| /* |
| * UART driver for 68360 CPM SCC or SMC |
| * Copyright (c) 2000 D. Jeff Dionne <jeff@uclinux.org>, |
| * Copyright (c) 2000 Michael Leslie <mleslie@lineo.ca> |
| * Copyright (c) 1997 Dan Malek <dmalek@jlc.net> |
| * |
| * I used the serial.c driver as the framework for this driver. |
| * Give credit to those guys. |
| * The original code was written for the MBX860 board. I tried to make |
| * it generic, but there may be some assumptions in the structures that |
| * have to be fixed later. |
| * To save porting time, I did not bother to change any object names |
| * that are not accessed outside of this file. |
| * It still needs lots of work........When it was easy, I included code |
| * to support the SCCs, but this has never been tested, nor is it complete. |
| * Only the SCCs support modem control, so that is not complete either. |
| * |
| * This module exports the following rs232 io functions: |
| * |
| * int rs_360_init(void); |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/errno.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/timer.h> |
| #include <linux/interrupt.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/serial.h> |
| #include <linux/serialP.h> |
| #include <linux/major.h> |
| #include <linux/string.h> |
| #include <linux/fcntl.h> |
| #include <linux/ptrace.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <asm/irq.h> |
| #include <asm/m68360.h> |
| #include <asm/commproc.h> |
| |
| |
| #ifdef CONFIG_KGDB |
| extern void breakpoint(void); |
| extern void set_debug_traps(void); |
| extern int kgdb_output_string (const char* s, unsigned int count); |
| #endif |
| |
| |
| /* #ifdef CONFIG_SERIAL_CONSOLE */ /* This seems to be a post 2.0 thing - mles */ |
| #include <linux/console.h> |
| #include <linux/jiffies.h> |
| |
| /* this defines the index into rs_table for the port to use |
| */ |
| #ifndef CONFIG_SERIAL_CONSOLE_PORT |
| #define CONFIG_SERIAL_CONSOLE_PORT 1 /* ie SMC2 - note USE_SMC2 must be defined */ |
| #endif |
| /* #endif */ |
| |
| #if 0 |
| /* SCC2 for console |
| */ |
| #undef CONFIG_SERIAL_CONSOLE_PORT |
| #define CONFIG_SERIAL_CONSOLE_PORT 2 |
| #endif |
| |
| |
| #define TX_WAKEUP ASYNC_SHARE_IRQ |
| |
| static char *serial_name = "CPM UART driver"; |
| static char *serial_version = "0.03"; |
| |
| static struct tty_driver *serial_driver; |
| int serial_console_setup(struct console *co, char *options); |
| |
| /* |
| * Serial driver configuration section. Here are the various options: |
| */ |
| #define SERIAL_PARANOIA_CHECK |
| #define CONFIG_SERIAL_NOPAUSE_IO |
| #define SERIAL_DO_RESTART |
| |
| /* Set of debugging defines */ |
| |
| #undef SERIAL_DEBUG_INTR |
| #undef SERIAL_DEBUG_OPEN |
| #undef SERIAL_DEBUG_FLOW |
| #undef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT |
| |
| #define _INLINE_ inline |
| |
| #define DBG_CNT(s) |
| |
| /* We overload some of the items in the data structure to meet our |
| * needs. For example, the port address is the CPM parameter ram |
| * offset for the SCC or SMC. The maximum number of ports is 4 SCCs and |
| * 2 SMCs. The "hub6" field is used to indicate the channel number, with |
| * a flag indicating SCC or SMC, and the number is used as an index into |
| * the CPM parameter area for this device. |
| * The "type" field is currently set to 0, for PORT_UNKNOWN. It is |
| * not currently used. I should probably use it to indicate the port |
| * type of SMC or SCC. |
| * The SMCs do not support any modem control signals. |
| */ |
| #define smc_scc_num hub6 |
| #define NUM_IS_SCC ((int)0x00010000) |
| #define PORT_NUM(P) ((P) & 0x0000ffff) |
| |
| |
| #if defined (CONFIG_UCQUICC) |
| |
| volatile extern void *_periph_base; |
| /* sipex transceiver |
| * mode bits for are on pins |
| * |
| * SCC2 d16..19 |
| * SCC3 d20..23 |
| * SCC4 d24..27 |
| */ |
| #define SIPEX_MODE(n,m) ((m & 0x0f)<<(16+4*(n-1))) |
| |
| static uint sipex_mode_bits = 0x00000000; |
| |
| #endif |
| |
| /* There is no `serial_state' defined back here in 2.0. |
| * Try to get by with serial_struct |
| */ |
| /* #define serial_state serial_struct */ |
| |
| /* 2.4 -> 2.0 portability problem: async_icount in 2.4 has a few |
| * extras: */ |
| |
| #if 0 |
| struct async_icount_24 { |
| __u32 cts, dsr, rng, dcd, tx, rx; |
| __u32 frame, parity, overrun, brk; |
| __u32 buf_overrun; |
| } icount; |
| #endif |
| |
| #if 0 |
| |
| struct serial_state { |
| int magic; |
| int baud_base; |
| unsigned long port; |
| int irq; |
| int flags; |
| int hub6; |
| int type; |
| int line; |
| int revision; /* Chip revision (950) */ |
| int xmit_fifo_size; |
| int custom_divisor; |
| int count; |
| u8 *iomem_base; |
| u16 iomem_reg_shift; |
| unsigned short close_delay; |
| unsigned short closing_wait; /* time to wait before closing */ |
| struct async_icount_24 icount; |
| int io_type; |
| struct async_struct *info; |
| }; |
| #endif |
| |
| #define SSTATE_MAGIC 0x5302 |
| |
| |
| |
| /* SMC2 is sometimes used for low performance TDM interfaces. Define |
| * this as 1 if you want SMC2 as a serial port UART managed by this driver. |
| * Define this as 0 if you wish to use SMC2 for something else. |
| */ |
| #define USE_SMC2 1 |
| |
| #if 0 |
| /* Define SCC to ttySx mapping. */ |
| #define SCC_NUM_BASE (USE_SMC2 + 1) /* SCC base tty "number" */ |
| |
| /* Define which SCC is the first one to use for a serial port. These |
| * are 0-based numbers, i.e. this assumes the first SCC (SCC1) is used |
| * for Ethernet, and the first available SCC for serial UART is SCC2. |
| * NOTE: IF YOU CHANGE THIS, you have to change the PROFF_xxx and |
| * interrupt vectors in the table below to match. |
| */ |
| #define SCC_IDX_BASE 1 /* table index */ |
| #endif |
| |
| |
| /* Processors other than the 860 only get SMCs configured by default. |
| * Either they don't have SCCs or they are allocated somewhere else. |
| * Of course, there are now 860s without some SCCs, so we will need to |
| * address that someday. |
| * The Embedded Planet Multimedia I/O cards use TDM interfaces to the |
| * stereo codec parts, and we use SMC2 to help support that. |
| */ |
| static struct serial_state rs_table[] = { |
| /* type line PORT IRQ FLAGS smc_scc_num (F.K.A. hub6) */ |
| { 0, 0, PRSLOT_SMC1, CPMVEC_SMC1, 0, 0 } /* SMC1 ttyS0 */ |
| #if USE_SMC2 |
| ,{ 0, 0, PRSLOT_SMC2, CPMVEC_SMC2, 0, 1 } /* SMC2 ttyS1 */ |
| #endif |
| |
| #if defined(CONFIG_SERIAL_68360_SCC) |
| ,{ 0, 0, PRSLOT_SCC2, CPMVEC_SCC2, 0, (NUM_IS_SCC | 1) } /* SCC2 ttyS2 */ |
| ,{ 0, 0, PRSLOT_SCC3, CPMVEC_SCC3, 0, (NUM_IS_SCC | 2) } /* SCC3 ttyS3 */ |
| ,{ 0, 0, PRSLOT_SCC4, CPMVEC_SCC4, 0, (NUM_IS_SCC | 3) } /* SCC4 ttyS4 */ |
| #endif |
| }; |
| |
| #define NR_PORTS (sizeof(rs_table)/sizeof(struct serial_state)) |
| |
| /* The number of buffer descriptors and their sizes. |
| */ |
| #define RX_NUM_FIFO 4 |
| #define RX_BUF_SIZE 32 |
| #define TX_NUM_FIFO 4 |
| #define TX_BUF_SIZE 32 |
| |
| #define CONSOLE_NUM_FIFO 2 |
| #define CONSOLE_BUF_SIZE 4 |
| |
| char *console_fifos[CONSOLE_NUM_FIFO * CONSOLE_BUF_SIZE]; |
| |
| /* The async_struct in serial.h does not really give us what we |
| * need, so define our own here. |
| */ |
| typedef struct serial_info { |
| int magic; |
| int flags; |
| |
| struct serial_state *state; |
| /* struct serial_struct *state; */ |
| /* struct async_struct *state; */ |
| |
| struct tty_struct *tty; |
| int read_status_mask; |
| int ignore_status_mask; |
| int timeout; |
| int line; |
| int x_char; /* xon/xoff character */ |
| int close_delay; |
| unsigned short closing_wait; |
| unsigned short closing_wait2; |
| unsigned long event; |
| unsigned long last_active; |
| int blocked_open; /* # of blocked opens */ |
| struct work_struct tqueue; |
| struct work_struct tqueue_hangup; |
| wait_queue_head_t open_wait; |
| wait_queue_head_t close_wait; |
| |
| |
| /* CPM Buffer Descriptor pointers. |
| */ |
| QUICC_BD *rx_bd_base; |
| QUICC_BD *rx_cur; |
| QUICC_BD *tx_bd_base; |
| QUICC_BD *tx_cur; |
| } ser_info_t; |
| |
| |
| /* since kmalloc_init() does not get called until much after this initialization: */ |
| static ser_info_t quicc_ser_info[NR_PORTS]; |
| static char rx_buf_pool[NR_PORTS * RX_NUM_FIFO * RX_BUF_SIZE]; |
| static char tx_buf_pool[NR_PORTS * TX_NUM_FIFO * TX_BUF_SIZE]; |
| |
| static void change_speed(ser_info_t *info); |
| static void rs_360_wait_until_sent(struct tty_struct *tty, int timeout); |
| |
| static inline int serial_paranoia_check(ser_info_t *info, |
| char *name, const char *routine) |
| { |
| #ifdef SERIAL_PARANOIA_CHECK |
| static const char *badmagic = |
| "Warning: bad magic number for serial struct (%s) in %s\n"; |
| static const char *badinfo = |
| "Warning: null async_struct for (%s) in %s\n"; |
| |
| if (!info) { |
| printk(badinfo, name, routine); |
| return 1; |
| } |
| if (info->magic != SERIAL_MAGIC) { |
| printk(badmagic, name, routine); |
| return 1; |
| } |
| #endif |
| return 0; |
| } |
| |
| /* |
| * This is used to figure out the divisor speeds and the timeouts, |
| * indexed by the termio value. The generic CPM functions are responsible |
| * for setting and assigning baud rate generators for us. |
| */ |
| static int baud_table[] = { |
| 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, |
| 9600, 19200, 38400, 57600, 115200, 230400, 460800, 0 }; |
| |
| /* This sucks. There is a better way: */ |
| #if defined(CONFIG_CONSOLE_9600) |
| #define CONSOLE_BAUDRATE 9600 |
| #elif defined(CONFIG_CONSOLE_19200) |
| #define CONSOLE_BAUDRATE 19200 |
| #elif defined(CONFIG_CONSOLE_115200) |
| #define CONSOLE_BAUDRATE 115200 |
| #else |
| #warning "console baud rate undefined" |
| #define CONSOLE_BAUDRATE 9600 |
| #endif |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_stop() and rs_start() |
| * |
| * This routines are called before setting or resetting tty->stopped. |
| * They enable or disable transmitter interrupts, as necessary. |
| * ------------------------------------------------------------ |
| */ |
| static void rs_360_stop(struct tty_struct *tty) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| int idx; |
| unsigned long flags; |
| volatile struct scc_regs *sccp; |
| volatile struct smc_regs *smcp; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_stop")) |
| return; |
| |
| local_irq_save(flags); |
