, u16 *w)
{
u16 x1, x2;
x1 = *x;
x2 = *x + *w;
x1 &= ~1;
x2 = ALIGN(x2, 2);
*x = x1;
*w = x2 - x1;
}
/* Configure dispc for partial update. Return possibly modified update
* area */
void dss_setup_partial_planes(struct omap_dss_device *dssdev,
u16 *xi, u16 *yi, u16 *wi, u16 *hi, bool enlarge_update_area)
{
struct overlay_cache_data *oc;
struct manager_cache_data *mc;
const int num_ovls = dss_feat_get_num_ovls();
struct omap_overlay_manager *mgr;
int i;
u16 x, y, w, h;
unsigned long flags;
bool area_changed;
x = *xi;
y = *yi;
w = *wi;
h = *hi;
DSSDBG("dispc_setup_partial_planes %d,%d %dx%d\n",
*xi, *yi, *wi, *hi);
mgr = dssdev->manager;
if (!mgr) {
DSSDBG("no manager\n");
return;
}
make_even(&x, &w);
spin_lock_irqsave(&dss_cache.lock, flags);
/*
* Execute the outer loop until the inner loop has completed
* once without increasing the update area. This will ensure that
* all scaled overlays end up completely within the update area.
*/
do {
area_changed = false;
/* We need to show the whole overlay if it is scaled. So look
* for those, and make the update area larger if found.
* Also mark the overlay cache dirty */
for (i = 0; i < num_ovls; ++i) {
unsigned x1, y1, x2, y2;
unsigned outw, outh;
oc = &dss_cache.overlay_cache[i];
if (oc->channel != mgr->id)
continue;
oc->dirty = true;
if (!enlarge_update_area)
continue;
if (!oc->enabled)
continue;
if (!dispc_is_overlay_scaled(oc))
continue;
outw = oc->out_width == 0 ?
oc->width : oc->out_width;
outh = oc->out_height == 0 ?
oc->height : oc->out_height;
/* is the overlay outside the update region? */
if (!rectangle_intersects(x, y, w, h,
oc->pos_x, oc->pos_y,
outw, outh))
continue;
/* if the overlay totally inside the update region? */
if (rectangle_subset(oc->pos_x, oc->pos_y, outw, outh,
x, y, w, h))
continue;
if (x > oc->pos_x)
x1 = oc->pos_x;
else
x1 = x;
if (y > oc->pos_y)
y1 = oc->pos_y;
else
y1 = y;
if ((x + w) < (oc->pos_x + outw))
x2 = oc->pos_x + outw;
else
x2 = x + w;
if ((y + h) < (oc->pos_y + outh))
y2 = oc->pos_y + outh;
else
y2 = y + h;
x = x1;
y = y1;
w = x2 - x1;
h = y2 - y1;
make_even(&x, &w);
DSSDBG("changing upd area due to ovl(%d) "
"scaling %d,%d %dx%d\n",
i, x, y, w, h);
area_changed = true;
}
} while (area_changed);
mc = &dss_cache.manager_cache[mgr->id];
mc->do_manual_update = true;
mc->enlarge_update_area = enlarge_update_area;
mc->x = x;
mc->y = y;
mc->w = w;
mc->h = h;
configure_dispc();
mc->do_manual_update = false;
spin_unlock_irqrestore(&dss_cache.lock, flags);
*xi = x;
*yi = y;
*wi = w;
*hi = h;
}
static void schedule_completion_irq(void);
static void dss_completion_irq_handler(void *data, u32 mask)
{
struct manager_cache_data *mc;
struct overlay_cache_data *oc;
const int num_ovls = ARRAY_SIZE(dss_cache.overlay_cache);
const int num_mgrs = MAX_DSS_MANAGERS;
const u32 masks[] = {
DISPC_IRQ_FRAMEDONE | DISPC_IRQ_VSYNC,
DISPC_IRQ_FRAMEDONE2 | DISPC_IRQ_VSYNC2,
DISPC_IRQ_FRAMEDONETV | DISPC_IRQ_EVSYNC_EVEN |
DISPC_IRQ_EVSYNC_ODD
};
int i;
spin_lock(&dss_cache.lock);
for (i = 0; i < num_mgrs; i++) {
mc = &dss_cache.manager_cache[i];
if (mask & masks[i]) {
if (mgrs[i] && mgrs[i]->device)
mgrs[i]->device->first_vsync = true;
dss_ovl_cb(&mc->cb.dispc, i, DSS_COMPLETION_DISPLAYED);
mc->cb.dispc_displayed = true;
