| /* $NetBSD: getaddrinfo.c,v 1.82 2006/03/25 12:09:40 rpaulo Exp $ */ |
| /* $KAME: getaddrinfo.c,v 1.29 2000/08/31 17:26:57 itojun Exp $ */ |
| |
| /* |
| * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the project nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| /* |
| * Issues to be discussed: |
| * - Thread safe-ness must be checked. |
| * - Return values. There are nonstandard return values defined and used |
| * in the source code. This is because RFC2553 is silent about which error |
| * code must be returned for which situation. |
| * - IPv4 classful (shortened) form. RFC2553 is silent about it. XNET 5.2 |
| * says to use inet_aton() to convert IPv4 numeric to binary (alows |
| * classful form as a result). |
| * current code - disallow classful form for IPv4 (due to use of inet_pton). |
| * - freeaddrinfo(NULL). RFC2553 is silent about it. XNET 5.2 says it is |
| * invalid. |
| * current code - SEGV on freeaddrinfo(NULL) |
| * Note: |
| * - We use getipnodebyname() just for thread-safeness. There's no intent |
| * to let it do PF_UNSPEC (actually we never pass PF_UNSPEC to |
| * getipnodebyname(). |
| * - The code filters out AFs that are not supported by the kernel, |
| * when globbing NULL hostname (to loopback, or wildcard). Is it the right |
| * thing to do? What is the relationship with post-RFC2553 AI_ADDRCONFIG |
| * in ai_flags? |
| * - (post-2553) semantics of AI_ADDRCONFIG itself is too vague. |
| * (1) what should we do against numeric hostname (2) what should we do |
| * against NULL hostname (3) what is AI_ADDRCONFIG itself. AF not ready? |
| * non-loopback address configured? global address configured? |
| * - To avoid search order issue, we have a big amount of code duplicate |
| * from gethnamaddr.c and some other places. The issues that there's no |
| * lower layer function to lookup "IPv4 or IPv6" record. Calling |
| * gethostbyname2 from getaddrinfo will end up in wrong search order, as |
| * follows: |
| * - The code makes use of following calls when asked to resolver with |
| * ai_family = PF_UNSPEC: |
| * getipnodebyname(host, AF_INET6); |
| * getipnodebyname(host, AF_INET); |
| * This will result in the following queries if the node is configure to |
| * prefer /etc/hosts than DNS: |
| * lookup /etc/hosts for IPv6 address |
| * lookup DNS for IPv6 address |
| * lookup /etc/hosts for IPv4 address |
| * lookup DNS for IPv4 address |
| * which may not meet people's requirement. |
| * The right thing to happen is to have underlying layer which does |
| * PF_UNSPEC lookup (lookup both) and return chain of addrinfos. |
| * This would result in a bit of code duplicate with _dns_ghbyname() and |
| * friends. |
| */ |
| |
| #include <fcntl.h> |
| #include <sys/cdefs.h> |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <sys/param.h> |
| #include <sys/socket.h> |
| #include <sys/un.h> |
| #include <net/if.h> |
| #include <netinet/in.h> |
| #include <arpa/inet.h> |
| #include "arpa_nameser.h" |
| #include <assert.h> |
| #include <ctype.h> |
| #include <errno.h> |
| #include <netdb.h> |
| #include "resolv_private.h" |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <strings.h> |
| #include <unistd.h> |
| |
| #include <syslog.h> |
| #include <stdarg.h> |
| #include "nsswitch.h" |
| |
| #ifdef ANDROID_CHANGES |
| #include <sys/system_properties.h> |
| #endif /* ANDROID_CHANGES */ |
| |
| typedef union sockaddr_union { |
| struct sockaddr generic; |
| struct sockaddr_in in; |
| struct sockaddr_in6 in6; |
| } sockaddr_union; |
| |
| #define SUCCESS 0 |
| #define ANY 0 |
| #define YES 1 |
| #define NO 0 |
| |
| static const char in_addrany[] = { 0, 0, 0, 0 }; |
| static const char in_loopback[] = { 127, 0, 0, 1 }; |
| #ifdef INET6 |
| static const char in6_addrany[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| }; |
| static const char in6_loopback[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 |
| }; |
| #endif |
| |
| // This should be synchronized to ResponseCode.h |
| static const int DnsProxyQueryResult = 222; |
| |
| static const struct afd { |
| int a_af; |
| int a_addrlen; |
| int a_socklen; |
| int a_off; |
| const char *a_addrany; |
| const char *a_loopback; |
| int a_scoped; |
| } afdl [] = { |
| #ifdef INET6 |
| {PF_INET6, sizeof(struct in6_addr), |
| sizeof(struct sockaddr_in6), |
| offsetof(struct sockaddr_in6, sin6_addr), |
| in6_addrany, in6_loopback, 1}, |
| #endif |
| {PF_INET, sizeof(struct in_addr), |
| sizeof(struct sockaddr_in), |
| offsetof(struct sockaddr_in, sin_addr), |
| in_addrany, in_loopback, 0}, |
| {0, 0, 0, 0, NULL, NULL, 0}, |
| }; |
| |