| idx = PORT_NUM(info->state->smc_scc_num); |
| if (info->state->smc_scc_num & NUM_IS_SCC) { |
| sccp = &pquicc->scc_regs[idx]; |
| sccp->scc_sccm &= ~UART_SCCM_TX; |
| } else { |
| /* smcp = &cpmp->cp_smc[idx]; */ |
| smcp = &pquicc->smc_regs[idx]; |
| smcp->smc_smcm &= ~SMCM_TX; |
| } |
| local_irq_restore(flags); |
| } |
| |
| |
| static void rs_360_start(struct tty_struct *tty) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| int idx; |
| unsigned long flags; |
| volatile struct scc_regs *sccp; |
| volatile struct smc_regs *smcp; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_stop")) |
| return; |
| |
| local_irq_save(flags); |
| idx = PORT_NUM(info->state->smc_scc_num); |
| if (info->state->smc_scc_num & NUM_IS_SCC) { |
| sccp = &pquicc->scc_regs[idx]; |
| sccp->scc_sccm |= UART_SCCM_TX; |
| } else { |
| smcp = &pquicc->smc_regs[idx]; |
| smcp->smc_smcm |= SMCM_TX; |
| } |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * ---------------------------------------------------------------------- |
| * |
| * Here starts the interrupt handling routines. All of the following |
| * subroutines are declared as inline and are folded into |
| * rs_interrupt(). They were separated out for readability's sake. |
| * |
| * Note: rs_interrupt() is a "fast" interrupt, which means that it |
| * runs with interrupts turned off. People who may want to modify |
| * rs_interrupt() should try to keep the interrupt handler as fast as |
| * possible. After you are done making modifications, it is not a bad |
| * idea to do: |
| * |
| * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c |
| * |
| * and look at the resulting assemble code in serial.s. |
| * |
| * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 |
| * ----------------------------------------------------------------------- |
| */ |
| |
| static _INLINE_ void receive_chars(ser_info_t *info) |
| { |
| struct tty_struct *tty = info->port.tty; |
| unsigned char ch, flag, *cp; |
| /*int ignored = 0;*/ |
| int i; |
| ushort status; |
| struct async_icount *icount; |
| /* struct async_icount_24 *icount; */ |
| volatile QUICC_BD *bdp; |
| |
| icount = &info->state->icount; |
| |
| /* Just loop through the closed BDs and copy the characters into |
| * the buffer. |
| */ |
| bdp = info->rx_cur; |
| for (;;) { |
| if (bdp->status & BD_SC_EMPTY) /* If this one is empty */ |
| break; /* we are all done */ |
| |
| /* The read status mask tell us what we should do with |
| * incoming characters, especially if errors occur. |
| * One special case is the use of BD_SC_EMPTY. If |
| * this is not set, we are supposed to be ignoring |
| * inputs. In this case, just mark the buffer empty and |
| * continue. |
| */ |
| if (!(info->read_status_mask & BD_SC_EMPTY)) { |
| bdp->status |= BD_SC_EMPTY; |
| bdp->status &= |
| ~(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV); |
| |
| if (bdp->status & BD_SC_WRAP) |
| bdp = info->rx_bd_base; |
| else |
| bdp++; |
| continue; |
| } |
| |
| /* Get the number of characters and the buffer pointer. |
| */ |
| i = bdp->length; |
| /* cp = (unsigned char *)__va(bdp->buf); */ |
| cp = (char *)bdp->buf; |
| status = bdp->status; |
| |
| while (i-- > 0) { |
| ch = *cp++; |
| icount->rx++; |
| |
| #ifdef SERIAL_DEBUG_INTR |
| printk("DR%02x:%02x...", ch, status); |
| #endif |
| flag = TTY_NORMAL; |
| |
| if (status & (BD_SC_BR | BD_SC_FR | |
| BD_SC_PR | BD_SC_OV)) { |
| /* |
| * For statistics only |
| */ |
| if (status & BD_SC_BR) |
| icount->brk++; |
| else if (status & BD_SC_PR) |
| icount->parity++; |
| else if (status & BD_SC_FR) |
| icount->frame++; |
| if (status & BD_SC_OV) |
| icount->overrun++; |
| |
| /* |
| * Now check to see if character should be |
| * ignored, and mask off conditions which |
| * should be ignored. |
| if (status & info->ignore_status_mask) { |
| if (++ignored > 100) |
| break; |
| continue; |
| } |
| */ |
| status &= info->read_status_mask; |
| |
| if (status & (BD_SC_BR)) { |
| #ifdef SERIAL_DEBUG_INTR |
| printk("handling break...."); |
| #endif |
| *tty->flip.flag_buf_ptr = TTY_BREAK; |
| if (info->flags & ASYNC_SAK) |
| do_SAK(tty); |
| } else if (status & BD_SC_PR) |
| flag = TTY_PARITY; |
| else if (status & BD_SC_FR) |
| flag = TTY_FRAME; |
| } |
| tty_insert_flip_char(tty, ch, flag); |
| if (status & BD_SC_OV) |
| /* |
| * Overrun is special, since it's |
| * reported immediately, and doesn't |
| * affect the current character |
| */ |
| tty_insert_flip_char(tty, 0, TTY_OVERRUN); |
| } |
| |
| /* This BD is ready to be used again. Clear status. |
| * Get next BD. |
| */ |
| bdp->status |= BD_SC_EMPTY; |
| bdp->status &= ~(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV); |
| |
| if (bdp->status & BD_SC_WRAP) |
| bdp = info->rx_bd_base; |
| else |
| bdp++; |
| } |
| |
| info->rx_cur = (QUICC_BD *)bdp; |
| |
| tty_schedule_flip(tty); |
| } |
| |
| static _INLINE_ void receive_break(ser_info_t *info) |
| { |
| struct tty_struct *tty = info->port.tty; |
| |
| info->state->icount.brk++; |
| /* Check to see if there is room in the tty buffer for |
| * the break. If not, we exit now, losing the break. FIXME |
| */ |
| tty_insert_flip_char(tty, 0, TTY_BREAK); |
| tty_schedule_flip(tty); |
| } |
| |
| static _INLINE_ void transmit_chars(ser_info_t *info) |
| { |
| |
| if ((info->flags & TX_WAKEUP) || |
| (info->port.tty->flags & (1 << TTY_DO_WRITE_WAKEUP))) { |
| schedule_work(&info->tqueue); |
| } |
| |
| #ifdef SERIAL_DEBUG_INTR |
| printk("THRE..."); |
| #endif |
| } |
| |
| #ifdef notdef |
| /* I need to do this for the SCCs, so it is left as a reminder. |
| */ |
| static _INLINE_ void check_modem_status(struct async_struct *info) |
| { |
| int status; |
| /* struct async_icount *icount; */ |
| struct async_icount_24 *icount; |
| |
| status = serial_in(info, UART_MSR); |
| |
| if (status & UART_MSR_ANY_DELTA) { |
| icount = &info->state->icount; |
| /* update input line counters */ |
| if (status & UART_MSR_TERI) |
| icount->rng++; |
| if (status & UART_MSR_DDSR) |
| icount->dsr++; |
| if (status & UART_MSR_DDCD) { |
| icount->dcd++; |
| #ifdef CONFIG_HARD_PPS |
| if ((info->flags & ASYNC_HARDPPS_CD) && |
| (status & UART_MSR_DCD)) |
| hardpps(); |
| #endif |
| } |
| if (status & UART_MSR_DCTS) |
| icount->cts++; |
| wake_up_interruptible(&info->delta_msr_wait); |
| } |
| |
| if ((info->flags & ASYNC_CHECK_CD) && (status & UART_MSR_DDCD)) { |
| #if (defined(SERIAL_DEBUG_OPEN) || defined(SERIAL_DEBUG_INTR)) |
| printk("ttys%d CD now %s...", info->line, |
| (status & UART_MSR_DCD) ? "on" : "off"); |
| #endif |
| if (status & UART_MSR_DCD) |
| wake_up_interruptible(&info->open_wait); |
| else { |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("scheduling hangup..."); |
| #endif |
| queue_task(&info->tqueue_hangup, |
| &tq_scheduler); |
| } |
| } |
| if (info->flags & ASYNC_CTS_FLOW) { |
| if (info->port.tty->hw_stopped) { |
| if (status & UART_MSR_CTS) { |
| #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) |
| printk("CTS tx start..."); |
| #endif |
| info->port.tty->hw_stopped = 0; |
| info->IER |= UART_IER_THRI; |
| serial_out(info, UART_IER, info->IER); |
| rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); |
| return; |
| } |
| } else { |
| if (!(status & UART_MSR_CTS)) { |
| #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) |
| printk("CTS tx stop..."); |
| #endif |
| info->port.tty->hw_stopped = 1; |
| info->IER &= ~UART_IER_THRI; |
| serial_out(info, UART_IER, info->IER); |
| } |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * This is the serial driver's interrupt routine for a single port |
| */ |
| /* static void rs_360_interrupt(void *dev_id) */ /* until and if we start servicing irqs here */ |
| static void rs_360_interrupt(int vec, void *dev_id) |
| { |
| u_char events; |
| int idx; |
| ser_info_t *info; |
| volatile struct smc_regs *smcp; |
| volatile struct scc_regs *sccp; |
| |
| info = dev_id; |
| |
| idx = PORT_NUM(info->state->smc_scc_num); |
| if (info->state->smc_scc_num & NUM_IS_SCC) { |
| sccp = &pquicc->scc_regs[idx]; |
| events = sccp->scc_scce; |
| if (events & SCCM_RX) |
| receive_chars(info); |
| if (events & SCCM_TX) |
| transmit_chars(info); |
| sccp->scc_scce = events; |
| } else { |
| smcp = &pquicc->smc_regs[idx]; |
| events = smcp->smc_smce; |
| if (events & SMCM_BRKE) |
| receive_break(info); |
| if (events & SMCM_RX) |
| receive_chars(info); |
| if (events & SMCM_TX) |
| transmit_chars(info); |
| smcp->smc_smce = events; |
| } |
| |
| #ifdef SERIAL_DEBUG_INTR |
| printk("rs_interrupt_single(%d, %x)...", |
| info->state->smc_scc_num, events); |
| #endif |
| #ifdef modem_control |
| check_modem_status(info); |
| #endif |
| info->last_active = jiffies; |
| #ifdef SERIAL_DEBUG_INTR |
| printk("end.\n"); |
| #endif |
| } |
| |
| |
| /* |
| * ------------------------------------------------------------------- |
| * Here ends the serial interrupt routines. |
| * ------------------------------------------------------------------- |
| */ |
| |
| |
| static void do_softint(void *private_) |
| { |
| ser_info_t *info = (ser_info_t *) private_; |
| struct tty_struct *tty; |
| |
| tty = info->port.tty; |
| if (!tty) |
| return; |
| |
| if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) |
| tty_wakeup(tty); |
| } |
| |
| |
| /* |
| * This routine is called from the scheduler tqueue when the interrupt |
| * routine has signalled that a hangup has occurred. The path of |
| * hangup processing is: |
| * |
| * serial interrupt routine -> (scheduler tqueue) -> |
| * do_serial_hangup() -> tty->hangup() -> rs_hangup() |
| * |
| */ |
| static void do_serial_hangup(void *private_) |
| { |
| struct async_struct *info = (struct async_struct *) private_; |
| struct tty_struct *tty; |
| |
| tty = info->port.tty; |
| if (!tty) |
| return; |
| |
| tty_hangup(tty); |
| } |
| |
| |
| static int startup(ser_info_t *info) |
| { |
| unsigned long flags; |
| int retval=0; |
| int idx; |
| /*struct serial_state *state = info->state;*/ |
| volatile struct smc_regs *smcp; |
| volatile struct scc_regs *sccp; |
| volatile struct smc_uart_pram *up; |
| volatile struct uart_pram *scup; |
| |
| |
| local_irq_save(flags); |
| |
| if (info->flags & ASYNC_INITIALIZED) { |
| goto errout; |
| } |
| |
| #ifdef maybe |
| if (!state->port || !state->type) { |
| if (info->port.tty) |
