| |
| #include <linux/device.h> |
| #include <linux/mm.h> |
| #include <asm/io.h> /* Needed for i386 to build */ |
| #include <asm/scatterlist.h> /* Needed for i386 to build */ |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/poison.h> |
| |
| /* |
| * Pool allocator ... wraps the dma_alloc_coherent page allocator, so |
| * small blocks are easily used by drivers for bus mastering controllers. |
| * This should probably be sharing the guts of the slab allocator. |
| */ |
| |
| struct dma_pool { /* the pool */ |
| struct list_head page_list; |
| spinlock_t lock; |
| size_t blocks_per_page; |
| size_t size; |
| struct device *dev; |
| size_t allocation; |
| char name [32]; |
| wait_queue_head_t waitq; |
| struct list_head pools; |
| }; |
| |
| struct dma_page { /* cacheable header for 'allocation' bytes */ |
| struct list_head page_list; |
| void *vaddr; |
| dma_addr_t dma; |
| unsigned in_use; |
| unsigned long bitmap [0]; |
| }; |
| |
| #define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000) |
| |
| static DEFINE_MUTEX (pools_lock); |
| |
| static ssize_t |
| show_pools (struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| unsigned temp; |
| unsigned size; |
| char *next; |
| struct dma_page *page; |
| struct dma_pool *pool; |
| |
| next = buf; |
| size = PAGE_SIZE; |
| |
| temp = scnprintf(next, size, "poolinfo - 0.1\n"); |
| size -= temp; |
| next += temp; |
| |
| mutex_lock(&pools_lock); |
| list_for_each_entry(pool, &dev->dma_pools, pools) { |
| unsigned pages = 0; |
| unsigned blocks = 0; |
| |
| list_for_each_entry(page, &pool->page_list, page_list) { |
| pages++; |
| blocks += page->in_use; |
| } |
| |
| /* per-pool info, no real statistics yet */ |
| temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n", |
| pool->name, |
| blocks, pages * pool->blocks_per_page, |
| pool->size, pages); |
| size -= temp; |
| next += temp; |
| } |
| mutex_unlock(&pools_lock); |
| |
| return PAGE_SIZE - size; |
| } |
| static DEVICE_ATTR (pools, S_IRUGO, show_pools, NULL); |
| |
| /** |
| * dma_pool_create - Creates a pool of consistent memory blocks, for dma. |
| * @name: name of pool, for diagnostics |
| * @dev: device that will be doing the DMA |
| * @size: size of the blocks in this pool. |
| * @align: alignment requirement for blocks; must be a power of two |
| * @allocation: returned blocks won't cross this boundary (or zero) |
| * Context: !in_interrupt() |
| * |
| * Returns a dma allocation pool with the requested characteristics, or |
| * null if one can't be created. Given one of these pools, dma_pool_alloc() |
| * may be used to allocate memory. Such memory will all have "consistent" |
| * DMA mappings, accessible by the device and its driver without using |
| * cache flushing primitives. The actual size of blocks allocated may be |
| * larger than requested because of alignment. |
| * |
| * If allocation is nonzero, objects returned from dma_pool_alloc() won't |
| * cross that size boundary. This is useful for devices which have |
| * addressing restrictions on individual DMA transfers, such as not crossing |
| * boundaries of 4KBytes. |
| */ |
| struct dma_pool * |
| dma_pool_create (const char *name, struct device *dev, |
| size_t size, size_t align, size_t allocation) |
| { |
| struct dma_pool *retval; |
| |
| if (align == 0) |
| align = 1; |
| if (size == 0) |