| struct explore { |
| int e_af; |
| int e_socktype; |
| int e_protocol; |
| const char *e_protostr; |
| int e_wild; |
| #define WILD_AF(ex) ((ex)->e_wild & 0x01) |
| #define WILD_SOCKTYPE(ex) ((ex)->e_wild & 0x02) |
| #define WILD_PROTOCOL(ex) ((ex)->e_wild & 0x04) |
| }; |
| |
| static const struct explore explore[] = { |
| #if 0 |
| { PF_LOCAL, 0, ANY, ANY, NULL, 0x01 }, |
| #endif |
| #ifdef INET6 |
| { PF_INET6, SOCK_DGRAM, IPPROTO_UDP, "udp", 0x07 }, |
| { PF_INET6, SOCK_STREAM, IPPROTO_TCP, "tcp", 0x07 }, |
| { PF_INET6, SOCK_RAW, ANY, NULL, 0x05 }, |
| #endif |
| { PF_INET, SOCK_DGRAM, IPPROTO_UDP, "udp", 0x07 }, |
| { PF_INET, SOCK_STREAM, IPPROTO_TCP, "tcp", 0x07 }, |
| { PF_INET, SOCK_RAW, ANY, NULL, 0x05 }, |
| { PF_UNSPEC, SOCK_DGRAM, IPPROTO_UDP, "udp", 0x07 }, |
| { PF_UNSPEC, SOCK_STREAM, IPPROTO_TCP, "tcp", 0x07 }, |
| { PF_UNSPEC, SOCK_RAW, ANY, NULL, 0x05 }, |
| { -1, 0, 0, NULL, 0 }, |
| }; |
| |
| #ifdef INET6 |
| #define PTON_MAX 16 |
| #else |
| #define PTON_MAX 4 |
| #endif |
| |
| static const ns_src default_dns_files[] = { |
| { NSSRC_FILES, NS_SUCCESS }, |
| { NSSRC_DNS, NS_SUCCESS }, |
| { 0, 0 } |
| }; |
| |
| #define MAXPACKET (64*1024) |
| |
| typedef union { |
| HEADER hdr; |
| u_char buf[MAXPACKET]; |
| } querybuf; |
| |
| struct res_target { |
| struct res_target *next; |
| const char *name; /* domain name */ |
| int qclass, qtype; /* class and type of query */ |
| u_char *answer; /* buffer to put answer */ |
| int anslen; /* size of answer buffer */ |
| int n; /* result length */ |
| }; |
| |
| static int str2number(const char *); |
| static int explore_fqdn(const struct addrinfo *, const char *, |
| const char *, struct addrinfo **); |
| static int explore_null(const struct addrinfo *, |
| const char *, struct addrinfo **); |
| static int explore_numeric(const struct addrinfo *, const char *, |
| const char *, struct addrinfo **, const char *); |
| static int explore_numeric_scope(const struct addrinfo *, const char *, |
| const char *, struct addrinfo **); |
| static int get_canonname(const struct addrinfo *, |
| struct addrinfo *, const char *); |
| static struct addrinfo *get_ai(const struct addrinfo *, |
| const struct afd *, const char *); |
| static int get_portmatch(const struct addrinfo *, const char *); |
| static int get_port(const struct addrinfo *, const char *, int); |
| static const struct afd *find_afd(int); |
| #ifdef INET6 |
| static int ip6_str2scopeid(char *, struct sockaddr_in6 *, u_int32_t *); |
| #endif |
| |
| static struct addrinfo *getanswer(const querybuf *, int, const char *, int, |
| const struct addrinfo *); |
| static int _dns_getaddrinfo(void *, void *, va_list); |
| static void _sethtent(FILE **); |
| static void _endhtent(FILE **); |
| static struct addrinfo *_gethtent(FILE **, const char *, |
| const struct addrinfo *); |
| static int _files_getaddrinfo(void *, void *, va_list); |
| |
| static int res_queryN(const char *, struct res_target *, res_state); |
| static int res_searchN(const char *, struct res_target *, res_state); |
| static int res_querydomainN(const char *, const char *, |
| struct res_target *, res_state); |
| |
| static const char * const ai_errlist[] = { |
| "Success", |
| "Address family for hostname not supported", /* EAI_ADDRFAMILY */ |
| "Temporary failure in name resolution", /* EAI_AGAIN */ |
| "Invalid value for ai_flags", /* EAI_BADFLAGS */ |
| "Non-recoverable failure in name resolution", /* EAI_FAIL */ |
| "ai_family not supported", /* EAI_FAMILY */ |
| "Memory allocation failure", /* EAI_MEMORY */ |
| "No address associated with hostname", /* EAI_NODATA */ |
| "hostname nor servname provided, or not known", /* EAI_NONAME */ |
| "servname not supported for ai_socktype", /* EAI_SERVICE */ |
| "ai_socktype not supported", /* EAI_SOCKTYPE */ |
| "System error returned in errno", /* EAI_SYSTEM */ |
| "Invalid value for hints", /* EAI_BADHINTS */ |
| "Resolved protocol is unknown", /* EAI_PROTOCOL */ |
| "Argument buffer overflow", /* EAI_OVERFLOW */ |
| "Unknown error", /* EAI_MAX */ |
| }; |
| |
| /* XXX macros that make external reference is BAD. */ |
| |
| #define GET_AI(ai, afd, addr) \ |
| do { \ |
| /* external reference: pai, error, and label free */ \ |
| (ai) = get_ai(pai, (afd), (addr)); \ |
| if ((ai) == NULL) { \ |
| error = EAI_MEMORY; \ |
| goto free; \ |
| } \ |
| } while (/*CONSTCOND*/0) |
| |
| #define GET_PORT(ai, serv) \ |
| do { \ |
| /* external reference: error and label free */ \ |
| error = get_port((ai), (serv), 0); \ |
| if (error != 0) \ |
| goto free; \ |
| } while (/*CONSTCOND*/0) |
| |