| set_bit(TTY_IO_ERROR, &info->port.tty->flags); |
| goto errout; |
| } |
| #endif |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("starting up ttys%d (irq %d)...", info->line, state->irq); |
| #endif |
| |
| |
| #ifdef modem_control |
| info->MCR = 0; |
| if (info->port.tty->termios->c_cflag & CBAUD) |
| info->MCR = UART_MCR_DTR | UART_MCR_RTS; |
| #endif |
| |
| if (info->port.tty) |
| clear_bit(TTY_IO_ERROR, &info->port.tty->flags); |
| |
| /* |
| * and set the speed of the serial port |
| */ |
| change_speed(info); |
| |
| idx = PORT_NUM(info->state->smc_scc_num); |
| if (info->state->smc_scc_num & NUM_IS_SCC) { |
| sccp = &pquicc->scc_regs[idx]; |
| scup = &pquicc->pram[info->state->port].scc.pscc.u; |
| |
| scup->mrblr = RX_BUF_SIZE; |
| scup->max_idl = RX_BUF_SIZE; |
| |
| sccp->scc_sccm |= (UART_SCCM_TX | UART_SCCM_RX); |
| sccp->scc_gsmr.w.low |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); |
| |
| } else { |
| smcp = &pquicc->smc_regs[idx]; |
| |
| /* Enable interrupts and I/O. |
| */ |
| smcp->smc_smcm |= (SMCM_RX | SMCM_TX); |
| smcp->smc_smcmr |= (SMCMR_REN | SMCMR_TEN); |
| |
| /* We can tune the buffer length and idle characters |
| * to take advantage of the entire incoming buffer size. |
| * If mrblr is something other than 1, maxidl has to be |
| * non-zero or we never get an interrupt. The maxidl |
| * is the number of character times we wait after reception |
| * of the last character before we decide no more characters |
| * are coming. |
| */ |
| /* up = (smc_uart_t *)&pquicc->cp_dparam[state->port]; */ |
| /* holy unionized structures, Batman: */ |
| up = &pquicc->pram[info->state->port].scc.pothers.idma_smc.psmc.u; |
| |
| up->mrblr = RX_BUF_SIZE; |
| up->max_idl = RX_BUF_SIZE; |
| |
| up->brkcr = 1; /* number of break chars */ |
| } |
| |
| info->flags |= ASYNC_INITIALIZED; |
| local_irq_restore(flags); |
| return 0; |
| |
| errout: |
| local_irq_restore(flags); |
| return retval; |
| } |
| |
| /* |
| * This routine will shutdown a serial port; interrupts are disabled, and |
| * DTR is dropped if the hangup on close termio flag is on. |
| */ |
| static void shutdown(ser_info_t *info) |
| { |
| unsigned long flags; |
| struct serial_state *state; |
| int idx; |
| volatile struct smc_regs *smcp; |
| volatile struct scc_regs *sccp; |
| |
| if (!(info->flags & ASYNC_INITIALIZED)) |
| return; |
| |
| state = info->state; |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("Shutting down serial port %d (irq %d)....", info->line, |
| state->irq); |
| #endif |
| |
| local_irq_save(flags); |
| |
| idx = PORT_NUM(state->smc_scc_num); |
| if (state->smc_scc_num & NUM_IS_SCC) { |
| sccp = &pquicc->scc_regs[idx]; |
| sccp->scc_gsmr.w.low &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); |
| #ifdef CONFIG_SERIAL_CONSOLE |
| /* We can't disable the transmitter if this is the |
| * system console. |
| */ |
| if ((state - rs_table) != CONFIG_SERIAL_CONSOLE_PORT) |
| #endif |
| sccp->scc_sccm &= ~(UART_SCCM_TX | UART_SCCM_RX); |
| } else { |
| smcp = &pquicc->smc_regs[idx]; |
| |
| /* Disable interrupts and I/O. |
| */ |
| smcp->smc_smcm &= ~(SMCM_RX | SMCM_TX); |
| #ifdef CONFIG_SERIAL_CONSOLE |
| /* We can't disable the transmitter if this is the |
| * system console. |
| */ |
| if ((state - rs_table) != CONFIG_SERIAL_CONSOLE_PORT) |
| #endif |
| smcp->smc_smcmr &= ~(SMCMR_REN | SMCMR_TEN); |
| } |
| |
| if (info->port.tty) |
| set_bit(TTY_IO_ERROR, &info->port.tty->flags); |
| |
| info->flags &= ~ASYNC_INITIALIZED; |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * This routine is called to set the UART divisor registers to match |
| * the specified baud rate for a serial port. |
| */ |
| static void change_speed(ser_info_t *info) |
| { |
| int baud_rate; |
| unsigned cflag, cval, scval, prev_mode; |
| int i, bits, sbits, idx; |
| unsigned long flags; |
| struct serial_state *state; |
| volatile struct smc_regs *smcp; |
| volatile struct scc_regs *sccp; |
| |
| if (!info->port.tty || !info->port.tty->termios) |
| return; |
| cflag = info->port.tty->termios->c_cflag; |
| |
| state = info->state; |
| |
| /* Character length programmed into the mode register is the |
| * sum of: 1 start bit, number of data bits, 0 or 1 parity bit, |
| * 1 or 2 stop bits, minus 1. |
| * The value 'bits' counts this for us. |
| */ |
| cval = 0; |
| scval = 0; |
| |
| /* byte size and parity */ |
| switch (cflag & CSIZE) { |
| case CS5: bits = 5; break; |
| case CS6: bits = 6; break; |
| case CS7: bits = 7; break; |
| case CS8: bits = 8; break; |
| /* Never happens, but GCC is too dumb to figure it out */ |
| default: bits = 8; break; |
| } |
| sbits = bits - 5; |
| |
| if (cflag & CSTOPB) { |
| cval |= SMCMR_SL; /* Two stops */ |
| scval |= SCU_PMSR_SL; |
| bits++; |
| } |
| if (cflag & PARENB) { |
| cval |= SMCMR_PEN; |
| scval |= SCU_PMSR_PEN; |
| bits++; |
| } |
| if (!(cflag & PARODD)) { |
| cval |= SMCMR_PM_EVEN; |
| scval |= (SCU_PMSR_REVP | SCU_PMSR_TEVP); |
| } |
| |
| /* Determine divisor based on baud rate */ |
| i = cflag & CBAUD; |
| if (i >= (sizeof(baud_table)/sizeof(int))) |
| baud_rate = 9600; |
| else |
| baud_rate = baud_table[i]; |
| |
| info->timeout = (TX_BUF_SIZE*HZ*bits); |
| info->timeout += HZ/50; /* Add .02 seconds of slop */ |
| |
| #ifdef modem_control |
| /* CTS flow control flag and modem status interrupts */ |
| info->IER &= ~UART_IER_MSI; |
| if (info->flags & ASYNC_HARDPPS_CD) |
| info->IER |= UART_IER_MSI; |
| if (cflag & CRTSCTS) { |
| info->flags |= ASYNC_CTS_FLOW; |
| info->IER |= UART_IER_MSI; |
| } else |
| info->flags &= ~ASYNC_CTS_FLOW; |
| if (cflag & CLOCAL) |
| info->flags &= ~ASYNC_CHECK_CD; |
| else { |
| info->flags |= ASYNC_CHECK_CD; |
| info->IER |= UART_IER_MSI; |
| } |
| serial_out(info, UART_IER, info->IER); |
| #endif |
| |
| /* |
| * Set up parity check flag |
| */ |
| info->read_status_mask = (BD_SC_EMPTY | BD_SC_OV); |
| if (I_INPCK(info->port.tty)) |
| info->read_status_mask |= BD_SC_FR | BD_SC_PR; |
| if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty)) |
| info->read_status_mask |= BD_SC_BR; |
| |
| /* |
| * Characters to ignore |
| */ |
| info->ignore_status_mask = 0; |
| if (I_IGNPAR(info->port.tty)) |
| info->ignore_status_mask |= BD_SC_PR | BD_SC_FR; |
| if (I_IGNBRK(info->port.tty)) { |
| info->ignore_status_mask |= BD_SC_BR; |
| /* |
| * If we're ignore parity and break indicators, ignore |
| * overruns too. (For real raw support). |
| */ |
| if (I_IGNPAR(info->port.tty)) |
| info->ignore_status_mask |= BD_SC_OV; |
| } |
| /* |
| * !!! ignore all characters if CREAD is not set |
| */ |
| if ((cflag & CREAD) == 0) |
| info->read_status_mask &= ~BD_SC_EMPTY; |
| local_irq_save(flags); |
| |
| /* Start bit has not been added (so don't, because we would just |
| * subtract it later), and we need to add one for the number of |
| * stops bits (there is always at least one). |
| */ |
| bits++; |
| idx = PORT_NUM(state->smc_scc_num); |
| if (state->smc_scc_num & NUM_IS_SCC) { |
| sccp = &pquicc->scc_regs[idx]; |
| sccp->scc_psmr = (sbits << 12) | scval; |
| } else { |
| smcp = &pquicc->smc_regs[idx]; |
| |
| /* Set the mode register. We want to keep a copy of the |
| * enables, because we want to put them back if they were |
| * present. |
| */ |
| prev_mode = smcp->smc_smcmr; |
| smcp->smc_smcmr = smcr_mk_clen(bits) | cval | SMCMR_SM_UART; |
| smcp->smc_smcmr |= (prev_mode & (SMCMR_REN | SMCMR_TEN)); |
| } |
| |
| m360_cpm_setbrg((state - rs_table), baud_rate); |
| |
| local_irq_restore(flags); |
| } |
| |
| static void rs_360_put_char(struct tty_struct *tty, unsigned char ch) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| volatile QUICC_BD *bdp; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_put_char")) |
| return 0; |
| |
| if (!tty) |
| return 0; |
| |
| bdp = info->tx_cur; |
| while (bdp->status & BD_SC_READY); |
| |
| /* *((char *)__va(bdp->buf)) = ch; */ |
| *((char *)bdp->buf) = ch; |
| bdp->length = 1; |
| bdp->status |= BD_SC_READY; |
| |
| /* Get next BD. |
| */ |
| if (bdp->status & BD_SC_WRAP) |
| bdp = info->tx_bd_base; |
| else |
| bdp++; |
| |
| info->tx_cur = (QUICC_BD *)bdp; |
| return 1; |
| |
| } |
| |
| static int rs_360_write(struct tty_struct * tty, |
| const unsigned char *buf, int count) |
| { |
| int c, ret = 0; |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| volatile QUICC_BD *bdp; |
| |
| #ifdef CONFIG_KGDB |
| /* Try to let stub handle output. Returns true if it did. */ |
| if (kgdb_output_string(buf, count)) |
| return ret; |
| #endif |
| |
| if (serial_paranoia_check(info, tty->name, "rs_write")) |
| return 0; |
| |
| if (!tty) |
| return 0; |
| |
| bdp = info->tx_cur; |
| |
| while (1) { |
| c = min(count, TX_BUF_SIZE); |
| |
| if (c <= 0) |
| break; |
| |
| if (bdp->status & BD_SC_READY) { |
| info->flags |= TX_WAKEUP; |
| break; |
| } |
| |
| /* memcpy(__va(bdp->buf), buf, c); */ |
| memcpy((void *)bdp->buf, buf, c); |
| |
| bdp->length = c; |
| bdp->status |= BD_SC_READY; |
| |
| buf += c; |
| count -= c; |
| ret += c; |
| |
| /* Get next BD. |
| */ |
| if (bdp->status & BD_SC_WRAP) |
| bdp = info->tx_bd_base; |
| else |
| bdp++; |
| info->tx_cur = (QUICC_BD *)bdp; |
| } |
| return ret; |
| } |
| |
| static int rs_360_write_room(struct tty_struct *tty) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| int ret; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_write_room")) |
| return 0; |
| |
| if ((info->tx_cur->status & BD_SC_READY) == 0) { |
| info->flags &= ~TX_WAKEUP; |
| ret = TX_BUF_SIZE; |
| } |
| else { |
| info->flags |= TX_WAKEUP; |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| /* I could track this with transmit counters....maybe later. |
| */ |
| static int rs_360_chars_in_buffer(struct tty_struct *tty) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_chars_in_buffer")) |
| return 0; |
| return 0; |
| } |
| |
| static void rs_360_flush_buffer(struct tty_struct *tty) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_flush_buffer")) |
| return; |
| |
| /* There is nothing to "flush", whatever we gave the CPM |
| * is on its way out. |
| */ |
| tty_wakeup(tty); |
| info->flags &= ~TX_WAKEUP; |
| } |
| |
| /* |
| * This function is used to send a high-priority XON/XOFF character to |
| * the device |
| */ |
| static void rs_360_send_xchar(struct tty_struct *tty, char ch) |