| return NULL; |
| else if (size < align) |
| size = align; |
| else if ((size % align) != 0) { |
| size += align + 1; |
| size &= ~(align - 1); |
| } |
| |
| if (allocation == 0) { |
| if (PAGE_SIZE < size) |
| allocation = size; |
| else |
| allocation = PAGE_SIZE; |
| // FIXME: round up for less fragmentation |
| } else if (allocation < size) |
| return NULL; |
| |
| if (!(retval = kmalloc (sizeof *retval, GFP_KERNEL))) |
| return retval; |
| |
| strlcpy (retval->name, name, sizeof retval->name); |
| |
| retval->dev = dev; |
| |
| INIT_LIST_HEAD (&retval->page_list); |
| spin_lock_init (&retval->lock); |
| retval->size = size; |
| retval->allocation = allocation; |
| retval->blocks_per_page = allocation / size; |
| init_waitqueue_head (&retval->waitq); |
| |
| if (dev) { |
| int ret; |
| |
| mutex_lock(&pools_lock); |
| if (list_empty (&dev->dma_pools)) |
| ret = device_create_file (dev, &dev_attr_pools); |
| else |
| ret = 0; |
| /* note: not currently insisting "name" be unique */ |
| if (!ret) |
| list_add (&retval->pools, &dev->dma_pools); |
| else { |
| kfree(retval); |
| retval = NULL; |
| } |
| mutex_unlock(&pools_lock); |
| } else |
| INIT_LIST_HEAD (&retval->pools); |
| |
| return retval; |
| } |
| |
| |
| static struct dma_page * |
| pool_alloc_page (struct dma_pool *pool, gfp_t mem_flags) |
| { |
| struct dma_page *page; |
| int mapsize; |
| |
| mapsize = pool->blocks_per_page; |
| mapsize = (mapsize + BITS_PER_LONG - 1) / BITS_PER_LONG; |
| mapsize *= sizeof (long); |
| |
| page = kmalloc(mapsize + sizeof *page, mem_flags); |
| if (!page) |
| return NULL; |
| page->vaddr = dma_alloc_coherent (pool->dev, |
| pool->allocation, |
| &page->dma, |
| mem_flags); |
| if (page->vaddr) { |
| memset (page->bitmap, 0xff, mapsize); // bit set == free |
| #ifdef CONFIG_DEBUG_SLAB |
| memset (page->vaddr, POOL_POISON_FREED, pool->allocation); |
| #endif |
| list_add (&page->page_list, &pool->page_list); |
| page->in_use = 0; |
| } else { |
| kfree (page); |
| page = NULL; |
| } |
| return page; |
| } |
| |
| |
| static inline int |
| is_page_busy (int blocks, unsigned long *bitmap) |
| { |
| while (blocks > 0) { |
| if (*bitmap++ != ~0UL) |
| return 1; |
| blocks -= BITS_PER_LONG; |
| } |
| return 0; |
| } |
| |
| static void |
| pool_free_page (struct dma_pool *pool, struct dma_page *page) |
| { |
| dma_addr_t dma = page->dma; |
| |
| #ifdef CONFIG_DEBUG_SLAB |
| memset (page->vaddr, POOL_POISON_FREED, pool->allocation); |
| #endif |
| dma_free_coherent (pool->dev, pool->allocation, page->vaddr, dma); |
| list_del (&page->page_list); |
| kfree (page); |
| } |
| |
| |
| /** |
| * dma_pool_destroy - destroys a pool of dma memory blocks. |
| * @pool: dma pool that will be destroyed |
| * Context: !in_interrupt() |
| * |
| * Caller guarantees that no more memory from the pool is in use, |
| * and that nothing will try to use the pool after this call. |
| */ |
| void |
| dma_pool_destroy (struct dma_pool *pool) |
| { |
| mutex_lock(&pools_lock); |
| list_del (&pool->pools); |
| if (pool->dev && list_empty (&pool->dev->dma_pools)) |
| device_remove_file (pool->dev, &dev_attr_pools); |
| mutex_unlock(&pools_lock); |
| |
| while (!list_empty (&pool->page_list)) { |
| struct dma_page *page; |
| page = list_entry (pool->page_list.next, |
| struct dma_page, page_list); |