| #define GET_CANONNAME(ai, str) \ |
| do { \ |
| /* external reference: pai, error and label free */ \ |
| error = get_canonname(pai, (ai), (str)); \ |
| if (error != 0) \ |
| goto free; \ |
| } while (/*CONSTCOND*/0) |
| |
| #define ERR(err) \ |
| do { \ |
| /* external reference: error, and label bad */ \ |
| error = (err); \ |
| goto bad; \ |
| /*NOTREACHED*/ \ |
| } while (/*CONSTCOND*/0) |
| |
| #define MATCH_FAMILY(x, y, w) \ |
| ((x) == (y) || (/*CONSTCOND*/(w) && ((x) == PF_UNSPEC || \ |
| (y) == PF_UNSPEC))) |
| #define MATCH(x, y, w) \ |
| ((x) == (y) || (/*CONSTCOND*/(w) && ((x) == ANY || (y) == ANY))) |
| |
| const char * |
| gai_strerror(int ecode) |
| { |
| if (ecode < 0 || ecode > EAI_MAX) |
| ecode = EAI_MAX; |
| return ai_errlist[ecode]; |
| } |
| |
| void |
| freeaddrinfo(struct addrinfo *ai) |
| { |
| struct addrinfo *next; |
| |
| assert(ai != NULL); |
| |
| do { |
| next = ai->ai_next; |
| if (ai->ai_canonname) |
| free(ai->ai_canonname); |
| /* no need to free(ai->ai_addr) */ |
| free(ai); |
| ai = next; |
| } while (ai); |
| } |
| |
| static int |
| str2number(const char *p) |
| { |
| char *ep; |
| unsigned long v; |
| |
| assert(p != NULL); |
| |
| if (*p == '\0') |
| return -1; |
| ep = NULL; |
| errno = 0; |
| v = strtoul(p, &ep, 10); |
| if (errno == 0 && ep && *ep == '\0' && v <= UINT_MAX) |
| return v; |
| else |
| return -1; |
| } |
| |
| /* |
| * Connect a UDP socket to a given unicast address. This will cause no network |
| * traffic, but will fail fast if the system has no or limited reachability to |
| * the destination (e.g., no IPv4 address, no IPv6 default route, ...). |
| */ |
| static int |
| _test_connect(int pf, struct sockaddr *addr, size_t addrlen) { |
| int s = socket(pf, SOCK_DGRAM, IPPROTO_UDP); |
| if (s < 0) |
| return 0; |
| int ret; |
| do { |
| ret = connect(s, addr, addrlen); |
| } while (ret < 0 && errno == EINTR); |
| int success = (ret == 0); |
| do { |
| ret = close(s); |
| } while (ret < 0 && errno == EINTR); |
| return success; |
| } |
| |
| /* |
| * The following functions determine whether IPv4 or IPv6 connectivity is |
| * available in order to implement AI_ADDRCONFIG. |
| * |
| * Strictly speaking, AI_ADDRCONFIG should not look at whether connectivity is |
| * available, but whether addresses of the specified family are "configured |
| * on the local system". However, bionic doesn't currently support getifaddrs, |
| * so checking for connectivity is the next best thing. |
| */ |
| static int |
| _have_ipv6() { |
| static const struct sockaddr_in6 sin6_test = { |
| .sin6_family = AF_INET6, |
| .sin6_addr.s6_addr = { // 2000:: |
| 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} |
| }; |
| sockaddr_union addr = { .in6 = sin6_test }; |
| return _test_connect(PF_INET6, &addr.generic, sizeof(addr.in6)); |
| } |
| |
| static int |
| _have_ipv4() { |
| static const struct sockaddr_in sin_test = { |
| .sin_family = AF_INET, |
| .sin_addr.s_addr = __constant_htonl(0x08080808L) // 8.8.8.8 |
| }; |
| sockaddr_union addr = { .in = sin_test }; |
| return _test_connect(PF_INET, &addr.generic, sizeof(addr.in)); |
| } |
| |
| // Returns 0 on success, else returns non-zero on error (in which case |
| // getaddrinfo should continue as normal) |
| static int |
| android_getaddrinfo_proxy( |
| const char *hostname, const char *servname, |
| const struct addrinfo *hints, struct addrinfo **res) |
| { |
| int sock; |
| const int one = 1; |
| struct sockaddr_un proxy_addr; |
| const char* cache_mode = getenv("ANDROID_DNS_MODE"); |
| FILE* proxy = NULL; |
| int success = 0; |
| |
| // Clear this at start, as we use its non-NULLness later (in the |
| // error path) to decide if we have to free up any memory we |
| // allocated in the process (before failing). |
| *res = NULL; |
| |
| if (cache_mode != NULL && strcmp(cache_mode, "local") == 0) { |
| // Don't use the proxy in local mode. This is used by the |
| // proxy itself. |
| return -1; |
| } |
| |
| // Temporary cautious hack to disable the DNS proxy for processes |
| // requesting special treatment. Ideally the DNS proxy should |
| // accomodate these apps, though. |
| char propname[PROP_NAME_MAX]; |
| char propvalue[PROP_VALUE_MAX]; |
| snprintf(propname, sizeof(propname), "net.dns1.%d", getpid()); |
| if (__system_property_get(propname, propvalue) > 0) { |
| return -1; |
| } |
| |
| // Bogus things we can't serialize. Don't use the proxy. |
| if ((hostname != NULL && |
| strcspn(hostname, " \n\r\t^'\"") != strlen(hostname)) || |
| (servname != NULL && |
| strcspn(servname, " \n\r\t^'\"") != strlen(servname))) { |
| return -1; |
| } |
| |
