| /*************************************************************************** |
| * API for image sensors connected to the SN9C1xx PC Camera Controllers * |
| * * |
| * Copyright (C) 2004-2007 by Luca Risolia <luca.risolia@studio.unibo.it> * |
| * * |
| * This program is free software; you can redistribute it and/or modify * |
| * it under the terms of the GNU General Public License as published by * |
| * the Free Software Foundation; either version 2 of the License, or * |
| * (at your option) any later version. * |
| * * |
| * This program is distributed in the hope that it will be useful, * |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
| * GNU General Public License for more details. * |
| * * |
| * You should have received a copy of the GNU General Public License * |
| * along with this program; if not, write to the Free Software * |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * |
| ***************************************************************************/ |
| |
| #ifndef _SN9C102_SENSOR_H_ |
| #define _SN9C102_SENSOR_H_ |
| |
| #include <linux/usb.h> |
| #include <linux/videodev.h> |
| #include <linux/device.h> |
| #include <linux/stddef.h> |
| #include <linux/errno.h> |
| #include <asm/types.h> |
| |
| struct sn9c102_device; |
| struct sn9c102_sensor; |
| |
| /*****************************************************************************/ |
| |
| /* |
| OVERVIEW. |
| This is a small interface that allows you to add support for any CCD/CMOS |
| image sensors connected to the SN9C1XX bridges. The entire API is documented |
| below. In the most general case, to support a sensor there are three steps |
| you have to follow: |
| 1) define the main "sn9c102_sensor" structure by setting the basic fields; |
| 2) write a probing function to be called by the core module when the USB |
| camera is recognized, then add both the USB ids and the name of that |
| function to the two corresponding tables in sn9c102_devtable.h; |
| 3) implement the methods that you want/need (and fill the rest of the main |
| structure accordingly). |
| "sn9c102_pas106b.c" is an example of all this stuff. Remember that you do |
| NOT need to touch the source code of the core module for the things to work |
| properly, unless you find bugs or flaws in it. Finally, do not forget to |
| read the V4L2 API for completeness. |
| */ |
| |
| /*****************************************************************************/ |
| |
| enum sn9c102_bridge { |
| BRIDGE_SN9C101 = 0x01, |
| BRIDGE_SN9C102 = 0x02, |
| BRIDGE_SN9C103 = 0x04, |
| BRIDGE_SN9C105 = 0x08, |
| BRIDGE_SN9C120 = 0x10, |
| }; |
| |
| /* Return the bridge name */ |
| enum sn9c102_bridge sn9c102_get_bridge(struct sn9c102_device* cam); |
| |
| /* Return a pointer the sensor struct attached to the camera */ |
| struct sn9c102_sensor* sn9c102_get_sensor(struct sn9c102_device* cam); |
| |
| /* Identify a device */ |
| extern struct sn9c102_device* |
| sn9c102_match_id(struct sn9c102_device* cam, const struct usb_device_id *id); |
| |
| /* Attach a probed sensor to the camera. */ |
| extern void |
| sn9c102_attach_sensor(struct sn9c102_device* cam, |
| struct sn9c102_sensor* sensor); |
| |
| /* |
| Read/write routines: they always return -1 on error, 0 or the read value |
| otherwise. NOTE that a real read operation is not supported by the SN9C1XX |
| chip for some of its registers. To work around this problem, a pseudo-read |
| call is provided instead: it returns the last successfully written value |
| on the register (0 if it has never been written), the usual -1 on error. |
| */ |
| |
| /* The "try" I2C I/O versions are used when probing the sensor */ |
| extern int sn9c102_i2c_try_write(struct sn9c102_device*,struct sn9c102_sensor*, |
| u8 address, u8 value); |
| extern int sn9c102_i2c_try_read(struct sn9c102_device*,struct sn9c102_sensor*, |
| u8 address); |
| |
| /* |
| These must be used if and only if the sensor doesn't implement the standard |
| I2C protocol. There are a number of good reasons why you must use the |
| single-byte versions of these functions: do not abuse. The first function |
| writes n bytes, from data0 to datan, to registers 0x09 - 0x09+n of SN9C1XX |
| chip. The second one programs the registers 0x09 and 0x10 with data0 and |
| data1, and places the n bytes read from the sensor register table in the |
| buffer pointed by 'buffer'. Both the functions return -1 on error; the write |
| version returns 0 on success, while the read version returns the first read |
| byte. |
| */ |
| extern int sn9c102_i2c_try_raw_write(struct sn9c102_device* cam, |
| struct sn9c102_sensor* sensor, u8 n, |