}
}
/* notify all overlays on that manager */
for (i = 0; i < num_ovls; i++) {
oc = &dss_cache.overlay_cache[i];
if (mask & masks[oc->channel]) {
dss_ovl_cb(&oc->cb.dispc, i, DSS_COMPLETION_DISPLAYED);
oc->cb.dispc_displayed = true;
}
}
schedule_completion_irq();
spin_unlock(&dss_cache.lock);
}
static void schedule_completion_irq(void)
{
struct manager_cache_data *mc;
struct overlay_cache_data *oc;
const int num_ovls = ARRAY_SIZE(dss_cache.overlay_cache);
const int num_mgrs = MAX_DSS_MANAGERS;
const u32 masks[] = {
DISPC_IRQ_FRAMEDONE | DISPC_IRQ_VSYNC,
DISPC_IRQ_FRAMEDONE2 | DISPC_IRQ_VSYNC2,
DISPC_IRQ_FRAMEDONETV | DISPC_IRQ_EVSYNC_EVEN |
DISPC_IRQ_EVSYNC_ODD
};
u32 mask = 0;
int i;
for (i = 0; i < num_mgrs; i++) {
mc = &dss_cache.manager_cache[i];
if (mc->cb.dispc.fn &&
(mc->cb.dispc.mask & DSS_COMPLETION_DISPLAYED))
mask |= masks[i];
}
/* notify all overlays on that manager */
for (i = 0; i < num_ovls; i++) {
oc = &dss_cache.overlay_cache[i];
if (oc->cb.dispc.fn && oc->enabled &&
(oc->cb.dispc.mask & DSS_COMPLETION_DISPLAYED))
mask |= masks[oc->channel];
}
if (mask != dss_cache.comp_irq_enabled) {
if (dss_cache.comp_irq_enabled)
omap_dispc_unregister_isr(dss_completion_irq_handler,
NULL, dss_cache.comp_irq_enabled);
if (mask)
omap_dispc_register_isr(dss_completion_irq_handler,
NULL, mask);
dss_cache.comp_irq_enabled = mask;
}
}
void dss_start_update(struct omap_dss_device *dssdev)
{
struct manager_cache_data *mc;
struct overlay_cache_data *oc;
const int num_ovls = dss_feat_get_num_ovls();
const int num_mgrs = dss_feat_get_num_mgrs();
struct omap_overlay_manager *mgr;
int i;
unsigned long flags;
mgr = dssdev->manager;
spin_lock_irqsave(&dss_cache.lock, flags);
for (i = 0; i < num_ovls; ++i) {
oc = &dss_cache.overlay_cache[i];
if (oc->channel != mgr->id)
continue;
if (oc->shadow_dirty) {
dss_ovl_program_cb(&oc->cb, i);
oc->dispc_channel = oc->channel;
}
oc->shadow_dirty = false;
}
for (i = 0; i < num_mgrs; ++i) {
mc = &dss_cache.manager_cache[i];
if (mgr->id != i)
continue;
if (mc->shadow_dirty)
dss_ovl_program_cb(&mc->cb, i);
mc->shadow_dirty = false;
}
schedule_completion_irq();
spin_unlock_irqrestore(&dss_cache.lock, flags);
dssdev->manager->enable(dssdev->manager);
}
static void dss_apply_irq_handler(void *data, u32 mask)
{
struct manager_cache_data *mc;
struct overlay_cache_data *oc;
const int num_ovls = dss_feat_get_num_ovls();
const int num_mgrs = dss_feat_get_num_mgrs();
int i, r;
bool mgr_busy[MAX_DSS_MANAGERS];
u32 irq_mask;
spin_lock(&dss_cache.lock);
for (i = 0; i < num_mgrs; i++)
mgr_busy[i] = dispc_go_busy(i);
for (i = 0; i < num_ovls; ++i) {
oc = &dss_cache.overlay_cache[i];
if (!mgr_busy[oc->channel] && oc->shadow_dirty) {
dss_ovl_program_cb(&oc->cb, i);
oc->dispc_channel = oc->channel;
oc->shadow_dirty = false;
}
}
for (i = 0; i < num_mgrs; ++i) {
mc = &dss_cache.manager_cache[i];
if (!mgr_busy[i] && mc->shadow_dirty) {
if (mgrs[i] && mgrs[i]->device)
mgrs[i]->device->first_vsync = true;
dss_ovl_program_cb(&mc->cb, i);
mc->shadow_dirty = false;
}
}
schedule_completion_irq();
r = configure_dispc();
if (r == 1)
goto end;
/*
* FIXME Sometimes when handling an interrupt for a manager, the
* manager is still busy at the beginning of the interrupt handler.