| sock = socket(AF_UNIX, SOCK_STREAM, 0); |
| if (sock < 0) { |
| return -1; |
| } |
| |
| setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); |
| memset(&proxy_addr, 0, sizeof(proxy_addr)); |
| proxy_addr.sun_family = AF_UNIX; |
| strlcpy(proxy_addr.sun_path, "/dev/socket/dnsproxyd", |
| sizeof(proxy_addr.sun_path)); |
| if (TEMP_FAILURE_RETRY(connect(sock, |
| (const struct sockaddr*) &proxy_addr, |
| sizeof(proxy_addr))) != 0) { |
| close(sock); |
| return -1; |
| } |
| |
| // Send the request. |
| proxy = fdopen(sock, "r+"); |
| if (fprintf(proxy, "getaddrinfo %s %s %d %d %d %d", |
| hostname == NULL ? "^" : hostname, |
| servname == NULL ? "^" : servname, |
| hints == NULL ? -1 : hints->ai_flags, |
| hints == NULL ? -1 : hints->ai_family, |
| hints == NULL ? -1 : hints->ai_socktype, |
| hints == NULL ? -1 : hints->ai_protocol) < 0) { |
| goto exit; |
| } |
| // literal NULL byte at end, required by FrameworkListener |
| if (fputc(0, proxy) == EOF || |
| fflush(proxy) != 0) { |
| goto exit; |
| } |
| |
| char buf[4]; |
| // read result code for gethostbyaddr |
| if (fread(buf, 1, sizeof(buf), proxy) != sizeof(buf)) { |
| goto exit; |
| } |
| |
| int result_code = (int)strtol(buf, NULL, 10); |
| // verify the code itself |
| if (result_code != DnsProxyQueryResult ) { |
| goto exit; |
| } |
| |
| struct addrinfo* ai = NULL; |
| struct addrinfo** nextres = res; |
| while (1) { |
| uint32_t addrinfo_len; |
| if (fread(&addrinfo_len, sizeof(addrinfo_len), |
| 1, proxy) != 1) { |
| break; |
| } |
| addrinfo_len = ntohl(addrinfo_len); |
| if (addrinfo_len == 0) { |
| success = 1; |
| break; |
| } |
| |
| if (addrinfo_len < sizeof(struct addrinfo)) { |
| break; |
| } |
| struct addrinfo* ai = calloc(1, addrinfo_len + |
| sizeof(struct sockaddr_storage)); |
| if (ai == NULL) { |
| break; |
| } |
| |
| if (fread(ai, addrinfo_len, 1, proxy) != 1) { |
| // Error; fall through. |
| break; |
| } |
| |
| // Zero out the pointer fields we copied which aren't |
| // valid in this address space. |
| ai->ai_addr = NULL; |
| ai->ai_canonname = NULL; |
| ai->ai_next = NULL; |
| |
| // struct sockaddr |
| uint32_t addr_len; |
| if (fread(&addr_len, sizeof(addr_len), 1, proxy) != 1) { |
| break; |
| } |
| addr_len = ntohl(addr_len); |
| if (addr_len != 0) { |
| if (addr_len > sizeof(struct sockaddr_storage)) { |
| // Bogus; too big. |
| break; |
| } |
| struct sockaddr* addr = (struct sockaddr*)(ai + 1); |
| if (fread(addr, addr_len, 1, proxy) != 1) { |
| break; |
| } |
| ai->ai_addr = addr; |
| } |
| |
| // cannonname |
| uint32_t name_len; |
| if (fread(&name_len, sizeof(name_len), 1, proxy) != 1) { |
| break; |
| } |
| name_len = ntohl(name_len); |
| if (name_len != 0) { |
| ai->ai_canonname = (char*) malloc(name_len); |
| if (fread(ai->ai_canonname, name_len, 1, proxy) != 1) { |
| break; |
| } |
| if (ai->ai_canonname[name_len - 1] != '\0') { |
| // The proxy should be returning this |
| // NULL-terminated. |
| break; |
| } |
| } |
| |
| *nextres = ai; |
| nextres = &ai->ai_next; |
| ai = NULL; |
| } |
| |
| if (ai != NULL) { |
| // Clean up partially-built addrinfo that we never ended up |
| // attaching to the response. |
| freeaddrinfo(ai); |
| } |
| exit: |
| if (proxy != NULL) { |
| fclose(proxy); |
| } |
| |
| if (success) { |
| return 0; |
| } |
| |
| // Proxy failed; fall through to local |
| // resolver case. But first clean up any |
| // memory we might've allocated. |
| if (*res) { |
| freeaddrinfo(*res); |
| *res = NULL; |
| } |
| return -1; |
| } |
| |
| int |
| getaddrinfo(const char *hostname, const char *servname, |
| const struct addrinfo *hints, struct addrinfo **res) |
| { |
| struct addrinfo sentinel; |
| struct addrinfo *cur; |
| int error = 0; |
| struct addrinfo ai; |
| struct addrinfo ai0; |
| struct addrinfo *pai; |
| const struct explore *ex; |
| |
| /* hostname is allowed to be NULL */ |
| /* servname is allowed to be NULL */ |
| /* hints is allowed to be NULL */ |
| assert(res != NULL); |
| |
| memset(&sentinel, 0, sizeof(sentinel)); |
| cur = &sentinel; |
| pai = &ai; |
| pai->ai_flags = 0; |
| pai->ai_family = PF_UNSPEC; |
| pai->ai_socktype = ANY; |
| pai->ai_protocol = ANY; |
| pai->ai_addrlen = 0; |
| pai->ai_canonname = NULL; |
| pai->ai_addr = NULL; |
| pai->ai_next = NULL; |
| |
| if (hostname == NULL && servname == NULL) |
| return EAI_NONAME; |
| if (hints) { |
| /* error check for hints */ |
| if (hints->ai_addrlen || hints->ai_canonname || |
| hints->ai_addr || hints->ai_next) |
| ERR(EAI_BADHINTS); /* xxx */ |
| if (hints->ai_flags & ~AI_MASK) |
| ERR(EAI_BADFLAGS); |
| switch (hints->ai_family) { |