| { |
| volatile QUICC_BD *bdp; |
| |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_send_char")) |
| return; |
| |
| bdp = info->tx_cur; |
| while (bdp->status & BD_SC_READY); |
| |
| /* *((char *)__va(bdp->buf)) = ch; */ |
| *((char *)bdp->buf) = ch; |
| bdp->length = 1; |
| bdp->status |= BD_SC_READY; |
| |
| /* Get next BD. |
| */ |
| if (bdp->status & BD_SC_WRAP) |
| bdp = info->tx_bd_base; |
| else |
| bdp++; |
| |
| info->tx_cur = (QUICC_BD *)bdp; |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_throttle() |
| * |
| * This routine is called by the upper-layer tty layer to signal that |
| * incoming characters should be throttled. |
| * ------------------------------------------------------------ |
| */ |
| static void rs_360_throttle(struct tty_struct * tty) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| #ifdef SERIAL_DEBUG_THROTTLE |
| char buf[64]; |
| |
| printk("throttle %s: %d....\n", _tty_name(tty, buf), |
| tty->ldisc.chars_in_buffer(tty)); |
| #endif |
| |
| if (serial_paranoia_check(info, tty->name, "rs_throttle")) |
| return; |
| |
| if (I_IXOFF(tty)) |
| rs_360_send_xchar(tty, STOP_CHAR(tty)); |
| |
| #ifdef modem_control |
| if (tty->termios->c_cflag & CRTSCTS) |
| info->MCR &= ~UART_MCR_RTS; |
| |
| local_irq_disable(); |
| serial_out(info, UART_MCR, info->MCR); |
| local_irq_enable(); |
| #endif |
| } |
| |
| static void rs_360_unthrottle(struct tty_struct * tty) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| #ifdef SERIAL_DEBUG_THROTTLE |
| char buf[64]; |
| |
| printk("unthrottle %s: %d....\n", _tty_name(tty, buf), |
| tty->ldisc.chars_in_buffer(tty)); |
| #endif |
| |
| if (serial_paranoia_check(info, tty->name, "rs_unthrottle")) |
| return; |
| |
| if (I_IXOFF(tty)) { |
| if (info->x_char) |
| info->x_char = 0; |
| else |
| rs_360_send_xchar(tty, START_CHAR(tty)); |
| } |
| #ifdef modem_control |
| if (tty->termios->c_cflag & CRTSCTS) |
| info->MCR |= UART_MCR_RTS; |
| local_irq_disable(); |
| serial_out(info, UART_MCR, info->MCR); |
| local_irq_enable(); |
| #endif |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_ioctl() and friends |
| * ------------------------------------------------------------ |
| */ |
| |
| #ifdef maybe |
| /* |
| * get_lsr_info - get line status register info |
| * |
| * Purpose: Let user call ioctl() to get info when the UART physically |
| * is emptied. On bus types like RS485, the transmitter must |
| * release the bus after transmitting. This must be done when |
| * the transmit shift register is empty, not be done when the |
| * transmit holding register is empty. This functionality |
| * allows an RS485 driver to be written in user space. |
| */ |
| static int get_lsr_info(struct async_struct * info, unsigned int *value) |
| { |
| unsigned char status; |
| unsigned int result; |
| |
| local_irq_disable(); |
| status = serial_in(info, UART_LSR); |
| local_irq_enable(); |
| result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0); |
| return put_user(result,value); |
| } |
| #endif |
| |
| static int rs_360_tiocmget(struct tty_struct *tty) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| unsigned int result = 0; |
| #ifdef modem_control |
| unsigned char control, status; |
| |
| if (serial_paranoia_check(info, tty->name, __func__)) |
| return -ENODEV; |
| |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return -EIO; |
| |
| control = info->MCR; |
| local_irq_disable(); |
| status = serial_in(info, UART_MSR); |
| local_irq_enable(); |
| result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0) |
| | ((control & UART_MCR_DTR) ? TIOCM_DTR : 0) |
| #ifdef TIOCM_OUT1 |
| | ((control & UART_MCR_OUT1) ? TIOCM_OUT1 : 0) |
| | ((control & UART_MCR_OUT2) ? TIOCM_OUT2 : 0) |
| #endif |
| | ((status & UART_MSR_DCD) ? TIOCM_CAR : 0) |
| | ((status & UART_MSR_RI) ? TIOCM_RNG : 0) |
| | ((status & UART_MSR_DSR) ? TIOCM_DSR : 0) |
| | ((status & UART_MSR_CTS) ? TIOCM_CTS : 0); |
| #endif |
| return result; |
| } |
| |
| static int rs_360_tiocmset(struct tty_struct *tty, |
| unsigned int set, unsigned int clear) |
| { |
| #ifdef modem_control |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| unsigned int arg; |
| |
| if (serial_paranoia_check(info, tty->name, __func__)) |
| return -ENODEV; |
| |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return -EIO; |
| /* FIXME: locking on info->mcr */ |
| if (set & TIOCM_RTS) |
| info->mcr |= UART_MCR_RTS; |
| if (set & TIOCM_DTR) |
| info->mcr |= UART_MCR_DTR; |
| if (clear & TIOCM_RTS) |
| info->MCR &= ~UART_MCR_RTS; |
| if (clear & TIOCM_DTR) |
| info->MCR &= ~UART_MCR_DTR; |
| |
| #ifdef TIOCM_OUT1 |
| if (set & TIOCM_OUT1) |
| info->MCR |= UART_MCR_OUT1; |
| if (set & TIOCM_OUT2) |
| info->MCR |= UART_MCR_OUT2; |
| if (clear & TIOCM_OUT1) |
| info->MCR &= ~UART_MCR_OUT1; |
| if (clear & TIOCM_OUT2) |
| info->MCR &= ~UART_MCR_OUT2; |
| #endif |
| |
| local_irq_disable(); |
| serial_out(info, UART_MCR, info->MCR); |
| local_irq_enable(); |
| #endif |
| return 0; |
| } |
| |
| /* Sending a break is a two step process on the SMC/SCC. It is accomplished |
| * by sending a STOP TRANSMIT command followed by a RESTART TRANSMIT |
| * command. We take advantage of the begin/end functions to make this |
| * happen. |
| */ |
| static ushort smc_chan_map[] = { |
| CPM_CR_CH_SMC1, |
| CPM_CR_CH_SMC2 |
| }; |
| |
| static ushort scc_chan_map[] = { |
| CPM_CR_CH_SCC1, |
| CPM_CR_CH_SCC2, |
| CPM_CR_CH_SCC3, |
| CPM_CR_CH_SCC4 |
| }; |
| |
| static void begin_break(ser_info_t *info) |
| { |
| volatile QUICC *cp; |
| ushort chan; |
| int idx; |
| |
| cp = pquicc; |
| |
| idx = PORT_NUM(info->state->smc_scc_num); |
| if (info->state->smc_scc_num & NUM_IS_SCC) |
| chan = scc_chan_map[idx]; |
| else |
| chan = smc_chan_map[idx]; |
| |
| cp->cp_cr = mk_cr_cmd(chan, CPM_CR_STOP_TX) | CPM_CR_FLG; |
| while (cp->cp_cr & CPM_CR_FLG); |
| } |
| |
| static void end_break(ser_info_t *info) |
| { |
| volatile QUICC *cp; |
| ushort chan; |
| int idx; |
| |
| cp = pquicc; |
| |
| idx = PORT_NUM(info->state->smc_scc_num); |
| if (info->state->smc_scc_num & NUM_IS_SCC) |
| chan = scc_chan_map[idx]; |
| else |
| chan = smc_chan_map[idx]; |
| |
| cp->cp_cr = mk_cr_cmd(chan, CPM_CR_RESTART_TX) | CPM_CR_FLG; |
| while (cp->cp_cr & CPM_CR_FLG); |
| } |
| |
| /* |
| * This routine sends a break character out the serial port. |
| */ |
| static void send_break(ser_info_t *info, unsigned int duration) |
| { |
| #ifdef SERIAL_DEBUG_SEND_BREAK |
| printk("rs_send_break(%d) jiff=%lu...", duration, jiffies); |
| #endif |
| begin_break(info); |
| msleep_interruptible(duration); |
| end_break(info); |
| #ifdef SERIAL_DEBUG_SEND_BREAK |
| printk("done jiffies=%lu\n", jiffies); |
| #endif |
| } |
| |
| |
| /* |
| * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) |
| * Return: write counters to the user passed counter struct |
| * NB: both 1->0 and 0->1 transitions are counted except for |
| * RI where only 0->1 is counted. |
| */ |
| static int rs_360_get_icount(struct tty_struct *tty, |
| struct serial_icounter_struct *icount) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| struct async_icount cnow; |
| |
| local_irq_disable(); |
| cnow = info->state->icount; |
| local_irq_enable(); |
| |
| icount->cts = cnow.cts; |
| icount->dsr = cnow.dsr; |
| icount->rng = cnow.rng; |
| icount->dcd = cnow.dcd; |
| |
| return 0; |
| } |
| |
| static int rs_360_ioctl(struct tty_struct *tty, |
| unsigned int cmd, unsigned long arg) |
| { |
| int error; |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| int retval; |
| struct async_icount cnow; |
| /* struct async_icount_24 cnow;*/ /* kernel counter temps */ |
| struct serial_icounter_struct *p_cuser; /* user space */ |
| |
| if (serial_paranoia_check(info, tty->name, "rs_ioctl")) |
| return -ENODEV; |
| |
| if (cmd != TIOCMIWAIT) { |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return -EIO; |
| } |
| |
| switch (cmd) { |
| case TCSBRK: /* SVID version: non-zero arg --> no break */ |
| retval = tty_check_change(tty); |
| if (retval) |
| return retval; |
| tty_wait_until_sent(tty, 0); |
| if (signal_pending(current)) |
| return -EINTR; |
| if (!arg) { |
| send_break(info, 250); /* 1/4 second */ |
| if (signal_pending(current)) |
| return -EINTR; |
| } |
| return 0; |
| case TCSBRKP: /* support for POSIX tcsendbreak() */ |
| retval = tty_check_change(tty); |
| if (retval) |
| return retval; |
| tty_wait_until_sent(tty, 0); |
| if (signal_pending(current)) |
| return -EINTR; |
| send_break(info, arg ? arg*100 : 250); |
| if (signal_pending(current)) |
| return -EINTR; |
| return 0; |
| case TIOCSBRK: |
| retval = tty_check_change(tty); |
| if (retval) |
| return retval; |
| tty_wait_until_sent(tty, 0); |
| begin_break(info); |
| return 0; |
| case TIOCCBRK: |
| retval = tty_check_change(tty); |
| if (retval) |
| return retval; |
| end_break(info); |
| return 0; |
| #ifdef maybe |
| case TIOCSERGETLSR: /* Get line status register */ |
| return get_lsr_info(info, (unsigned int *) arg); |
| #endif |
| /* |
| * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change |
| * - mask passed in arg for lines of interest |
| * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) |
| * Caller should use TIOCGICOUNT to see which one it was |
| */ |
| case TIOCMIWAIT: |
| #ifdef modem_control |
| local_irq_disable(); |
| /* note the counters on entry */ |
| cprev = info->state->icount; |
| local_irq_enable(); |
| while (1) { |
| interruptible_sleep_on(&info->delta_msr_wait); |
| /* see if a signal did it */ |
| if (signal_pending(current)) |
| return -ERESTARTSYS; |
| local_irq_disable(); |
| cnow = info->state->icount; /* atomic copy */ |
| local_irq_enable(); |
| if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && |
| cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) |
| return -EIO; /* no change => error */ |
| if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || |
| ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || |
| ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || |
| ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) { |
| return 0; |
| } |
| cprev = cnow; |
| } |
| /* NOTREACHED */ |
| #else |
| return 0; |
| #endif |
| |
| |
| default: |
| return -ENOIOCTLCMD; |
| } |
| return 0; |
| } |
| |