* Later it becomes idle, so we unregister the interrupt. This
* leaves the shadow_dirty flag in an incorrect true state, and also
* misses the 'programmed' callback.
*
* For now, we do not unregister the interrupt if any manager
* was busy at the first read of the GO bits. A better fix would be
* to keep the first read busy state in the cache, so we do not operate
* on instantaneous reads of the GO bit.
*/
/* re-read busy flags */
for (i = 0; i < num_mgrs; i++)
mgr_busy[i] |= dispc_go_busy(i);
/* keep running as long as there are busy managers, so that
* we can collect overlay-applied information */
for (i = 0; i < num_mgrs; ++i) {
if (mgr_busy[i])
goto end;
}
irq_mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_ODD |
DISPC_IRQ_EVSYNC_EVEN;
if (dss_has_feature(FEAT_MGR_LCD2))
irq_mask |= DISPC_IRQ_VSYNC2;
omap_dispc_unregister_isr(dss_apply_irq_handler, NULL, irq_mask);
dss_cache.irq_enabled = false;
end:
spin_unlock(&dss_cache.lock);
}
static int omap_dss_mgr_blank(struct omap_overlay_manager *mgr,
bool wait_for_go)
{
struct overlay_cache_data *oc;
struct manager_cache_data *mc;
unsigned long flags;
int r, r_get, i;
DSSDBG("omap_dss_mgr_blank(%s,wait=%d)\n", mgr->name, wait_for_go);
r_get = r = dispc_runtime_get();
/* still clear cache even if failed to get clocks, just don't config */
spin_lock_irqsave(&dss_cache.lock, flags);
/* disable overlays in overlay info structs and in cache */
for (i = 0; i < omap_dss_get_num_overlays(); i++) {
struct omap_overlay_info oi = { .enabled = false };
struct omap_overlay *ovl;
ovl = omap_dss_get_overlay(i);
if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC) ||
ovl->manager != mgr)
continue;
oc = &dss_cache.overlay_cache[ovl->id];
/* complete unconfigured info in cache */
dss_ovl_cb(&oc->cb.cache, i, DSS_COMPLETION_ECLIPSED_CACHE);
oc->cb.cache.fn = NULL;
ovl->info = oi;
ovl->info_dirty = false;
oc->dirty = true;
oc->enabled = false;
}
/* dirty manager */
mc = &dss_cache.manager_cache[mgr->id];
dss_ovl_cb(&mc->cb.cache, i, DSS_COMPLETION_ECLIPSED_CACHE);
mc->cb.cache.fn = NULL;
mgr->info.cb.fn = NULL;
mc->dirty = true;
mgr->info_dirty = false;
/*
* TRICKY: Enable apply irq even if not waiting for vsync, so that
* DISPC programming takes place in case GO bit was on.