| case PF_UNSPEC: |
| case PF_INET: |
| #ifdef INET6 |
| case PF_INET6: |
| #endif |
| break; |
| default: |
| ERR(EAI_FAMILY); |
| } |
| memcpy(pai, hints, sizeof(*pai)); |
| |
| /* |
| * if both socktype/protocol are specified, check if they |
| * are meaningful combination. |
| */ |
| if (pai->ai_socktype != ANY && pai->ai_protocol != ANY) { |
| for (ex = explore; ex->e_af >= 0; ex++) { |
| if (pai->ai_family != ex->e_af) |
| continue; |
| if (ex->e_socktype == ANY) |
| continue; |
| if (ex->e_protocol == ANY) |
| continue; |
| if (pai->ai_socktype == ex->e_socktype |
| && pai->ai_protocol != ex->e_protocol) { |
| ERR(EAI_BADHINTS); |
| } |
| } |
| } |
| } |
| |
| /* |
| * check for special cases. (1) numeric servname is disallowed if |
| * socktype/protocol are left unspecified. (2) servname is disallowed |
| * for raw and other inet{,6} sockets. |
| */ |
| if (MATCH_FAMILY(pai->ai_family, PF_INET, 1) |
| #ifdef PF_INET6 |
| || MATCH_FAMILY(pai->ai_family, PF_INET6, 1) |
| #endif |
| ) { |
| ai0 = *pai; /* backup *pai */ |
| |
| if (pai->ai_family == PF_UNSPEC) { |
| #ifdef PF_INET6 |
| pai->ai_family = PF_INET6; |
| #else |
| pai->ai_family = PF_INET; |
| #endif |
| } |
| error = get_portmatch(pai, servname); |
| if (error) |
| ERR(error); |
| |
| *pai = ai0; |
| } |
| |
| ai0 = *pai; |
| |
| /* NULL hostname, or numeric hostname */ |
| for (ex = explore; ex->e_af >= 0; ex++) { |
| *pai = ai0; |
| |
| /* PF_UNSPEC entries are prepared for DNS queries only */ |
| if (ex->e_af == PF_UNSPEC) |
| continue; |
| |
| if (!MATCH_FAMILY(pai->ai_family, ex->e_af, WILD_AF(ex))) |
| continue; |
| if (!MATCH(pai->ai_socktype, ex->e_socktype, WILD_SOCKTYPE(ex))) |
| continue; |
| if (!MATCH(pai->ai_protocol, ex->e_protocol, WILD_PROTOCOL(ex))) |
| continue; |
| |
| if (pai->ai_family == PF_UNSPEC) |
| pai->ai_family = ex->e_af; |
| if (pai->ai_socktype == ANY && ex->e_socktype != ANY) |
| pai->ai_socktype = ex->e_socktype; |
| if (pai->ai_protocol == ANY && ex->e_protocol != ANY) |
| pai->ai_protocol = ex->e_protocol; |
| |
| if (hostname == NULL) |
| error = explore_null(pai, servname, &cur->ai_next); |
| else |
| error = explore_numeric_scope(pai, hostname, servname, |
| &cur->ai_next); |
| |
| if (error) |
| goto free; |
| |
| while (cur->ai_next) |
| cur = cur->ai_next; |
| } |
| |
| /* |
| * XXX |
| * If numeric representation of AF1 can be interpreted as FQDN |
| * representation of AF2, we need to think again about the code below. |
| */ |
| if (sentinel.ai_next) |
| goto good; |
| |
| if (hostname == NULL) |
| ERR(EAI_NODATA); |
| if (pai->ai_flags & AI_NUMERICHOST) |
| ERR(EAI_NONAME); |
| |
| /* |
| * BEGIN ANDROID CHANGES; proxying to the cache |
| */ |
| if (android_getaddrinfo_proxy(hostname, servname, hints, res) == 0) { |
| return 0; |
| } |
| |
| /* |
| * hostname as alphabetical name. |
| * we would like to prefer AF_INET6 than AF_INET, so we'll make a |
| * outer loop by AFs. |
| */ |
| for (ex = explore; ex->e_af >= 0; ex++) { |
| *pai = ai0; |
| |
| /* require exact match for family field */ |
| if (pai->ai_family != ex->e_af) |
| continue; |
| |
| if (!MATCH(pai->ai_socktype, ex->e_socktype, |
| WILD_SOCKTYPE(ex))) { |
| continue; |
| } |
| if (!MATCH(pai->ai_protocol, ex->e_protocol, |
| WILD_PROTOCOL(ex))) { |
| continue; |
| } |
| |
| if (pai->ai_socktype == ANY && ex->e_socktype != ANY) |
| pai->ai_socktype = ex->e_socktype; |
| if (pai->ai_protocol == ANY && ex->e_protocol != ANY) |
| pai->ai_protocol = ex->e_protocol; |
| |
| error = explore_fqdn(pai, hostname, servname, |
| &cur->ai_next); |
| |
| while (cur && cur->ai_next) |
| cur = cur->ai_next; |
| } |
| |
| /* XXX */ |
| if (sentinel.ai_next) |
| error = 0; |
| |
| if (error) |
| goto free; |
| if (error == 0) { |
| if (sentinel.ai_next) { |
| good: |
| *res = sentinel.ai_next; |
| return SUCCESS; |
| } else |
| error = EAI_FAIL; |
| } |
| free: |
| bad: |
| if (sentinel.ai_next) |
| freeaddrinfo(sentinel.ai_next); |
| *res = NULL; |
| return error; |
| } |
| |
| /* |
| * FQDN hostname, DNS lookup |
| */ |
| static int |
| explore_fqdn(const struct addrinfo *pai, const char *hostname, |
| const char *servname, struct addrinfo **res) |
| { |
| struct addrinfo *result; |
| struct addrinfo *cur; |
| int error = 0; |
| static const ns_dtab dtab[] = { |
| NS_FILES_CB(_files_getaddrinfo, NULL) |
| { NSSRC_DNS, _dns_getaddrinfo, NULL }, /* force -DHESIOD */ |
| NS_NIS_CB(_yp_getaddrinfo, NULL) |
| { 0, 0, 0 } |
| }; |
| |
| assert(pai != NULL); |
| /* hostname may be NULL */ |
| /* servname may be NULL */ |
| assert(res != NULL); |
| |
| result = NULL; |