| if (is_page_busy (pool->blocks_per_page, page->bitmap)) { |
| if (pool->dev) |
| dev_err(pool->dev, "dma_pool_destroy %s, %p busy\n", |
| pool->name, page->vaddr); |
| else |
| printk (KERN_ERR "dma_pool_destroy %s, %p busy\n", |
| pool->name, page->vaddr); |
| /* leak the still-in-use consistent memory */ |
| list_del (&page->page_list); |
| kfree (page); |
| } else |
| pool_free_page (pool, page); |
| } |
| |
| kfree (pool); |
| } |
| |
| |
| /** |
| * dma_pool_alloc - get a block of consistent memory |
| * @pool: dma pool that will produce the block |
| * @mem_flags: GFP_* bitmask |
| * @handle: pointer to dma address of block |
| * |
| * This returns the kernel virtual address of a currently unused block, |
| * and reports its dma address through the handle. |
| * If such a memory block can't be allocated, null is returned. |
| */ |
| void * |
| dma_pool_alloc (struct dma_pool *pool, gfp_t mem_flags, dma_addr_t *handle) |
| { |
| unsigned long flags; |
| struct dma_page *page; |
| int map, block; |
| size_t offset; |
| void *retval; |
| |
| restart: |
| spin_lock_irqsave (&pool->lock, flags); |
| list_for_each_entry(page, &pool->page_list, page_list) { |
| int i; |
| /* only cachable accesses here ... */ |
| for (map = 0, i = 0; |
| i < pool->blocks_per_page; |
| i += BITS_PER_LONG, map++) { |
| if (page->bitmap [map] == 0) |
| continue; |
| block = ffz (~ page->bitmap [map]); |
| if ((i + block) < pool->blocks_per_page) { |
| clear_bit (block, &page->bitmap [map]); |
| offset = (BITS_PER_LONG * map) + block; |
| offset *= pool->size; |
| goto ready; |
| } |
| } |
| } |
| if (!(page = pool_alloc_page (pool, GFP_ATOMIC))) { |
| if (mem_flags & __GFP_WAIT) { |
| DECLARE_WAITQUEUE (wait, current); |
| |
| current->state = TASK_INTERRUPTIBLE; |
| add_wait_queue (&pool->waitq, &wait); |
| spin_unlock_irqrestore (&pool->lock, flags); |
| |
| schedule_timeout (POOL_TIMEOUT_JIFFIES); |
| |
| remove_wait_queue (&pool->waitq, &wait); |
| goto restart; |
| } |
| retval = NULL; |
| goto done; |
| } |
| |
| clear_bit (0, &page->bitmap [0]); |
| offset = 0; |
| ready: |
| page->in_use++; |
| retval = offset + page->vaddr; |
| *handle = offset + page->dma; |
| #ifdef CONFIG_DEBUG_SLAB |
| memset (retval, POOL_POISON_ALLOCATED, pool->size); |
| #endif |
| done: |
| spin_unlock_irqrestore (&pool->lock, flags); |
| return retval; |
| } |
| |
| |
| static struct dma_page * |
| pool_find_page (struct dma_pool *pool, dma_addr_t dma) |
| { |
| unsigned long flags; |
| struct dma_page *page; |
| |
| spin_lock_irqsave (&pool->lock, flags); |
| list_for_each_entry(page, &pool->page_list, page_list) { |
| if (dma < page->dma) |
| continue; |
| if (dma < (page->dma + pool->allocation)) |
| goto done; |
| } |
| page = NULL; |
| done: |
| spin_unlock_irqrestore (&pool->lock, flags); |
| return page; |
| } |
| |
| |
| /** |
| * dma_pool_free - put block back into dma pool |
| * @pool: the dma pool holding the block |
| * @vaddr: virtual address of block |
| * @dma: dma address of block |
| * |
| * Caller promises neither device nor driver will again touch this block |
| * unless it is first re-allocated. |
| */ |
| void |
| dma_pool_free (struct dma_pool *pool, void *vaddr, dma_addr_t dma) |
| { |
| struct dma_page *page; |
| unsigned long flags; |
| int map, block; |
| |
| if ((page = pool_find_page (pool, dma)) == 0) { |
| if (pool->dev) |