*/
if (!dss_cache.irq_enabled) {
u32 mask;
mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_ODD |
DISPC_IRQ_EVSYNC_EVEN;
if (dss_has_feature(FEAT_MGR_LCD2))
mask |= DISPC_IRQ_VSYNC2;
r = omap_dispc_register_isr(dss_apply_irq_handler, NULL, mask);
dss_cache.irq_enabled = true;
}
if (!r_get)
r = configure_dispc();
if (r_get || !wait_for_go) {
/* pretend that programming has happened */
for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
oc = &dss_cache.overlay_cache[i];
if (oc->channel != mgr->id)
continue;
if (r && oc->dirty)
dss_ovl_configure_cb(&oc->cb, i, false);
if (oc->shadow_dirty) {
dss_ovl_program_cb(&oc->cb, i);
oc->dispc_channel = oc->channel;
oc->shadow_dirty = false;
} else {
pr_warn("ovl%d-shadow is not dirty\n", i);
}
}
if (r && mc->dirty)
dss_ovl_configure_cb(&mc->cb, i, false);
if (mc->shadow_dirty) {
dss_ovl_program_cb(&mc->cb, i);
mc->shadow_dirty = false;
} else {
pr_warn("mgr%d-shadow is not dirty\n", mgr->id);
}
}
spin_unlock_irqrestore(&dss_cache.lock, flags);
if (wait_for_go)
mgr->wait_for_go(mgr);
if (!r_get)
dispc_runtime_put();
return r;
}
int omap_dss_manager_unregister_callback(struct omap_overlay_manager *mgr,
struct omapdss_ovl_cb *cb)
{
unsigned long flags;
int r = 0;
spin_lock_irqsave(&dss_cache.lock, flags);
if (mgr->info_dirty &&
mgr->info.cb.fn == cb->fn &&
mgr->info.cb.data == cb->data)
mgr->info.cb.fn = NULL;
else
r = -EPERM;
spin_unlock_irqrestore(&dss_cache.lock, flags);
return r;
}
static int omap_dss_mgr_apply(struct omap_overlay_manager *mgr)
{
struct overlay_cache_data *oc;
struct manager_cache_data *mc;
struct omap_dss_device *dssdev;
int i;
struct omap_overlay *ovl;
int num_planes_enabled = 0;
bool use_fifomerge;
unsigned long flags;
int r;
DSSDBG("omap_dss_mgr_apply(%s)\n", mgr->name);
if (!dss_runtime_pm_enabled())
return -EAGAIN;
r = dispc_runtime_get();
if (r)
return r;
spin_lock_irqsave(&dss_cache.lock, flags);
if (!mgr->device || mgr->device->state != OMAP_DSS_DISPLAY_ACTIVE) {
r = -ENODEV;
goto done;
}
/* Configure overlays */
for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
struct omap_dss_device *dssdev;
ovl = omap_dss_get_overlay(i);
if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
continue;
if (ovl->manager != mgr)
continue;
oc = &dss_cache.overlay_cache[ovl->id];
dssdev = mgr->device;
if (!overlay_enabled(ovl) || !dssdev) {
ovl->info.enabled = false;
} else if (!ovl->info_dirty) {
if (oc->enabled)
++num_planes_enabled;
continue;
} else if (dss_check_overlay(ovl, dssdev)) {
ovl->info.enabled = false;
}
/* complete unconfigured info in cache */
dss_ovl_cb(&oc->cb.cache, i,
#if 0
(oc->cb.cache.fn == ovl->info.cb.fn &&
oc->cb.cache.data == ovl->info.cb.data) ?
DSS_COMPLETION_CHANGED_CACHE :
#endif
DSS_COMPLETION_ECLIPSED_CACHE);
oc->cb.cache = ovl->info.cb;
ovl->info.cb.fn = NULL;
ovl->info_dirty = false;
if (ovl->info.enabled || oc->enabled)
oc->dirty = true;
oc->enabled = ovl->info.enabled;
if (!oc->enabled)
continue;
oc->paddr = ovl->info.paddr;
oc->vaddr = ovl->info.vaddr;
oc->p_uv_addr = ovl->info.p_uv_addr;
oc->screen_width = ovl->info.screen_width;
oc->width = ovl->info.width;
oc->height = ovl->info.height;
oc->color_mode = ovl->info.color_mode;
oc->rotation = ovl->info.rotation;
oc->rotation_type = ovl->info.rotation_type;
oc->mirror = ovl->info.mirror;
oc->pos_x = ovl->info.pos_x;
oc->pos_y = ovl->info.pos_y;
oc->out_width = ovl->info.out_width;
oc->out_height = ovl->info.out_height;
oc->global_alpha = ovl->info.global_alpha;
oc->pre_mult_alpha = ovl->info.pre_mult_alpha;
oc->zorder = ovl->info.zorder;
oc->min_x_decim = ovl->info.min_x_decim;
oc->max_x_decim = ovl->info.max_x_decim;
oc->min_y_decim = ovl->info.min_y_decim;
oc->max_y_decim = ovl->info.max_y_decim;
oc->cconv = ovl->info.cconv;
oc->replication =
dss_use_replication(dssdev, ovl->info.color_mode);
oc->ilace = dssdev->type == OMAP_DISPLAY_TYPE_VENC;
oc->channel = mgr->id;
oc->manual_update =
dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE &&
dssdev->driver->get_update_mode(dssdev) !=
OMAP_DSS_UPDATE_AUTO;
++num_planes_enabled;
}
/* configure manager */
if (!(mgr->caps & OMAP_DSS_OVL_MGR_CAP_DISPC))
goto skip_mgr;
mc = &dss_cache.manager_cache[mgr->id];
if (mgr->device_changed) {
mgr->device_changed = false;
mgr->info_dirty = true;
}
if (!mgr->info_dirty)
goto skip_mgr;
if (!mgr->device)
goto skip_mgr;
dssdev = mgr->device;
/* complete unconfigured info in cache */
dss_ovl_cb(&mc->cb.cache, mgr->id,
#if 0
(mc->cb.cache.fn == mgr->info.cb.fn &&
mc->cb.cache.data == mgr->info.cb.data) ?