| |
| /* |
| * if the servname does not match socktype/protocol, ignore it. |
| */ |
| if (get_portmatch(pai, servname) != 0) |
| return 0; |
| |
| switch (nsdispatch(&result, dtab, NSDB_HOSTS, "getaddrinfo", |
| default_dns_files, hostname, pai)) { |
| case NS_TRYAGAIN: |
| error = EAI_AGAIN; |
| goto free; |
| case NS_UNAVAIL: |
| error = EAI_FAIL; |
| goto free; |
| case NS_NOTFOUND: |
| error = EAI_NODATA; |
| goto free; |
| case NS_SUCCESS: |
| error = 0; |
| for (cur = result; cur; cur = cur->ai_next) { |
| GET_PORT(cur, servname); |
| /* canonname should be filled already */ |
| } |
| break; |
| } |
| |
| *res = result; |
| |
| return 0; |
| |
| free: |
| if (result) |
| freeaddrinfo(result); |
| return error; |
| } |
| |
| /* |
| * hostname == NULL. |
| * passive socket -> anyaddr (0.0.0.0 or ::) |
| * non-passive socket -> localhost (127.0.0.1 or ::1) |
| */ |
| static int |
| explore_null(const struct addrinfo *pai, const char *servname, |
| struct addrinfo **res) |
| { |
| int s; |
| const struct afd *afd; |
| struct addrinfo *cur; |
| struct addrinfo sentinel; |
| int error; |
| |
| assert(pai != NULL); |
| /* servname may be NULL */ |
| assert(res != NULL); |
| |
| *res = NULL; |
| sentinel.ai_next = NULL; |
| cur = &sentinel; |
| |
| /* |
| * filter out AFs that are not supported by the kernel |
| * XXX errno? |
| */ |
| s = socket(pai->ai_family, SOCK_DGRAM, 0); |
| if (s < 0) { |
| if (errno != EMFILE) |
| return 0; |
| } else |
| close(s); |
| |
| /* |
| * if the servname does not match socktype/protocol, ignore it. |
| */ |
| if (get_portmatch(pai, servname) != 0) |
| return 0; |
| |
| afd = find_afd(pai->ai_family); |
| if (afd == NULL) |
| return 0; |
| |
| if (pai->ai_flags & AI_PASSIVE) { |
| GET_AI(cur->ai_next, afd, afd->a_addrany); |
| /* xxx meaningless? |
| * GET_CANONNAME(cur->ai_next, "anyaddr"); |
| */ |
| GET_PORT(cur->ai_next, servname); |
| } else { |
| GET_AI(cur->ai_next, afd, afd->a_loopback); |
| /* xxx meaningless? |
| * GET_CANONNAME(cur->ai_next, "localhost"); |
| */ |
| GET_PORT(cur->ai_next, servname); |
| } |
| cur = cur->ai_next; |
| |
| *res = sentinel.ai_next; |
| return 0; |
| |
| free: |
| if (sentinel.ai_next) |
| freeaddrinfo(sentinel.ai_next); |
| return error; |
| } |
| |
| /* |
| * numeric hostname |
| */ |
| static int |
| explore_numeric(const struct addrinfo *pai, const char *hostname, |
| const char *servname, struct addrinfo **res, const char *canonname) |
| { |
| const struct afd *afd; |
| struct addrinfo *cur; |
| struct addrinfo sentinel; |
| int error; |
| char pton[PTON_MAX]; |
| |
| assert(pai != NULL); |
| /* hostname may be NULL */ |
| /* servname may be NULL */ |
| assert(res != NULL); |
| |
| *res = NULL; |
| sentinel.ai_next = NULL; |
| cur = &sentinel; |
| |
| /* |
| * if the servname does not match socktype/protocol, ignore it. |
| */ |
| if (get_portmatch(pai, servname) != 0) |
| return 0; |
| |
| afd = find_afd(pai->ai_family); |
| if (afd == NULL) |
| return 0; |
| |
| switch (afd->a_af) { |
| #if 0 /*X/Open spec*/ |
| case AF_INET: |
| if (inet_aton(hostname, (struct in_addr *)pton) == 1) { |
| if (pai->ai_family == afd->a_af || |
| pai->ai_family == PF_UNSPEC /*?*/) { |
| GET_AI(cur->ai_next, afd, pton); |
| GET_PORT(cur->ai_next, servname); |
| if ((pai->ai_flags & AI_CANONNAME)) { |
| /* |
| * Set the numeric address itself as |
| * the canonical name, based on a |
| * clarification in rfc2553bis-03. |
| */ |
| GET_CANONNAME(cur->ai_next, canonname); |
| } |
| while (cur && cur->ai_next) |
| cur = cur->ai_next; |
| } else |
| ERR(EAI_FAMILY); /*xxx*/ |
| } |
| break; |
| #endif |
| default: |
| if (inet_pton(afd->a_af, hostname, pton) == 1) { |
| if (pai->ai_family == afd->a_af || |
| pai->ai_family == PF_UNSPEC /*?*/) { |
| GET_AI(cur->ai_next, afd, pton); |
| GET_PORT(cur->ai_next, servname); |
| if ((pai->ai_flags & AI_CANONNAME)) { |
| /* |
| * Set the numeric address itself as |
| * the canonical name, based on a |
| * clarification in rfc2553bis-03. |
| */ |
| GET_CANONNAME(cur->ai_next, canonname); |
| } |
| while (cur->ai_next) |
| cur = cur->ai_next; |
| } else |
| ERR(EAI_FAMILY); /*xxx*/ |
| } |
| break; |
| } |
| |
| *res = sentinel.ai_next; |
| return 0; |
| |
| free: |
| bad: |
| if (sentinel.ai_next) |
| freeaddrinfo(sentinel.ai_next); |
| return error; |
| } |
| |
| /* |
| * numeric hostname with scope |
| */ |
| static int |
| explore_numeric_scope(const struct addrinfo *pai, const char *hostname, |
| const char *servname, struct addrinfo **res) |
| { |
| #if !defined(SCOPE_DELIMITER) || !defined(INET6) |