| /* FIX UP modem control here someday...... |
| */ |
| static void rs_360_set_termios(struct tty_struct *tty, struct ktermios *old_termios) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| |
| change_speed(info); |
| |
| #ifdef modem_control |
| /* Handle transition to B0 status */ |
| if ((old_termios->c_cflag & CBAUD) && |
| !(tty->termios->c_cflag & CBAUD)) { |
| info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); |
| local_irq_disable(); |
| serial_out(info, UART_MCR, info->MCR); |
| local_irq_enable(); |
| } |
| |
| /* Handle transition away from B0 status */ |
| if (!(old_termios->c_cflag & CBAUD) && |
| (tty->termios->c_cflag & CBAUD)) { |
| info->MCR |= UART_MCR_DTR; |
| if (!tty->hw_stopped || |
| !(tty->termios->c_cflag & CRTSCTS)) { |
| info->MCR |= UART_MCR_RTS; |
| } |
| local_irq_disable(); |
| serial_out(info, UART_MCR, info->MCR); |
| local_irq_enable(); |
| } |
| |
| /* Handle turning off CRTSCTS */ |
| if ((old_termios->c_cflag & CRTSCTS) && |
| !(tty->termios->c_cflag & CRTSCTS)) { |
| tty->hw_stopped = 0; |
| rs_360_start(tty); |
| } |
| #endif |
| |
| #if 0 |
| /* |
| * No need to wake up processes in open wait, since they |
| * sample the CLOCAL flag once, and don't recheck it. |
| * XXX It's not clear whether the current behavior is correct |
| * or not. Hence, this may change..... |
| */ |
| if (!(old_termios->c_cflag & CLOCAL) && |
| (tty->termios->c_cflag & CLOCAL)) |
| wake_up_interruptible(&info->open_wait); |
| #endif |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_close() |
| * |
| * This routine is called when the serial port gets closed. First, we |
| * wait for the last remaining data to be sent. Then, we unlink its |
| * async structure from the interrupt chain if necessary, and we free |
| * that IRQ if nothing is left in the chain. |
| * ------------------------------------------------------------ |
| */ |
| static void rs_360_close(struct tty_struct *tty, struct file * filp) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| /* struct async_state *state; */ |
| struct serial_state *state; |
| unsigned long flags; |
| int idx; |
| volatile struct smc_regs *smcp; |
| volatile struct scc_regs *sccp; |
| |
| if (!info || serial_paranoia_check(info, tty->name, "rs_close")) |
| return; |
| |
| state = info->state; |
| |
| local_irq_save(flags); |
| |
| if (tty_hung_up_p(filp)) { |
| DBG_CNT("before DEC-hung"); |
| local_irq_restore(flags); |
| return; |
| } |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("rs_close ttys%d, count = %d\n", info->line, state->count); |
| #endif |
| if ((tty->count == 1) && (state->count != 1)) { |
| /* |
| * Uh, oh. tty->count is 1, which means that the tty |
| * structure will be freed. state->count should always |
| * be one in these conditions. If it's greater than |
| * one, we've got real problems, since it means the |
| * serial port won't be shutdown. |
| */ |
| printk("rs_close: bad serial port count; tty->count is 1, " |
| "state->count is %d\n", state->count); |
| state->count = 1; |
| } |
| if (--state->count < 0) { |
| printk("rs_close: bad serial port count for ttys%d: %d\n", |
| info->line, state->count); |
| state->count = 0; |
| } |
| if (state->count) { |
| DBG_CNT("before DEC-2"); |
| local_irq_restore(flags); |
| return; |
| } |
| info->flags |= ASYNC_CLOSING; |
| /* |
| * Now we wait for the transmit buffer to clear; and we notify |
| * the line discipline to only process XON/XOFF characters. |
| */ |
| tty->closing = 1; |
| if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE) |
| tty_wait_until_sent(tty, info->closing_wait); |
| /* |
| * At this point we stop accepting input. To do this, we |
| * disable the receive line status interrupts, and tell the |
| * interrupt driver to stop checking the data ready bit in the |
| * line status register. |
| */ |
| info->read_status_mask &= ~BD_SC_EMPTY; |
| if (info->flags & ASYNC_INITIALIZED) { |
| |
| idx = PORT_NUM(info->state->smc_scc_num); |
| if (info->state->smc_scc_num & NUM_IS_SCC) { |
| sccp = &pquicc->scc_regs[idx]; |
| sccp->scc_sccm &= ~UART_SCCM_RX; |
| sccp->scc_gsmr.w.low &= ~SCC_GSMRL_ENR; |
| } else { |
| smcp = &pquicc->smc_regs[idx]; |
| smcp->smc_smcm &= ~SMCM_RX; |
| smcp->smc_smcmr &= ~SMCMR_REN; |
| } |
| /* |
| * Before we drop DTR, make sure the UART transmitter |
| * has completely drained; this is especially |
| * important if there is a transmit FIFO! |
| */ |
| rs_360_wait_until_sent(tty, info->timeout); |
| } |
| shutdown(info); |
| rs_360_flush_buffer(tty); |
| tty_ldisc_flush(tty); |
| tty->closing = 0; |
| info->event = 0; |
| info->port.tty = NULL; |
| if (info->blocked_open) { |
| if (info->close_delay) { |
| msleep_interruptible(jiffies_to_msecs(info->close_delay)); |
| } |
| wake_up_interruptible(&info->open_wait); |
| } |
| info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING); |
| wake_up_interruptible(&info->close_wait); |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * rs_wait_until_sent() --- wait until the transmitter is empty |
| */ |
| static void rs_360_wait_until_sent(struct tty_struct *tty, int timeout) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| unsigned long orig_jiffies, char_time; |
| /*int lsr;*/ |
| volatile QUICC_BD *bdp; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_wait_until_sent")) |
| return; |
| |
| #ifdef maybe |
| if (info->state->type == PORT_UNKNOWN) |
| return; |
| #endif |
| |
| orig_jiffies = jiffies; |
| /* |
| * Set the check interval to be 1/5 of the estimated time to |
| * send a single character, and make it at least 1. The check |
| * interval should also be less than the timeout. |
| * |
| * Note: we have to use pretty tight timings here to satisfy |
| * the NIST-PCTS. |
| */ |
| char_time = 1; |
| if (timeout) |
| char_time = min(char_time, (unsigned long)timeout); |
| #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT |
| printk("In rs_wait_until_sent(%d) check=%lu...", timeout, char_time); |
| printk("jiff=%lu...", jiffies); |
| #endif |
| |
| /* We go through the loop at least once because we can't tell |
| * exactly when the last character exits the shifter. There can |
| * be at least two characters waiting to be sent after the buffers |
| * are empty. |
| */ |
| do { |
| #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT |
| printk("lsr = %d (jiff=%lu)...", lsr, jiffies); |
| #endif |
| /* current->counter = 0; make us low-priority */ |
| msleep_interruptible(jiffies_to_msecs(char_time)); |
| if (signal_pending(current)) |
| break; |
| if (timeout && (time_after(jiffies, orig_jiffies + timeout))) |
| break; |
| /* The 'tx_cur' is really the next buffer to send. We |
| * have to back up to the previous BD and wait for it |
| * to go. This isn't perfect, because all this indicates |
| * is the buffer is available. There are still characters |
| * in the CPM FIFO. |
| */ |
| bdp = info->tx_cur; |
| if (bdp == info->tx_bd_base) |
| bdp += (TX_NUM_FIFO-1); |
| else |
| bdp--; |
| } while (bdp->status & BD_SC_READY); |
| current->state = TASK_RUNNING; |
| #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT |
| printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies); |
| #endif |
| } |
| |
| /* |
| * rs_hangup() --- called by tty_hangup() when a hangup is signaled. |
| */ |
| static void rs_360_hangup(struct tty_struct *tty) |
| { |
| ser_info_t *info = (ser_info_t *)tty->driver_data; |
| struct serial_state *state = info->state; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_hangup")) |
| return; |
| |
| state = info->state; |
| |
| rs_360_flush_buffer(tty); |
| shutdown(info); |
| info->event = 0; |
| state->count = 0; |
| info->flags &= ~ASYNC_NORMAL_ACTIVE; |
| info->port.tty = NULL; |
| wake_up_interruptible(&info->open_wait); |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_open() and friends |
| * ------------------------------------------------------------ |
| */ |
| static int block_til_ready(struct tty_struct *tty, struct file * filp, |
| ser_info_t *info) |
| { |
| #ifdef DO_THIS_LATER |
| DECLARE_WAITQUEUE(wait, current); |
| #endif |
| struct serial_state *state = info->state; |
| int retval; |
| int do_clocal = 0; |
| |
| /* |
| * If the device is in the middle of being closed, then block |
| * until it's done, and then try again. |
| */ |
| if (tty_hung_up_p(filp) || |
| (info->flags & ASYNC_CLOSING)) { |
| if (info->flags & ASYNC_CLOSING) |
| interruptible_sleep_on(&info->close_wait); |
| #ifdef SERIAL_DO_RESTART |
| if (info->flags & ASYNC_HUP_NOTIFY) |
| return -EAGAIN; |
| else |
| return -ERESTARTSYS; |
| #else |
| return -EAGAIN; |
| #endif |
| } |
| |
| /* |
| * If non-blocking mode is set, or the port is not enabled, |
| * then make the check up front and then exit. |
| * If this is an SMC port, we don't have modem control to wait |
| * for, so just get out here. |
| */ |
| if ((filp->f_flags & O_NONBLOCK) || |
| (tty->flags & (1 << TTY_IO_ERROR)) || |
| !(info->state->smc_scc_num & NUM_IS_SCC)) { |
| info->flags |= ASYNC_NORMAL_ACTIVE; |
| return 0; |
| } |
| |
| if (tty->termios->c_cflag & CLOCAL) |
| do_clocal = 1; |
| |
| /* |
| * Block waiting for the carrier detect and the line to become |
| * free (i.e., not in use by the callout). While we are in |
| * this loop, state->count is dropped by one, so that |
| * rs_close() knows when to free things. We restore it upon |
| * exit, either normal or abnormal. |
| */ |
| retval = 0; |
| #ifdef DO_THIS_LATER |
| add_wait_queue(&info->open_wait, &wait); |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("block_til_ready before block: ttys%d, count = %d\n", |
| state->line, state->count); |
| #endif |
| local_irq_disable(); |
| if (!tty_hung_up_p(filp)) |
| state->count--; |
| local_irq_enable(); |
| info->blocked_open++; |
| while (1) { |
| local_irq_disable(); |
| if (tty->termios->c_cflag & CBAUD) |
| serial_out(info, UART_MCR, |
| serial_inp(info, UART_MCR) | |
| (UART_MCR_DTR | UART_MCR_RTS)); |
| local_irq_enable(); |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (tty_hung_up_p(filp) || |
| !(info->flags & ASYNC_INITIALIZED)) { |
| #ifdef SERIAL_DO_RESTART |
| if (info->flags & ASYNC_HUP_NOTIFY) |
| retval = -EAGAIN; |
| else |
| retval = -ERESTARTSYS; |
| #else |
| retval = -EAGAIN; |
| #endif |
| break; |
| } |
| if (!(info->flags & ASYNC_CLOSING) && |