DSS_COMPLETION_CHANGED_CACHE :
#endif
DSS_COMPLETION_ECLIPSED_CACHE);
mc->cb.cache = mgr->info.cb;
mgr->info.cb.fn = NULL;
mgr->info_dirty = false;
mc->dirty = true;
mc->default_color = mgr->info.default_color;
mc->trans_key_type = mgr->info.trans_key_type;
mc->trans_key = mgr->info.trans_key;
mc->trans_enabled = mgr->info.trans_enabled;
mc->alpha_enabled = mgr->info.alpha_enabled;
mc->cpr_coefs = mgr->info.cpr_coefs;
mc->cpr_enable = mgr->info.cpr_enable;
mc->manual_upd_display =
dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE;
mc->manual_update =
dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE &&
dssdev->driver->get_update_mode(dssdev) !=
OMAP_DSS_UPDATE_AUTO;
mc->skip_init = dssdev->skip_init;
skip_mgr:
/* XXX TODO: Try to get fifomerge working. The problem is that it
* affects both managers, not individually but at the same time. This
* means the change has to be well synchronized. I guess the proper way
* is to have a two step process for fifo merge:
* fifomerge enable:
* 1. disable other planes, leaving one plane enabled
* 2. wait until the planes are disabled on HW
* 3. config merged fifo thresholds, enable fifomerge
* fifomerge disable:
* 1. config unmerged fifo thresholds, disable fifomerge
* 2. wait until fifo changes are in HW
* 3. enable planes
*/
use_fifomerge = false;
/* Configure overlay fifos */
for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
struct omap_dss_device *dssdev;
u32 size;
ovl = omap_dss_get_overlay(i);
if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
continue;
oc = &dss_cache.overlay_cache[ovl->id];
if (!oc->enabled)
continue;
dssdev = ovl->manager->device;
if (!dssdev)
continue;
size = dispc_get_plane_fifo_size(ovl->id);
if (use_fifomerge)
size *= 3;
switch (dssdev->type) {
case OMAP_DISPLAY_TYPE_DPI:
case OMAP_DISPLAY_TYPE_DBI:
case OMAP_DISPLAY_TYPE_SDI:
case OMAP_DISPLAY_TYPE_VENC:
case OMAP_DISPLAY_TYPE_HDMI:
default_get_overlay_fifo_thresholds(ovl->id, size,
&oc->burst_size, &oc->fifo_low,
&oc->fifo_high);
break;
#ifdef CONFIG_OMAP2_DSS_DSI
case OMAP_DISPLAY_TYPE_DSI:
dsi_get_overlay_fifo_thresholds(ovl->id, size,
&oc->burst_size, &oc->fifo_low,
&oc->fifo_high);
break;
#endif
default:
BUG();
}
}
r = 0;
if (!dss_cache.irq_enabled) {
u32 mask;
mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_ODD |
DISPC_IRQ_EVSYNC_EVEN;
if (dss_has_feature(FEAT_MGR_LCD2))
mask |= DISPC_IRQ_VSYNC2;
r = omap_dispc_register_isr(dss_apply_irq_handler, NULL, mask);
dss_cache.irq_enabled = true;
}
configure_dispc();
done:
spin_unlock_irqrestore(&dss_cache.lock, flags);
dispc_runtime_put();
return r;
}
#ifdef CONFIG_DEBUG_FS
static void seq_print_cb(struct seq_file *s, struct omapdss_ovl_cb *cb)
{
if (!cb->fn) {
seq_printf(s, "(none)\n");
return;
}
seq_printf(s, "mask=%c%c%c%c [%p] %pf\n",
(cb->mask & DSS_COMPLETION_CHANGED) ? 'C' : '-',
(cb->mask & DSS_COMPLETION_PROGRAMMED) ? 'P' : '-',
(cb->mask & DSS_COMPLETION_DISPLAYED) ? 'D' : '-',
(cb->mask & DSS_COMPLETION_RELEASED) ? 'R' : '-',
cb->data,
cb->fn);
}
#endif