| return explore_numeric(pai, hostname, servname, res, hostname); |
| #else |
| const struct afd *afd; |
| struct addrinfo *cur; |
| int error; |
| char *cp, *hostname2 = NULL, *scope, *addr; |
| struct sockaddr_in6 *sin6; |
| |
| assert(pai != NULL); |
| /* hostname may be NULL */ |
| /* servname may be NULL */ |
| assert(res != NULL); |
| |
| /* |
| * if the servname does not match socktype/protocol, ignore it. |
| */ |
| if (get_portmatch(pai, servname) != 0) |
| return 0; |
| |
| afd = find_afd(pai->ai_family); |
| if (afd == NULL) |
| return 0; |
| |
| if (!afd->a_scoped) |
| return explore_numeric(pai, hostname, servname, res, hostname); |
| |
| cp = strchr(hostname, SCOPE_DELIMITER); |
| if (cp == NULL) |
| return explore_numeric(pai, hostname, servname, res, hostname); |
| |
| /* |
| * Handle special case of <scoped_address><delimiter><scope id> |
| */ |
| hostname2 = strdup(hostname); |
| if (hostname2 == NULL) |
| return EAI_MEMORY; |
| /* terminate at the delimiter */ |
| hostname2[cp - hostname] = '\0'; |
| addr = hostname2; |
| scope = cp + 1; |
| |
| error = explore_numeric(pai, addr, servname, res, hostname); |
| if (error == 0) { |
| u_int32_t scopeid; |
| |
| for (cur = *res; cur; cur = cur->ai_next) { |
| if (cur->ai_family != AF_INET6) |
| continue; |
| sin6 = (struct sockaddr_in6 *)(void *)cur->ai_addr; |
| if (ip6_str2scopeid(scope, sin6, &scopeid) == -1) { |
| free(hostname2); |
| return(EAI_NODATA); /* XXX: is return OK? */ |
| } |
| sin6->sin6_scope_id = scopeid; |
| } |
| } |
| |
| free(hostname2); |
| |
| return error; |
| #endif |
| } |
| |
| static int |
| get_canonname(const struct addrinfo *pai, struct addrinfo *ai, const char *str) |
| { |
| |
| assert(pai != NULL); |
| assert(ai != NULL); |
| assert(str != NULL); |
| |
| if ((pai->ai_flags & AI_CANONNAME) != 0) { |
| ai->ai_canonname = strdup(str); |
| if (ai->ai_canonname == NULL) |
| return EAI_MEMORY; |
| } |
| return 0; |
| } |
| |
| static struct addrinfo * |
| get_ai(const struct addrinfo *pai, const struct afd *afd, const char *addr) |
| { |
| char *p; |
| struct addrinfo *ai; |
| |
| assert(pai != NULL); |
| assert(afd != NULL); |
| assert(addr != NULL); |
| |
| ai = (struct addrinfo *)malloc(sizeof(struct addrinfo) |
| + (afd->a_socklen)); |
| if (ai == NULL) |
| return NULL; |
| |
| memcpy(ai, pai, sizeof(struct addrinfo)); |
| ai->ai_addr = (struct sockaddr *)(void *)(ai + 1); |
| memset(ai->ai_addr, 0, (size_t)afd->a_socklen); |
| |
| #ifdef HAVE_SA_LEN |
| ai->ai_addr->sa_len = afd->a_socklen; |
| #endif |
| |
| ai->ai_addrlen = afd->a_socklen; |
| #if defined (__alpha__) || (defined(__i386__) && defined(_LP64)) || defined(__sparc64__) |
| ai->__ai_pad0 = 0; |
| #endif |
| ai->ai_addr->sa_family = ai->ai_family = afd->a_af; |
| p = (char *)(void *)(ai->ai_addr); |
| memcpy(p + afd->a_off, addr, (size_t)afd->a_addrlen); |
| return ai; |
| } |
| |
| static int |
| get_portmatch(const struct addrinfo *ai, const char *servname) |
| { |
| |
| assert(ai != NULL); |
| /* servname may be NULL */ |
| |
| return get_port(ai, servname, 1); |
| } |
| |
| static int |
| get_port(const struct addrinfo *ai, const char *servname, int matchonly) |
| { |
| const char *proto; |
| struct servent *sp; |
| int port; |
| int allownumeric; |
| |
| assert(ai != NULL); |
| /* servname may be NULL */ |
| |
| if (servname == NULL) |
| return 0; |
| switch (ai->ai_family) { |
| case AF_INET: |
| #ifdef AF_INET6 |
| case AF_INET6: |
| #endif |
| break; |
| default: |
| return 0; |
| } |
| |
| switch (ai->ai_socktype) { |
| case SOCK_RAW: |
| return EAI_SERVICE; |
| case SOCK_DGRAM: |
| case SOCK_STREAM: |
| allownumeric = 1; |
| break; |
| case ANY: |
| #if 1 /* ANDROID-SPECIFIC CHANGE TO MATCH GLIBC */ |
| allownumeric = 1; |
| #else |
| allownumeric = 0; |
| #endif |
| break; |
| default: |
| return EAI_SOCKTYPE; |
| } |
| |
| port = str2number(servname); |
| if (port >= 0) { |
| if (!allownumeric) |
| return EAI_SERVICE; |
| if (port < 0 || port > 65535) |
| return EAI_SERVICE; |
| port = htons(port); |
| } else { |
| if (ai->ai_flags & AI_NUMERICSERV) |
| return EAI_NONAME; |
| |
| switch (ai->ai_socktype) { |
| case SOCK_DGRAM: |
| proto = "udp"; |
| break; |
| case SOCK_STREAM: |
| proto = "tcp"; |
| break; |
| default: |
| proto = NULL; |
| break; |
| } |
| |
| if ((sp = getservbyname(servname, proto)) == NULL) |
| return EAI_SERVICE; |
| port = sp->s_port; |
| } |
| |
| if (!matchonly) { |
| switch (ai->ai_family) { |
| case AF_INET: |
| ((struct sockaddr_in *)(void *) |
| ai->ai_addr)->sin_port = port; |
| break; |
| #ifdef INET6 |
| case AF_INET6: |