| (do_clocal || (serial_in(info, UART_MSR) & |
| UART_MSR_DCD))) |
| break; |
| if (signal_pending(current)) { |
| retval = -ERESTARTSYS; |
| break; |
| } |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("block_til_ready blocking: ttys%d, count = %d\n", |
| info->line, state->count); |
| #endif |
| tty_unlock(); |
| schedule(); |
| tty_lock(); |
| } |
| current->state = TASK_RUNNING; |
| remove_wait_queue(&info->open_wait, &wait); |
| if (!tty_hung_up_p(filp)) |
| state->count++; |
| info->blocked_open--; |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("block_til_ready after blocking: ttys%d, count = %d\n", |
| info->line, state->count); |
| #endif |
| #endif /* DO_THIS_LATER */ |
| if (retval) |
| return retval; |
| info->flags |= ASYNC_NORMAL_ACTIVE; |
| return 0; |
| } |
| |
| static int get_async_struct(int line, ser_info_t **ret_info) |
| { |
| struct serial_state *sstate; |
| |
| sstate = rs_table + line; |
| if (sstate->info) { |
| sstate->count++; |
| *ret_info = (ser_info_t *)sstate->info; |
| return 0; |
| } |
| else { |
| return -ENOMEM; |
| } |
| } |
| |
| /* |
| * This routine is called whenever a serial port is opened. It |
| * enables interrupts for a serial port, linking in its async structure into |
| * the IRQ chain. It also performs the serial-specific |
| * initialization for the tty structure. |
| */ |
| static int rs_360_open(struct tty_struct *tty, struct file * filp) |
| { |
| ser_info_t *info; |
| int retval, line; |
| |
| line = tty->index; |
| if ((line < 0) || (line >= NR_PORTS)) |
| return -ENODEV; |
| retval = get_async_struct(line, &info); |
| if (retval) |
| return retval; |
| if (serial_paranoia_check(info, tty->name, "rs_open")) |
| return -ENODEV; |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("rs_open %s, count = %d\n", tty->name, info->state->count); |
| #endif |
| tty->driver_data = info; |
| info->port.tty = tty; |
| |
| /* |
| * Start up serial port |
| */ |
| retval = startup(info); |
| if (retval) |
| return retval; |
| |
| retval = block_til_ready(tty, filp, info); |
| if (retval) { |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("rs_open returning after block_til_ready with %d\n", |
| retval); |
| #endif |
| return retval; |
| } |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("rs_open %s successful...", tty->name); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * /proc fs routines.... |
| */ |
| |
| static inline int line_info(char *buf, struct serial_state *state) |
| { |
| #ifdef notdef |
| struct async_struct *info = state->info, scr_info; |
| char stat_buf[30], control, status; |
| #endif |
| int ret; |
| |
| ret = sprintf(buf, "%d: uart:%s port:%X irq:%d", |
| state->line, |
| (state->smc_scc_num & NUM_IS_SCC) ? "SCC" : "SMC", |
| (unsigned int)(state->port), state->irq); |
| |
| if (!state->port || (state->type == PORT_UNKNOWN)) { |
| ret += sprintf(buf+ret, "\n"); |
| return ret; |
| } |
| |
| #ifdef notdef |
| /* |
| * Figure out the current RS-232 lines |
| */ |
| if (!info) { |
| info = &scr_info; /* This is just for serial_{in,out} */ |
| |
| info->magic = SERIAL_MAGIC; |
| info->port = state->port; |
| info->flags = state->flags; |
| info->quot = 0; |
| info->port.tty = NULL; |
| } |
| local_irq_disable(); |
| status = serial_in(info, UART_MSR); |
| control = info ? info->MCR : serial_in(info, UART_MCR); |
| local_irq_enable(); |
| |
| stat_buf[0] = 0; |
| stat_buf[1] = 0; |
| if (control & UART_MCR_RTS) |
| strcat(stat_buf, "|RTS"); |
| if (status & UART_MSR_CTS) |
| strcat(stat_buf, "|CTS"); |
| if (control & UART_MCR_DTR) |
| strcat(stat_buf, "|DTR"); |
| if (status & UART_MSR_DSR) |
| strcat(stat_buf, "|DSR"); |
| if (status & UART_MSR_DCD) |
| strcat(stat_buf, "|CD"); |
| if (status & UART_MSR_RI) |
| strcat(stat_buf, "|RI"); |
| |
| if (info->quot) { |
| ret += sprintf(buf+ret, " baud:%d", |
| state->baud_base / info->quot); |
| } |
| |
| ret += sprintf(buf+ret, " tx:%d rx:%d", |
| state->icount.tx, state->icount.rx); |
| |
| if (state->icount.frame) |
| ret += sprintf(buf+ret, " fe:%d", state->icount.frame); |
| |
| if (state->icount.parity) |
| ret += sprintf(buf+ret, " pe:%d", state->icount.parity); |
| |
| if (state->icount.brk) |
| ret += sprintf(buf+ret, " brk:%d", state->icount.brk); |
| |
| if (state->icount.overrun) |
| ret += sprintf(buf+ret, " oe:%d", state->icount.overrun); |
| |
| /* |
| * Last thing is the RS-232 status lines |
| */ |
| ret += sprintf(buf+ret, " %s\n", stat_buf+1); |
| #endif |
| return ret; |
| } |
| |
| int rs_360_read_proc(char *page, char **start, off_t off, int count, |
| int *eof, void *data) |
| { |
| int i, len = 0; |
| off_t begin = 0; |
| |
| len += sprintf(page, "serinfo:1.0 driver:%s\n", serial_version); |
| for (i = 0; i < NR_PORTS && len < 4000; i++) { |
| len += line_info(page + len, &rs_table[i]); |
| if (len+begin > off+count) |
| goto done; |
| if (len+begin < off) { |
| begin += len; |
| len = 0; |
| } |
| } |
| *eof = 1; |
| done: |
| if (off >= len+begin) |
| return 0; |
| *start = page + (begin-off); |
| return ((count < begin+len-off) ? count : begin+len-off); |
| } |
| |
| /* |
| * --------------------------------------------------------------------- |
| * rs_init() and friends |
| * |
| * rs_init() is called at boot-time to initialize the serial driver. |
| * --------------------------------------------------------------------- |
| */ |
| |
| /* |
| * This routine prints out the appropriate serial driver version |
| * number, and identifies which options were configured into this |
| * driver. |
| */ |
| static _INLINE_ void show_serial_version(void) |
| { |
| printk(KERN_INFO "%s version %s\n", serial_name, serial_version); |
| } |
| |
| |
| /* |
| * The serial console driver used during boot. Note that these names |
| * clash with those found in "serial.c", so we currently can't support |
| * the 16xxx uarts and these at the same time. I will fix this to become |
| * an indirect function call from tty_io.c (or something). |
| */ |
| |
| #ifdef CONFIG_SERIAL_CONSOLE |
| |
| /* |
| * Print a string to the serial port trying not to disturb any possible |
| * real use of the port... |
| */ |
| static void my_console_write(int idx, const char *s, |
| unsigned count) |
| { |
| struct serial_state *ser; |
| ser_info_t *info; |
| unsigned i; |
| QUICC_BD *bdp, *bdbase; |
| volatile struct smc_uart_pram *up; |
| volatile u_char *cp; |
| |
| ser = rs_table + idx; |
| |
| |
| /* If the port has been initialized for general use, we have |
| * to use the buffer descriptors allocated there. Otherwise, |
| * we simply use the single buffer allocated. |
| */ |
| if ((info = (ser_info_t *)ser->info) != NULL) { |
| bdp = info->tx_cur; |
| bdbase = info->tx_bd_base; |
| } |
| else { |
| /* Pointer to UART in parameter ram. |
| */ |
| /* up = (smc_uart_t *)&cpmp->cp_dparam[ser->port]; */ |
| up = &pquicc->pram[ser->port].scc.pothers.idma_smc.psmc.u; |
| |
| /* Get the address of the host memory buffer. |
| */ |
| bdp = bdbase = (QUICC_BD *)((uint)pquicc + (uint)up->tbase); |
| } |
| |
| /* |
| * We need to gracefully shut down the transmitter, disable |
| * interrupts, then send our bytes out. |
| */ |
| |
| /* |
| * Now, do each character. This is not as bad as it looks |
| * since this is a holding FIFO and not a transmitting FIFO. |
| * We could add the complexity of filling the entire transmit |
| * buffer, but we would just wait longer between accesses...... |
| */ |
| for (i = 0; i < count; i++, s++) { |
| /* Wait for transmitter fifo to empty. |
| * Ready indicates output is ready, and xmt is doing |
| * that, not that it is ready for us to send. |
| */ |
| while (bdp->status & BD_SC_READY); |
| |
| /* Send the character out. |
| */ |
| cp = bdp->buf; |
| *cp = *s; |
| |
| bdp->length = 1; |
| bdp->status |= BD_SC_READY; |
| |
| if (bdp->status & BD_SC_WRAP) |
| bdp = bdbase; |
| else |
| bdp++; |
| |
| /* if a LF, also do CR... */ |
| if (*s == 10) { |
| while (bdp->status & BD_SC_READY); |
| /* cp = __va(bdp->buf); */ |
| cp = bdp->buf; |
| *cp = 13; |
| bdp->length = 1; |
| bdp->status |= BD_SC_READY; |
| |
| if (bdp->status & BD_SC_WRAP) { |
| bdp = bdbase; |
| } |
| else { |
| bdp++; |
| } |
| } |
| } |
| |
| /* |
| * Finally, Wait for transmitter & holding register to empty |
| * and restore the IER |
| */ |
| while (bdp->status & BD_SC_READY); |
| |
| if (info) |
| info->tx_cur = (QUICC_BD *)bdp; |
| } |
| |
| static void serial_console_write(struct console *c, const char *s, |
| unsigned count) |
| { |
| #ifdef CONFIG_KGDB |
| /* Try to let stub handle output. Returns true if it did. */ |
| if (kgdb_output_string(s, count)) |
| return; |
| #endif |
| my_console_write(c->index, s, count); |
| } |
| |
| |
| |
| /*void console_print_68360(const char *p) |
| { |
| const char *cp = p; |
| int i; |
| |
| for (i=0;cp[i]!=0;i++); |
| |
| serial_console_write (p, i); |
| |
| //Comment this if you want to have a strict interrupt-driven output |
| //rs_fair_output(); |
| |
| return; |
| }*/ |
| |
| |
| |
| |
| |
| |
| #ifdef CONFIG_XMON |
| int |
| xmon_360_write(const char *s, unsigned count) |
| { |
| my_console_write(0, s, count); |
| return(count); |
| } |
| #endif |
| |
| #ifdef CONFIG_KGDB |
| void |
| putDebugChar(char ch) |
| { |
| my_console_write(0, &ch, 1); |
| } |
| #endif |
| |
| /* |
| * Receive character from the serial port. This only works well |
| * before the port is initialized for real use. |
| */ |
| static int my_console_wait_key(int idx, int xmon, char *obuf) |
| { |
| struct serial_state *ser; |
| u_char c, *cp; |
| ser_info_t *info; |
| QUICC_BD *bdp; |
| volatile struct smc_uart_pram *up; |
| int i; |
| |
| ser = rs_table + idx; |
| |
| /* Get the address of the host memory buffer. |
| * If the port has been initialized for general use, we must |
| * use information from the port structure. |
| */ |
| if ((info = (ser_info_t *)ser->info)) |
| bdp = info->rx_cur; |
| else |
| /* bdp = (QUICC_BD *)&cpmp->cp_dpmem[up->smc_rbase]; */ |
| bdp = (QUICC_BD *)((uint)pquicc + (uint)up->tbase); |
| |
| /* Pointer to UART in parameter ram. |
| */ |
| /* up = (smc_uart_t *)&cpmp->cp_dparam[ser->port]; */ |
| up = &pquicc->pram[info->state->port].scc.pothers.idma_smc.psmc.u; |
| |
| /* |
| * We need to gracefully shut down the receiver, disable |