static void seq_print_cbs(struct omap_overlay_manager *mgr, struct seq_file *s)
{
#ifdef CONFIG_DEBUG_FS
struct manager_cache_data *mc;
unsigned long flags;
spin_lock_irqsave(&dss_cache.lock, flags);
mc = &dss_cache.manager_cache[mgr->id];
seq_printf(s, " DISPC pipeline:\n\n"
" info:%13s ", mgr->info_dirty ? "DIRTY" : "clean");
seq_print_cb(s, &mgr->info.cb);
seq_printf(s, " cache:%12s ", mc->dirty ? "DIRTY" : "clean");
seq_print_cb(s, &mc->cb.cache);
seq_printf(s, " shadow: %s %s ",
mc->cb.shadow_enabled ? "ACT" : "off",
mc->shadow_dirty ? "DIRTY" : "clean");
seq_print_cb(s, &mc->cb.shadow);
seq_printf(s, " dispc:%12s ",
mc->cb.dispc_displayed ? "DISPLAYED" : "");
seq_print_cb(s, &mc->cb.dispc);
seq_printf(s, "\n");
spin_unlock_irqrestore(&dss_cache.lock, flags);
#endif
}
static int dss_check_manager(struct omap_overlay_manager *mgr)
{
/* if we have OMAP3 alpha compatibility, alpha blending is always on */
if (dss_has_feature(FEAT_ALPHA_OMAP3_COMPAT)) {
if (!mgr->info.alpha_enabled)
return -EINVAL;
} else {
/*
* OMAP3- supports only graphics destination transparency
* color key and alpha blending simultaneously.
* See TRM 15.4.2.4.2.2 Alpha Mode.
*/
if (mgr->info.alpha_enabled && mgr->info.trans_enabled &&
mgr->info.trans_key_type != OMAP_DSS_COLOR_KEY_GFX_DST)
return -EINVAL;
}
return 0;
}
int omap_dss_ovl_set_info(struct omap_overlay *ovl,
struct omap_overlay_info *info)
{
int r;
struct omap_overlay_info old_info;
unsigned long flags;
spin_lock_irqsave(&dss_cache.lock, flags);
old_info = ovl->info;
ovl->info = *info;
if (ovl->manager) {
r = dss_check_overlay(ovl, ovl->manager->device);
if (r) {
ovl->info = old_info;
spin_unlock_irqrestore(&dss_cache.lock, flags);
return r;
}
}
/* complete previous settings */
if (ovl->info_dirty)
dss_ovl_cb(&old_info.cb, ovl->id,
(info->cb.fn == old_info.cb.fn &&
info->cb.data == old_info.cb.data) ?
DSS_COMPLETION_CHANGED_SET :
DSS_COMPLETION_ECLIPSED_SET);
ovl->info_dirty = true;
spin_unlock_irqrestore(&dss_cache.lock, flags);
return 0;
}
static int omap_dss_mgr_set_info(struct omap_overlay_manager *mgr,
struct omap_overlay_manager_info *info)
{
int r;
struct omap_overlay_manager_info old_info;
unsigned long flags;
spin_lock_irqsave(&dss_cache.lock, flags);
old_info = mgr->info;
mgr->info = *info;
r = dss_check_manager(mgr);
if (r) {
mgr->info = old_info;
spin_unlock_irqrestore(&dss_cache.lock, flags);
return r;
}
if (mgr->info_dirty)
dss_ovl_cb(&old_info.cb, mgr->id, DSS_COMPLETION_ECLIPSED_SET);
mgr->info_dirty = true;
spin_unlock_irqrestore(&dss_cache.lock, flags);
return 0;
}
static void omap_dss_mgr_get_info(struct omap_overlay_manager *mgr,
struct omap_overlay_manager_info *info)
{
*info = mgr->info;
}
static int dss_mgr_enable(struct omap_overlay_manager *mgr)
{
dispc_enable_channel(mgr->id, mgr->device->type, 1);
return 0;
}
static int dss_mgr_disable(struct omap_overlay_manager *mgr)
{
dispc_enable_channel(mgr->id, mgr->device->type, 0);
return 0;
}
static void omap_dss_add_overlay_manager(struct omap_overlay_manager *manager)
{