| u8 data0, u8 data1, u8 data2, u8 data3, |
| u8 data4, u8 data5); |
| extern int sn9c102_i2c_try_raw_read(struct sn9c102_device* cam, |
| struct sn9c102_sensor* sensor, u8 data0, |
| u8 data1, u8 n, u8 buffer[]); |
| |
| /* To be used after the sensor struct has been attached to the camera struct */ |
| extern int sn9c102_i2c_write(struct sn9c102_device*, u8 address, u8 value); |
| extern int sn9c102_i2c_read(struct sn9c102_device*, u8 address); |
| |
| /* I/O on registers in the bridge. Could be used by the sensor methods too */ |
| extern int sn9c102_pread_reg(struct sn9c102_device*, u16 index); |
| extern int sn9c102_write_reg(struct sn9c102_device*, u8 value, u16 index); |
| extern int sn9c102_write_regs(struct sn9c102_device*, const u8 valreg[][2], |
| int count); |
| /* |
| * Write multiple registers with constant values. For example: |
| * sn9c102_write_const_regs(cam, {0x00, 0x14}, {0x60, 0x17}, {0x0f, 0x18}); |
| */ |
| #define sn9c102_write_const_regs(device, data...) \ |
| ({ const static u8 _data[][2] = {data}; \ |
| sn9c102_write_regs(device, _data, ARRAY_SIZE(_data)); }) |
| |
| /*****************************************************************************/ |
| |
| enum sn9c102_i2c_sysfs_ops { |
| SN9C102_I2C_READ = 0x01, |
| SN9C102_I2C_WRITE = 0x02, |
| }; |
| |
| enum sn9c102_i2c_frequency { /* sensors may support both the frequencies */ |
| SN9C102_I2C_100KHZ = 0x01, |
| SN9C102_I2C_400KHZ = 0x02, |
| }; |
| |
| enum sn9c102_i2c_interface { |
| SN9C102_I2C_2WIRES, |
| SN9C102_I2C_3WIRES, |
| }; |
| |
| #define SN9C102_MAX_CTRLS (V4L2_CID_LASTP1-V4L2_CID_BASE+10) |
| |
| struct sn9c102_sensor { |
| char name[32], /* sensor name */ |
| maintainer[64]; /* name of the mantainer <email> */ |
| |
| enum sn9c102_bridge supported_bridge; /* supported SN9C1xx bridges */ |
| |
| /* Supported operations through the 'sysfs' interface */ |
| enum sn9c102_i2c_sysfs_ops sysfs_ops; |
| |
| /* |
| These sensor capabilities must be provided if the SN9C1XX controller |
| needs to communicate through the sensor serial interface by using |
| at least one of the i2c functions available. |
| */ |
| enum sn9c102_i2c_frequency frequency; |
| enum sn9c102_i2c_interface interface; |
| |
| /* |
| This identifier must be provided if the image sensor implements |
| the standard I2C protocol. |
| */ |
| u8 i2c_slave_id; /* reg. 0x09 */ |
| |
| /* |
| NOTE: Where not noted,most of the functions below are not mandatory. |
| Set to null if you do not implement them. If implemented, |
| they must return 0 on success, the proper error otherwise. |
| */ |
| |
| int (*init)(struct sn9c102_device* cam); |
| /* |
| This function will be called after the sensor has been attached. |
| It should be used to initialize the sensor only, but may also |
| configure part of the SN9C1XX chip if necessary. You don't need to |
| setup picture settings like brightness, contrast, etc.. here, if |
| the corrisponding controls are implemented (see below), since |
| they are adjusted in the core driver by calling the set_ctrl() |
| method after init(), where the arguments are the default values |
| specified in the v4l2_queryctrl list of supported controls; |
| Same suggestions apply for other settings, _if_ the corresponding |
| methods are present; if not, the initialization must configure the |
| sensor according to the default configuration structures below. |
| */ |
| |
| struct v4l2_queryctrl qctrl[SN9C102_MAX_CTRLS]; |
| /* |
| Optional list of default controls, defined as indicated in the |
| V4L2 API. Menu type controls are not handled by this interface. |
| */ |
| |
| int (*get_ctrl)(struct sn9c102_device* cam, struct v4l2_control* ctrl); |
| int (*set_ctrl)(struct sn9c102_device* cam, |
| const struct v4l2_control* ctrl); |
| /* |
| You must implement at least the set_ctrl method if you have defined |
| the list above. The returned value must follow the V4L2 |
| specifications for the VIDIOC_G|C_CTRL ioctls. V4L2_CID_H|VCENTER |
| are not supported by this driver, so do not implement them. Also, |
| you don't have to check whether the passed values are out of bounds, |
| given that this is done by the core module. |
| */ |
| |
| struct v4l2_cropcap cropcap; |
| /* |
| Think the image sensor as a grid of R,G,B monochromatic pixels |
| disposed according to a particular Bayer pattern, which describes |
| the complete array of pixels, from (0,0) to (xmax, ymax). We will |
| use this coordinate system from now on. It is assumed the sensor |
| chip can be programmed to capture/transmit a subsection of that |
| array of pixels: we will call this subsection "active window". |