| * interrupts, then read the input. |
| * XMON just wants a poll. If no character, return -1, else |
| * return the character. |
| */ |
| if (!xmon) { |
| while (bdp->status & BD_SC_EMPTY); |
| } |
| else { |
| if (bdp->status & BD_SC_EMPTY) |
| return -1; |
| } |
| |
| cp = (char *)bdp->buf; |
| |
| if (obuf) { |
| i = c = bdp->length; |
| while (i-- > 0) |
| *obuf++ = *cp++; |
| } |
| else { |
| c = *cp; |
| } |
| bdp->status |= BD_SC_EMPTY; |
| |
| if (info) { |
| if (bdp->status & BD_SC_WRAP) { |
| bdp = info->rx_bd_base; |
| } |
| else { |
| bdp++; |
| } |
| info->rx_cur = (QUICC_BD *)bdp; |
| } |
| |
| return((int)c); |
| } |
| |
| static int serial_console_wait_key(struct console *co) |
| { |
| return(my_console_wait_key(co->index, 0, NULL)); |
| } |
| |
| #ifdef CONFIG_XMON |
| int |
| xmon_360_read_poll(void) |
| { |
| return(my_console_wait_key(0, 1, NULL)); |
| } |
| |
| int |
| xmon_360_read_char(void) |
| { |
| return(my_console_wait_key(0, 0, NULL)); |
| } |
| #endif |
| |
| #ifdef CONFIG_KGDB |
| static char kgdb_buf[RX_BUF_SIZE], *kgdp; |
| static int kgdb_chars; |
| |
| unsigned char |
| getDebugChar(void) |
| { |
| if (kgdb_chars <= 0) { |
| kgdb_chars = my_console_wait_key(0, 0, kgdb_buf); |
| kgdp = kgdb_buf; |
| } |
| kgdb_chars--; |
| |
| return(*kgdp++); |
| } |
| |
| void kgdb_interruptible(int state) |
| { |
| } |
| void kgdb_map_scc(void) |
| { |
| struct serial_state *ser; |
| uint mem_addr; |
| volatile QUICC_BD *bdp; |
| volatile smc_uart_t *up; |
| |
| cpmp = (cpm360_t *)&(((immap_t *)IMAP_ADDR)->im_cpm); |
| |
| /* To avoid data cache CPM DMA coherency problems, allocate a |
| * buffer in the CPM DPRAM. This will work until the CPM and |
| * serial ports are initialized. At that time a memory buffer |
| * will be allocated. |
| * The port is already initialized from the boot procedure, all |
| * we do here is give it a different buffer and make it a FIFO. |
| */ |
| |
| ser = rs_table; |
| |
| /* Right now, assume we are using SMCs. |
| */ |
| up = (smc_uart_t *)&cpmp->cp_dparam[ser->port]; |
| |
| /* Allocate space for an input FIFO, plus a few bytes for output. |
| * Allocate bytes to maintain word alignment. |
| */ |
| mem_addr = (uint)(&cpmp->cp_dpmem[0x1000]); |
| |
| /* Set the physical address of the host memory buffers in |
| * the buffer descriptors. |
| */ |
| bdp = (QUICC_BD *)&cpmp->cp_dpmem[up->smc_rbase]; |
| bdp->buf = mem_addr; |
| |
| bdp = (QUICC_BD *)&cpmp->cp_dpmem[up->smc_tbase]; |
| bdp->buf = mem_addr+RX_BUF_SIZE; |
| |
| up->smc_mrblr = RX_BUF_SIZE; /* receive buffer length */ |
| up->smc_maxidl = RX_BUF_SIZE; |
| } |
| #endif |
| |
| static struct tty_struct *serial_console_device(struct console *c, int *index) |
| { |
| *index = c->index; |
| return serial_driver; |
| } |
| |
| |
| struct console sercons = { |
| .name = "ttyS", |
| .write = serial_console_write, |
| .device = serial_console_device, |
| .wait_key = serial_console_wait_key, |
| .setup = serial_console_setup, |
| .flags = CON_PRINTBUFFER, |
| .index = CONFIG_SERIAL_CONSOLE_PORT, |
| }; |
| |
| |
| |
| /* |
| * Register console. |
| */ |
| long console_360_init(long kmem_start, long kmem_end) |
| { |
| register_console(&sercons); |
| /*register_console (console_print_68360); - 2.0.38 only required a write |
| function pointer. */ |
| return kmem_start; |
| } |
| |
| #endif |
| |
| /* Index in baud rate table of the default console baud rate. |
| */ |
| static int baud_idx; |
| |
| static const struct tty_operations rs_360_ops = { |
| .owner = THIS_MODULE, |
| .open = rs_360_open, |
| .close = rs_360_close, |
| .write = rs_360_write, |
| .put_char = rs_360_put_char, |
| .write_room = rs_360_write_room, |
| .chars_in_buffer = rs_360_chars_in_buffer, |
| .flush_buffer = rs_360_flush_buffer, |
| .ioctl = rs_360_ioctl, |
| .throttle = rs_360_throttle, |
| .unthrottle = rs_360_unthrottle, |
| /* .send_xchar = rs_360_send_xchar, */ |
| .set_termios = rs_360_set_termios, |
| .stop = rs_360_stop, |
| .start = rs_360_start, |
| .hangup = rs_360_hangup, |
| /* .wait_until_sent = rs_360_wait_until_sent, */ |
| /* .read_proc = rs_360_read_proc, */ |
| .tiocmget = rs_360_tiocmget, |
| .tiocmset = rs_360_tiocmset, |
| .get_icount = rs_360_get_icount, |
| }; |
| |
| static int __init rs_360_init(void) |
| { |
| struct serial_state * state; |
| ser_info_t *info; |
| void *mem_addr; |
| uint dp_addr, iobits; |
| int i, j, idx; |
| ushort chan; |
| QUICC_BD *bdp; |
| volatile QUICC *cp; |
| volatile struct smc_regs *sp; |
| volatile struct smc_uart_pram *up; |
| volatile struct scc_regs *scp; |
| volatile struct uart_pram *sup; |
| /* volatile immap_t *immap; */ |
| |
| serial_driver = alloc_tty_driver(NR_PORTS); |
| if (!serial_driver) |
| return -1; |
| |
| show_serial_version(); |
| |
| serial_driver->name = "ttyS"; |
| serial_driver->major = TTY_MAJOR; |
| serial_driver->minor_start = 64; |
| serial_driver->type = TTY_DRIVER_TYPE_SERIAL; |
| serial_driver->subtype = SERIAL_TYPE_NORMAL; |
| serial_driver->init_termios = tty_std_termios; |
| serial_driver->init_termios.c_cflag = |
| baud_idx | CS8 | CREAD | HUPCL | CLOCAL; |
| serial_driver->flags = TTY_DRIVER_REAL_RAW; |
| tty_set_operations(serial_driver, &rs_360_ops); |
| |
| if (tty_register_driver(serial_driver)) |
| panic("Couldn't register serial driver\n"); |
| |
| cp = pquicc; /* Get pointer to Communication Processor */ |
| /* immap = (immap_t *)IMAP_ADDR; */ /* and to internal registers */ |
| |
| |
| /* Configure SCC2, SCC3, and SCC4 instead of port A parallel I/O. |
| */ |
| /* The "standard" configuration through the 860. |
| */ |
| /* immap->im_ioport.iop_papar |= 0x00fc; */ |
| /* immap->im_ioport.iop_padir &= ~0x00fc; */ |
| /* immap->im_ioport.iop_paodr &= ~0x00fc; */ |
| cp->pio_papar |= 0x00fc; |
| cp->pio_padir &= ~0x00fc; |
| /* cp->pio_paodr &= ~0x00fc; */ |
| |
| |
| /* Since we don't yet do modem control, connect the port C pins |
| * as general purpose I/O. This will assert CTS and CD for the |
| * SCC ports. |
| */ |
| /* FIXME: see 360um p.7-365 and 860um p.34-12 |
| * I can't make sense of these bits - mleslie*/ |
| /* immap->im_ioport.iop_pcdir |= 0x03c6; */ |
| /* immap->im_ioport.iop_pcpar &= ~0x03c6; */ |
| |
| /* cp->pio_pcdir |= 0x03c6; */ |
| /* cp->pio_pcpar &= ~0x03c6; */ |
| |
| |
| |
| /* Connect SCC2 and SCC3 to NMSI. Connect BRG3 to SCC2 and |
| * BRG4 to SCC3. |
| */ |
| cp->si_sicr &= ~0x00ffff00; |
| cp->si_sicr |= 0x001b1200; |
| |
| #ifdef CONFIG_PP04 |
| /* Frequentis PP04 forced to RS-232 until we know better. |
| * Port C 12 and 13 low enables RS-232 on SCC3 and SCC4. |
| */ |
| immap->im_ioport.iop_pcdir |= 0x000c; |
| immap->im_ioport.iop_pcpar &= ~0x000c; |
| immap->im_ioport.iop_pcdat &= ~0x000c; |
| |
| /* This enables the TX driver. |
| */ |
| cp->cp_pbpar &= ~0x6000; |
| cp->cp_pbdat &= ~0x6000; |
| #endif |
| |
| for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) { |
| state->magic = SSTATE_MAGIC; |
| state->line = i; |
| state->type = PORT_UNKNOWN; |
| state->custom_divisor = 0; |
| state->close_delay = 5*HZ/10; |
| state->closing_wait = 30*HZ; |
| state->icount.cts = state->icount.dsr = |
| state->icount.rng = state->icount.dcd = 0; |
| state->icount.rx = state->icount.tx = 0; |
| state->icount.frame = state->icount.parity = 0; |
| state->icount.overrun = state->icount.brk = 0; |
| printk(KERN_INFO "ttyS%d at irq 0x%02x is an %s\n", |
| i, (unsigned int)(state->irq), |
| (state->smc_scc_num & NUM_IS_SCC) ? "SCC" : "SMC"); |
| |
| #ifdef CONFIG_SERIAL_CONSOLE |
| /* If we just printed the message on the console port, and |
| * we are about to initialize it for general use, we have |
| * to wait a couple of character times for the CR/NL to |
| * make it out of the transmit buffer. |
| */ |
| if (i == CONFIG_SERIAL_CONSOLE_PORT) |
| mdelay(8); |
| |
| |
| /* idx = PORT_NUM(info->state->smc_scc_num); */ |
| /* if (info->state->smc_scc_num & NUM_IS_SCC) */ |
| /* chan = scc_chan_map[idx]; */ |
| /* else */ |
| /* chan = smc_chan_map[idx]; */ |
| |
| /* cp->cp_cr = mk_cr_cmd(chan, CPM_CR_STOP_TX) | CPM_CR_FLG; */ |
| /* while (cp->cp_cr & CPM_CR_FLG); */ |
| |
| #endif |
| /* info = kmalloc(sizeof(ser_info_t), GFP_KERNEL); */ |
| info = &quicc_ser_info[i]; |
| if (info) { |
| memset (info, 0, sizeof(ser_info_t)); |
| info->magic = SERIAL_MAGIC; |
| info->line = i; |
| info->flags = state->flags; |
| INIT_WORK(&info->tqueue, do_softint, info); |
| INIT_WORK(&info->tqueue_hangup, do_serial_hangup, info); |
| init_waitqueue_head(&info->open_wait); |
| init_waitqueue_head(&info->close_wait); |
| info->state = state; |
| state->info = (struct async_struct *)info; |
| |
| /* We need to allocate a transmit and receive buffer |
| * descriptors from dual port ram, and a character |
| * buffer area from host mem. |
| */ |
| dp_addr = m360_cpm_dpalloc(sizeof(QUICC_BD) * RX_NUM_FIFO); |
| |
| /* Allocate space for FIFOs in the host memory. |
| * (for now this is from a static array of buffers :( |
| */ |
| /* mem_addr = m360_cpm_hostalloc(RX_NUM_FIFO * RX_BUF_SIZE); */ |
| /* mem_addr = kmalloc (RX_NUM_FIFO * RX_BUF_SIZE, GFP_BUFFER); */ |
| mem_addr = &rx_buf_pool[i * RX_NUM_FIFO * RX_BUF_SIZE]; |
| |
| /* Set the physical address of the host memory |
| * buffers in the buffer descriptors, and the |
| * virtual address for us to work with. |
| */ |
| bdp = (QUICC_BD *)((uint)pquicc + dp_addr); |
| info->rx_cur = info->rx_bd_base = bdp; |
| |
| /* initialize rx buffer descriptors */ |
| for (j=0; j<(RX_NUM_FIFO-1); j++) { |
| bdp->buf = &rx_buf_pool[(i * RX_NUM_FIFO + j ) * RX_BUF_SIZE]; |
| bdp->status = BD_SC_EMPTY | BD_SC_INTRPT; |
| mem_addr += RX_BUF_SIZE; |
| bdp++; |
| } |
| bdp->buf = &rx_buf_pool[(i * RX_NUM_FIFO + j ) * RX_BUF_SIZE]; |
| bdp->status = BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT; |
| |
| |
| idx = PORT_NUM(info->state->smc_scc_num); |
| if (info->state->smc_scc_num & NUM_IS_SCC) { |
| |
| #if defined (CONFIG_UCQUICC) && 1 |
| /* set the transceiver mode to RS232 */ |
| sipex_mode_bits &= ~(uint)SIPEX_MODE(idx,0x0f); /* clear current mode */ |
| sipex_mode_bits |= (uint)SIPEX_MODE(idx,0x02); |
| *(uint *)_periph_base = sipex_mode_bits; |
| /* printk ("sipex bits = 0x%08x\n", sipex_mode_bits); */ |
| #endif |
| } |
| |
| dp_addr = m360_cpm_dpalloc(sizeof(QUICC_BD) * TX_NUM_FIFO); |