++num_managers;
list_add_tail(&manager->list, &manager_list);
if (manager->id < ARRAY_SIZE(mgrs))
mgrs[manager->id] = manager;
}
int dss_init_overlay_managers(struct platform_device *pdev)
{
int i, r;
spin_lock_init(&dss_cache.lock);
INIT_LIST_HEAD(&manager_list);
num_managers = 0;
for (i = 0; i < dss_feat_get_num_mgrs(); ++i) {
struct omap_overlay_manager *mgr;
mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
BUG_ON(mgr == NULL);
/* alpha blending always on with OMAP3 alpha compatibility */
if (dss_has_feature(FEAT_ALPHA_OMAP3_COMPAT))
mgr->info.alpha_enabled = true;
switch (i) {
case 0:
mgr->name = "lcd";
mgr->id = OMAP_DSS_CHANNEL_LCD;
break;
case 1:
mgr->name = "tv";
mgr->id = OMAP_DSS_CHANNEL_DIGIT;
break;
case 2:
mgr->name = "lcd2";
mgr->id = OMAP_DSS_CHANNEL_LCD2;
break;
}
mgr->set_device = &omap_dss_set_device;
mgr->unset_device = &omap_dss_unset_device;
mgr->apply = &omap_dss_mgr_apply;
mgr->set_manager_info = &omap_dss_mgr_set_info;
mgr->get_manager_info = &omap_dss_mgr_get_info;
mgr->wait_for_go = &dss_mgr_wait_for_go;
mgr->wait_for_vsync = &dss_mgr_wait_for_vsync;
mgr->blank = &omap_dss_mgr_blank;
mgr->dump_cb = &seq_print_cbs;
mgr->enable = &dss_mgr_enable;
mgr->disable = &dss_mgr_disable;
mgr->caps = OMAP_DSS_OVL_MGR_CAP_DISPC;
mgr->supported_displays =
dss_feat_get_supported_displays(mgr->id);
dss_overlay_setup_dispc_manager(mgr);
omap_dss_add_overlay_manager(mgr);
r = kobject_init_and_add(&mgr->kobj, &manager_ktype,
&pdev->dev.kobj, "manager%d", i);
if (r) {
DSSERR("failed to create sysfs file\n");
continue;
}
}
#ifdef L4_EXAMPLE
{
int omap_dss_mgr_apply_l4(struct omap_overlay_manager *mgr)
{
DSSDBG("omap_dss_mgr_apply_l4(%s)\n", mgr->name);
return 0;
}
struct omap_overlay_manager *mgr;
mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
BUG_ON(mgr == NULL);
mgr->name = "l4";
mgr->supported_displays =
OMAP_DISPLAY_TYPE_DBI | OMAP_DISPLAY_TYPE_DSI;
mgr->set_device = &omap_dss_set_device;
mgr->unset_device = &omap_dss_unset_device;
mgr->apply = &omap_dss_mgr_apply_l4;
mgr->set_manager_info = &omap_dss_mgr_set_info;
mgr->get_manager_info = &omap_dss_mgr_get_info;
dss_overlay_setup_l4_manager(mgr);
omap_dss_add_overlay_manager(mgr);
r = kobject_init_and_add(&mgr->kobj, &manager_ktype,
&pdev->dev.kobj, "managerl4");
if (r)
DSSERR("failed to create sysfs file\n");
}
#endif
return 0;
}
void dss_uninit_overlay_managers(struct platform_device *pdev)
{
struct omap_overlay_manager *mgr;
while (!list_empty(&manager_list)) {
mgr = list_first_entry(&manager_list,
struct omap_overlay_manager, list);
list_del(&mgr->list);
kobject_del(&mgr->kobj);
kobject_put(&mgr->kobj);
kfree(mgr);
}
num_managers = 0;
}
int omap_dss_get_num_overlay_managers(void)
{
return num_managers;
}
EXPORT_SYMBOL(omap_dss_get_num_overlay_managers);
struct omap_overlay_manager *omap_dss_get_overlay_manager(int num)
{
int i = 0;
struct omap_overlay_manager *mgr;
list_for_each_entry(mgr, &manager_list, list) {
if (i++ == num)
return mgr;
}
return NULL;
}
EXPORT_SYMBOL(omap_dss_get_overlay_manager);