| dev_err(pool->dev, "dma_pool_free %s, %p/%lx (bad dma)\n", |
| pool->name, vaddr, (unsigned long) dma); |
| else |
| printk (KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n", |
| pool->name, vaddr, (unsigned long) dma); |
| return; |
| } |
| |
| block = dma - page->dma; |
| block /= pool->size; |
| map = block / BITS_PER_LONG; |
| block %= BITS_PER_LONG; |
| |
| #ifdef CONFIG_DEBUG_SLAB |
| if (((dma - page->dma) + (void *)page->vaddr) != vaddr) { |
| if (pool->dev) |
| dev_err(pool->dev, "dma_pool_free %s, %p (bad vaddr)/%Lx\n", |
| pool->name, vaddr, (unsigned long long) dma); |
| else |
| printk (KERN_ERR "dma_pool_free %s, %p (bad vaddr)/%Lx\n", |
| pool->name, vaddr, (unsigned long long) dma); |
| return; |
| } |
| if (page->bitmap [map] & (1UL << block)) { |
| if (pool->dev) |
| dev_err(pool->dev, "dma_pool_free %s, dma %Lx already free\n", |
| pool->name, (unsigned long long)dma); |
| else |
| printk (KERN_ERR "dma_pool_free %s, dma %Lx already free\n", |
| pool->name, (unsigned long long)dma); |
| return; |
| } |
| memset (vaddr, POOL_POISON_FREED, pool->size); |
| #endif |
| |
| spin_lock_irqsave (&pool->lock, flags); |
| page->in_use--; |
| set_bit (block, &page->bitmap [map]); |
| if (waitqueue_active (&pool->waitq)) |
| wake_up (&pool->waitq); |
| /* |
| * Resist a temptation to do |
| * if (!is_page_busy(bpp, page->bitmap)) pool_free_page(pool, page); |
| * Better have a few empty pages hang around. |
| */ |
| spin_unlock_irqrestore (&pool->lock, flags); |
| } |
| |
| /* |
| * Managed DMA pool |
| */ |
| static void dmam_pool_release(struct device *dev, void *res) |
| { |
| struct dma_pool *pool = *(struct dma_pool **)res; |
| |
| dma_pool_destroy(pool); |
| } |
| |
| static int dmam_pool_match(struct device *dev, void *res, void *match_data) |
| { |
| return *(struct dma_pool **)res == match_data; |
| } |
| |
| /** |
| * dmam_pool_create - Managed dma_pool_create() |
| * @name: name of pool, for diagnostics |
| * @dev: device that will be doing the DMA |
| * @size: size of the blocks in this pool. |
| * @align: alignment requirement for blocks; must be a power of two |
| * @allocation: returned blocks won't cross this boundary (or zero) |
| * |
| * Managed dma_pool_create(). DMA pool created with this function is |
| * automatically destroyed on driver detach. |
| */ |
| struct dma_pool *dmam_pool_create(const char *name, struct device *dev, |
| size_t size, size_t align, size_t allocation) |
| { |
| struct dma_pool **ptr, *pool; |
| |
| ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); |
| if (!ptr) |
| return NULL; |
| |
| pool = *ptr = dma_pool_create(name, dev, size, align, allocation); |
| if (pool) |
| devres_add(dev, ptr); |
| else |
| devres_free(ptr); |
| |
| return pool; |
| } |
| |
| /** |
| * dmam_pool_destroy - Managed dma_pool_destroy() |
| * @pool: dma pool that will be destroyed |
| * |
| * Managed dma_pool_destroy(). |
| */ |
| void dmam_pool_destroy(struct dma_pool *pool) |
| { |
| struct device *dev = pool->dev; |
| |
| dma_pool_destroy(pool); |
| WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool)); |
| } |
| |
| EXPORT_SYMBOL (dma_pool_create); |
| EXPORT_SYMBOL (dma_pool_destroy); |
| EXPORT_SYMBOL (dma_pool_alloc); |
| EXPORT_SYMBOL (dma_pool_free); |
| EXPORT_SYMBOL (dmam_pool_create); |
| EXPORT_SYMBOL (dmam_pool_destroy); |