| |
| /* Allocate space for FIFOs in the host memory. |
| */ |
| /* mem_addr = m360_cpm_hostalloc(TX_NUM_FIFO * TX_BUF_SIZE); */ |
| /* mem_addr = kmalloc (TX_NUM_FIFO * TX_BUF_SIZE, GFP_BUFFER); */ |
| mem_addr = &tx_buf_pool[i * TX_NUM_FIFO * TX_BUF_SIZE]; |
| |
| /* Set the physical address of the host memory |
| * buffers in the buffer descriptors, and the |
| * virtual address for us to work with. |
| */ |
| /* bdp = (QUICC_BD *)&cp->cp_dpmem[dp_addr]; */ |
| bdp = (QUICC_BD *)((uint)pquicc + dp_addr); |
| info->tx_cur = info->tx_bd_base = (QUICC_BD *)bdp; |
| |
| /* initialize tx buffer descriptors */ |
| for (j=0; j<(TX_NUM_FIFO-1); j++) { |
| bdp->buf = &tx_buf_pool[(i * TX_NUM_FIFO + j ) * TX_BUF_SIZE]; |
| bdp->status = BD_SC_INTRPT; |
| mem_addr += TX_BUF_SIZE; |
| bdp++; |
| } |
| bdp->buf = &tx_buf_pool[(i * TX_NUM_FIFO + j ) * TX_BUF_SIZE]; |
| bdp->status = (BD_SC_WRAP | BD_SC_INTRPT); |
| |
| if (info->state->smc_scc_num & NUM_IS_SCC) { |
| scp = &pquicc->scc_regs[idx]; |
| sup = &pquicc->pram[info->state->port].scc.pscc.u; |
| sup->rbase = dp_addr; |
| sup->tbase = dp_addr; |
| |
| /* Set up the uart parameters in the |
| * parameter ram. |
| */ |
| sup->rfcr = SMC_EB; |
| sup->tfcr = SMC_EB; |
| |
| /* Set this to 1 for now, so we get single |
| * character interrupts. Using idle character |
| * time requires some additional tuning. |
| */ |
| sup->mrblr = 1; |
| sup->max_idl = 0; |
| sup->brkcr = 1; |
| sup->parec = 0; |
| sup->frmer = 0; |
| sup->nosec = 0; |
| sup->brkec = 0; |
| sup->uaddr1 = 0; |
| sup->uaddr2 = 0; |
| sup->toseq = 0; |
| { |
| int i; |
| for (i=0;i<8;i++) |
| sup->cc[i] = 0x8000; |
| } |
| sup->rccm = 0xc0ff; |
| |
| /* Send the CPM an initialize command. |
| */ |
| chan = scc_chan_map[idx]; |
| |
| /* execute the INIT RX & TX PARAMS command for this channel. */ |
| cp->cp_cr = mk_cr_cmd(chan, CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| while (cp->cp_cr & CPM_CR_FLG); |
| |
| /* Set UART mode, 8 bit, no parity, one stop. |
| * Enable receive and transmit. |
| */ |
| scp->scc_gsmr.w.high = 0; |
| scp->scc_gsmr.w.low = |
| (SCC_GSMRL_MODE_UART | SCC_GSMRL_TDCR_16 | SCC_GSMRL_RDCR_16); |
| |
| /* Disable all interrupts and clear all pending |
| * events. |
| */ |
| scp->scc_sccm = 0; |
| scp->scc_scce = 0xffff; |
| scp->scc_dsr = 0x7e7e; |
| scp->scc_psmr = 0x3000; |
| |
| /* If the port is the console, enable Rx and Tx. |
| */ |
| #ifdef CONFIG_SERIAL_CONSOLE |
| if (i == CONFIG_SERIAL_CONSOLE_PORT) |
| scp->scc_gsmr.w.low |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); |
| #endif |
| } |
| else { |
| /* Configure SMCs Tx/Rx instead of port B |
| * parallel I/O. |
| */ |
| up = &pquicc->pram[info->state->port].scc.pothers.idma_smc.psmc.u; |
| up->rbase = dp_addr; |
| |
| iobits = 0xc0 << (idx * 4); |
| cp->pip_pbpar |= iobits; |
| cp->pip_pbdir &= ~iobits; |
| cp->pip_pbodr &= ~iobits; |
| |
| |
| /* Connect the baud rate generator to the |
| * SMC based upon index in rs_table. Also |
| * make sure it is connected to NMSI. |
| */ |
| cp->si_simode &= ~(0xffff << (idx * 16)); |
| cp->si_simode |= (i << ((idx * 16) + 12)); |
| |
| up->tbase = dp_addr; |
| |
| /* Set up the uart parameters in the |
| * parameter ram. |
| */ |
| up->rfcr = SMC_EB; |
| up->tfcr = SMC_EB; |
| |
| /* Set this to 1 for now, so we get single |
| * character interrupts. Using idle character |
| * time requires some additional tuning. |
| */ |
| up->mrblr = 1; |
| up->max_idl = 0; |
| up->brkcr = 1; |
| |
| /* Send the CPM an initialize command. |
| */ |
| chan = smc_chan_map[idx]; |
| |
| cp->cp_cr = mk_cr_cmd(chan, |
| CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| #ifdef CONFIG_SERIAL_CONSOLE |
| if (i == CONFIG_SERIAL_CONSOLE_PORT) |
| printk(""); |
| #endif |
| while (cp->cp_cr & CPM_CR_FLG); |
| |
| /* Set UART mode, 8 bit, no parity, one stop. |
| * Enable receive and transmit. |
| */ |
| sp = &cp->smc_regs[idx]; |
| sp->smc_smcmr = smcr_mk_clen(9) | SMCMR_SM_UART; |
| |
| /* Disable all interrupts and clear all pending |
| * events. |
| */ |
| sp->smc_smcm = 0; |
| sp->smc_smce = 0xff; |
| |
| /* If the port is the console, enable Rx and Tx. |
| */ |
| #ifdef CONFIG_SERIAL_CONSOLE |
| if (i == CONFIG_SERIAL_CONSOLE_PORT) |
| sp->smc_smcmr |= SMCMR_REN | SMCMR_TEN; |
| #endif |
| } |
| |
| /* Install interrupt handler. |
| */ |
| /* cpm_install_handler(IRQ_MACHSPEC | state->irq, rs_360_interrupt, info); */ |
| /*request_irq(IRQ_MACHSPEC | state->irq, rs_360_interrupt, */ |
| request_irq(state->irq, rs_360_interrupt, |
| IRQ_FLG_LOCK, "ttyS", (void *)info); |
| |
| /* Set up the baud rate generator. |
| */ |
| m360_cpm_setbrg(i, baud_table[baud_idx]); |
| |
| } |
| } |
| |
| return 0; |
| } |
| module_init(rs_360_init); |
| |
| /* This must always be called before the rs_360_init() function, otherwise |
| * it blows away the port control information. |
| */ |
| //static int __init serial_console_setup( struct console *co, char *options) |
| int serial_console_setup( struct console *co, char *options) |
| { |
| struct serial_state *ser; |
| uint mem_addr, dp_addr, bidx, idx, iobits; |
| ushort chan; |
| QUICC_BD *bdp; |
| volatile QUICC *cp; |
| volatile struct smc_regs *sp; |
| volatile struct scc_regs *scp; |
| volatile struct smc_uart_pram *up; |
| volatile struct uart_pram *sup; |
| |
| /* mleslie TODO: |
| * add something to the 68k bootloader to store a desired initial console baud rate */ |
| |
| /* bd_t *bd; */ /* a board info struct used by EPPC-bug */ |
| /* bd = (bd_t *)__res; */ |
| |
| for (bidx = 0; bidx < (sizeof(baud_table) / sizeof(int)); bidx++) |
| /* if (bd->bi_baudrate == baud_table[bidx]) */ |
| if (CONSOLE_BAUDRATE == baud_table[bidx]) |
| break; |
| |
| /* co->cflag = CREAD|CLOCAL|bidx|CS8; */ |
| baud_idx = bidx; |
| |
| ser = rs_table + CONFIG_SERIAL_CONSOLE_PORT; |
| |
| cp = pquicc; /* Get pointer to Communication Processor */ |
| |
| idx = PORT_NUM(ser->smc_scc_num); |
| if (ser->smc_scc_num & NUM_IS_SCC) { |
| |
| /* TODO: need to set up SCC pin assignment etc. here */ |
| |
| } |
| else { |
| iobits = 0xc0 << (idx * 4); |
| cp->pip_pbpar |= iobits; |
| cp->pip_pbdir &= ~iobits; |
| cp->pip_pbodr &= ~iobits; |
| |
| /* Connect the baud rate generator to the |
| * SMC based upon index in rs_table. Also |
| * make sure it is connected to NMSI. |
| */ |
| cp->si_simode &= ~(0xffff << (idx * 16)); |
| cp->si_simode |= (idx << ((idx * 16) + 12)); |
| } |
| |
| /* When we get here, the CPM has been reset, so we need |
| * to configure the port. |
| * We need to allocate a transmit and receive buffer descriptor |
| * from dual port ram, and a character buffer area from host mem. |
| */ |
| |
| /* Allocate space for two buffer descriptors in the DP ram. |
| */ |
| dp_addr = m360_cpm_dpalloc(sizeof(QUICC_BD) * CONSOLE_NUM_FIFO); |
| |
| /* Allocate space for two 2 byte FIFOs in the host memory. |
| */ |
| /* mem_addr = m360_cpm_hostalloc(8); */ |
| mem_addr = (uint)console_fifos; |
| |
| |
| /* Set the physical address of the host memory buffers in |
| * the buffer descriptors. |
| */ |
| /* bdp = (QUICC_BD *)&cp->cp_dpmem[dp_addr]; */ |
| bdp = (QUICC_BD *)((uint)pquicc + dp_addr); |
| bdp->buf = (char *)mem_addr; |
| (bdp+1)->buf = (char *)(mem_addr+4); |
| |
| /* For the receive, set empty and wrap. |
| * For transmit, set wrap. |
| */ |
| bdp->status = BD_SC_EMPTY | BD_SC_WRAP; |
| (bdp+1)->status = BD_SC_WRAP; |
| |
| /* Set up the uart parameters in the parameter ram. |
| */ |
| if (ser->smc_scc_num & NUM_IS_SCC) { |
| scp = &cp->scc_regs[idx]; |
| /* sup = (scc_uart_t *)&cp->cp_dparam[ser->port]; */ |
| sup = &pquicc->pram[ser->port].scc.pscc.u; |
| |
| sup->rbase = dp_addr; |
| sup->tbase = dp_addr + sizeof(QUICC_BD); |
| |
| /* Set up the uart parameters in the |
| * parameter ram. |
| */ |
| sup->rfcr = SMC_EB; |
| sup->tfcr = SMC_EB; |
| |
| /* Set this to 1 for now, so we get single |
| * character interrupts. Using idle character |
| * time requires some additional tuning. |
| */ |
| sup->mrblr = 1; |
| sup->max_idl = 0; |
| sup->brkcr = 1; |
| sup->parec = 0; |
| sup->frmer = 0; |
| sup->nosec = 0; |
| sup->brkec = 0; |
| sup->uaddr1 = 0; |
| sup->uaddr2 = 0; |
| sup->toseq = 0; |
| { |
| int i; |
| for (i=0;i<8;i++) |
| sup->cc[i] = 0x8000; |
| } |
| sup->rccm = 0xc0ff; |
| |
| /* Send the CPM an initialize command. |
| */ |
| chan = scc_chan_map[idx]; |
| |
| cp->cp_cr = mk_cr_cmd(chan, CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| while (cp->cp_cr & CPM_CR_FLG); |
| |
| /* Set UART mode, 8 bit, no parity, one stop. |
| * Enable receive and transmit. |
| */ |
| scp->scc_gsmr.w.high = 0; |
| scp->scc_gsmr.w.low = |
| (SCC_GSMRL_MODE_UART | SCC_GSMRL_TDCR_16 | SCC_GSMRL_RDCR_16); |
| |
| /* Disable all interrupts and clear all pending |
| * events. |
| */ |
| scp->scc_sccm = 0; |
| scp->scc_scce = 0xffff; |
| scp->scc_dsr = 0x7e7e; |
| scp->scc_psmr = 0x3000; |
| |
| scp->scc_gsmr.w.low |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); |
| |
| } |
| else { |
| /* up = (smc_uart_t *)&cp->cp_dparam[ser->port]; */ |
| up = &pquicc->pram[ser->port].scc.pothers.idma_smc.psmc.u; |
| |
| up->rbase = dp_addr; /* Base of receive buffer desc. */ |
| up->tbase = dp_addr+sizeof(QUICC_BD); /* Base of xmt buffer desc. */ |
| up->rfcr = SMC_EB; |
| up->tfcr = SMC_EB; |
| |
| /* Set this to 1 for now, so we get single character interrupts. |
| */ |
| up->mrblr = 1; /* receive buffer length */ |
| up->max_idl = 0; /* wait forever for next char */ |
| |
| /* Send the CPM an initialize command. |
| */ |
| chan = smc_chan_map[idx]; |
| cp->cp_cr = mk_cr_cmd(chan, CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| while (cp->cp_cr & CPM_CR_FLG); |
| |
| /* Set UART mode, 8 bit, no parity, one stop. |
| * Enable receive and transmit. |
| */ |
| sp = &cp->smc_regs[idx]; |
| sp->smc_smcmr = smcr_mk_clen(9) | SMCMR_SM_UART; |
| |
| /* And finally, enable Rx and Tx. |
| */ |
| sp->smc_smcmr |= SMCMR_REN | SMCMR_TEN; |
| } |
| |
| /* Set up the baud rate generator. |
| */ |
| /* m360_cpm_setbrg((ser - rs_table), bd->bi_baudrate); */ |
| m360_cpm_setbrg((ser - rs_table), CONSOLE_BAUDRATE); |
| |
| return 0; |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 4 |
| * c-basic-offset: 4 |
| * tab-width: 4 |
| * End: |
| */ |