| It is not always true that the largest achievable active window can |
| cover the whole array of pixels. The V4L2 API defines another |
| area called "source rectangle", which, in turn, is a subrectangle of |
| the active window. The SN9C1XX chip is always programmed to read the |
| source rectangle. |
| The bounds of both the active window and the source rectangle are |
| specified in the cropcap substructures 'bounds' and 'defrect'. |
| By default, the source rectangle should cover the largest possible |
| area. Again, it is not always true that the largest source rectangle |
| can cover the entire active window, although it is a rare case for |
| the hardware we have. The bounds of the source rectangle _must_ be |
| multiple of 16 and must use the same coordinate system as indicated |
| before; their centers shall align initially. |
| If necessary, the sensor chip must be initialized during init() to |
| set the bounds of the active sensor window; however, by default, it |
| usually covers the largest achievable area (maxwidth x maxheight) |
| of pixels, so no particular initialization is needed, if you have |
| defined the correct default bounds in the structures. |
| See the V4L2 API for further details. |
| NOTE: once you have defined the bounds of the active window |
| (struct cropcap.bounds) you must not change them.anymore. |
| Only 'bounds' and 'defrect' fields are mandatory, other fields |
| will be ignored. |
| */ |
| |
| int (*set_crop)(struct sn9c102_device* cam, |
| const struct v4l2_rect* rect); |
| /* |
| To be called on VIDIOC_C_SETCROP. The core module always calls a |
| default routine which configures the appropriate SN9C1XX regs (also |
| scaling), but you may need to override/adjust specific stuff. |
| 'rect' contains width and height values that are multiple of 16: in |
| case you override the default function, you always have to program |
| the chip to match those values; on error return the corresponding |
| error code without rolling back. |
| NOTE: in case, you must program the SN9C1XX chip to get rid of |
| blank pixels or blank lines at the _start_ of each line or |
| frame after each HSYNC or VSYNC, so that the image starts with |
| real RGB data (see regs 0x12, 0x13) (having set H_SIZE and, |
| V_SIZE you don't have to care about blank pixels or blank |
| lines at the end of each line or frame). |
| */ |
| |
| struct v4l2_pix_format pix_format; |
| /* |
| What you have to define here are: 1) initial 'width' and 'height' of |
| the target rectangle 2) the initial 'pixelformat', which can be |
| either V4L2_PIX_FMT_SN9C10X, V4L2_PIX_FMT_JPEG (for ompressed video) |
| or V4L2_PIX_FMT_SBGGR8 3) 'priv', which we'll be used to indicate |
| the number of bits per pixel for uncompressed video, 8 or 9 (despite |
| the current value of 'pixelformat'). |
| NOTE 1: both 'width' and 'height' _must_ be either 1/1 or 1/2 or 1/4 |
| of cropcap.defrect.width and cropcap.defrect.height. I |
| suggest 1/1. |
| NOTE 2: The initial compression quality is defined by the first bit |
| of reg 0x17 during the initialization of the image sensor. |
| NOTE 3: as said above, you have to program the SN9C1XX chip to get |
| rid of any blank pixels, so that the output of the sensor |
| matches the RGB bayer sequence (i.e. BGBGBG...GRGRGR). |
| */ |
| |
| int (*set_pix_format)(struct sn9c102_device* cam, |
| const struct v4l2_pix_format* pix); |
| /* |
| To be called on VIDIOC_S_FMT, when switching from the SBGGR8 to |
| SN9C10X pixel format or viceversa. On error return the corresponding |
| error code without rolling back. |
| */ |
| |
| /* |
| Do NOT write to the data below, it's READ ONLY. It is used by the |
| core module to store successfully updated values of the above |
| settings, for rollbacks..etc..in case of errors during atomic I/O |
| */ |
| struct v4l2_queryctrl _qctrl[SN9C102_MAX_CTRLS]; |
| struct v4l2_rect _rect; |
| }; |
| |
| /*****************************************************************************/ |
| |
| /* Private ioctl's for control settings supported by some image sensors */ |
| #define SN9C102_V4L2_CID_DAC_MAGNITUDE (V4L2_CID_PRIVATE_BASE + 0) |
| #define SN9C102_V4L2_CID_GREEN_BALANCE (V4L2_CID_PRIVATE_BASE + 1) |
| #define SN9C102_V4L2_CID_RESET_LEVEL (V4L2_CID_PRIVATE_BASE + 2) |
| #define SN9C102_V4L2_CID_PIXEL_BIAS_VOLTAGE (V4L2_CID_PRIVATE_BASE + 3) |
| #define SN9C102_V4L2_CID_GAMMA (V4L2_CID_PRIVATE_BASE + 4) |
| #define SN9C102_V4L2_CID_BAND_FILTER (V4L2_CID_PRIVATE_BASE + 5) |
| #define SN9C102_V4L2_CID_BRIGHT_LEVEL (V4L2_CID_PRIVATE_BASE + 6) |
| |
| #endif /* _SN9C102_SENSOR_H_ */ |