| ((struct sockaddr_in6 *)(void *) |
| ai->ai_addr)->sin6_port = port; |
| break; |
| #endif |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct afd * |
| find_afd(int af) |
| { |
| const struct afd *afd; |
| |
| if (af == PF_UNSPEC) |
| return NULL; |
| for (afd = afdl; afd->a_af; afd++) { |
| if (afd->a_af == af) |
| return afd; |
| } |
| return NULL; |
| } |
| |
| #ifdef INET6 |
| /* convert a string to a scope identifier. XXX: IPv6 specific */ |
| static int |
| ip6_str2scopeid(char *scope, struct sockaddr_in6 *sin6, u_int32_t *scopeid) |
| { |
| u_long lscopeid; |
| struct in6_addr *a6; |
| char *ep; |
| |
| assert(scope != NULL); |
| assert(sin6 != NULL); |
| assert(scopeid != NULL); |
| |
| a6 = &sin6->sin6_addr; |
| |
| /* empty scopeid portion is invalid */ |
| if (*scope == '\0') |
| return -1; |
| |
| if (IN6_IS_ADDR_LINKLOCAL(a6) || IN6_IS_ADDR_MC_LINKLOCAL(a6)) { |
| /* |
| * We currently assume a one-to-one mapping between links |
| * and interfaces, so we simply use interface indices for |
| * like-local scopes. |
| */ |
| *scopeid = if_nametoindex(scope); |
| if (*scopeid == 0) |
| goto trynumeric; |
| return 0; |
| } |
| |
| /* still unclear about literal, allow numeric only - placeholder */ |
| if (IN6_IS_ADDR_SITELOCAL(a6) || IN6_IS_ADDR_MC_SITELOCAL(a6)) |
| goto trynumeric; |
| if (IN6_IS_ADDR_MC_ORGLOCAL(a6)) |
| goto trynumeric; |
| else |
| goto trynumeric; /* global */ |
| |
| /* try to convert to a numeric id as a last resort */ |
| trynumeric: |
| errno = 0; |
| lscopeid = strtoul(scope, &ep, 10); |
| *scopeid = (u_int32_t)(lscopeid & 0xffffffffUL); |
| if (errno == 0 && ep && *ep == '\0' && *scopeid == lscopeid) |
| return 0; |
| else |
| return -1; |
| } |
| #endif |
| |
| /* code duplicate with gethnamaddr.c */ |
| |
| static const char AskedForGot[] = |
| "gethostby*.getanswer: asked for \"%s\", got \"%s\""; |
| |
| static struct addrinfo * |
| getanswer(const querybuf *answer, int anslen, const char *qname, int qtype, |
| const struct addrinfo *pai) |
| { |
| struct addrinfo sentinel, *cur; |
| struct addrinfo ai; |
| const struct afd *afd; |
| char *canonname; |
| const HEADER *hp; |
| const u_char *cp; |
| int n; |
| const u_char *eom; |
| char *bp, *ep; |
| int type, class, ancount, qdcount; |
| int haveanswer, had_error; |
| char tbuf[MAXDNAME]; |
| int (*name_ok) (const char *); |
| char hostbuf[8*1024]; |
| |
| assert(answer != NULL); |
| assert(qname != NULL); |
| assert(pai != NULL); |
| |
| memset(&sentinel, 0, sizeof(sentinel)); |
| cur = &sentinel; |
| |
| canonname = NULL; |
| eom = answer->buf + anslen; |
| switch (qtype) { |
| case T_A: |
| case T_AAAA: |
| case T_ANY: /*use T_ANY only for T_A/T_AAAA lookup*/ |
| name_ok = res_hnok; |
| break; |
| default: |
| return NULL; /* XXX should be abort(); */ |
| } |
| /* |
| * find first satisfactory answer |
| */ |
| hp = &answer->hdr; |
| ancount = ntohs(hp->ancount); |
| qdcount = ntohs(hp->qdcount); |
| bp = hostbuf; |
| ep = hostbuf + sizeof hostbuf; |
| cp = answer->buf + HFIXEDSZ; |
| if (qdcount != 1) { |
| h_errno = NO_RECOVERY; |
| return (NULL); |
| } |
| n = dn_expand(answer->buf, eom, cp, bp, ep - bp); |
| if ((n < 0) || !(*name_ok)(bp)) { |
| h_errno = NO_RECOVERY; |
| return (NULL); |
| } |
| cp += n + QFIXEDSZ; |
| if (qtype == T_A || qtype == T_AAAA || qtype == T_ANY) { |
| /* res_send() has already verified that the query name is the |
| * same as the one we sent; this just gets the expanded name |
| * (i.e., with the succeeding search-domain tacked on). |
| */ |
| n = strlen(bp) + 1; /* for the \0 */ |
| if (n >= MAXHOSTNAMELEN) { |
| h_errno = NO_RECOVERY; |
| return (NULL); |
| } |
| canonname = bp; |
| bp += n; |
| /* The qname can be abbreviated, but h_name is now absolute. */ |
| qname = canonname; |
| } |
| haveanswer = 0; |
| had_error = 0; |
| while (ancount-- > 0 && cp < eom && !had_error) { |
| n = dn_expand(answer->buf, eom, cp, bp, ep - bp); |
| if ((n < 0) || !(*name_ok)(bp)) { |
| had_error++; |
| continue; |
| } |
| cp += n; /* name */ |
| type = _getshort(cp); |
| cp += INT16SZ; /* type */ |
| class = _getshort(cp); |
| cp += INT16SZ + INT32SZ; /* class, TTL */ |
| n = _getshort(cp); |
| cp += INT16SZ; /* len */ |
| if (class != C_IN) { |
| /* XXX - debug? syslog? */ |
| cp += n; |
| continue; /* XXX - had_error++ ? */ |
| } |
| if ((qtype == T_A || qtype == T_AAAA || qtype == T_ANY) && |
| type == T_CNAME) { |
| n = dn_expand(answer->buf, eom, cp, tbuf, sizeof tbuf); |
| if ((n < 0) || !(*name_ok)(tbuf)) { |
| had_error++; |
| continue; |
| } |
| cp += n; |
| /* Get canonical name. */ |
| n = strlen(tbuf) + 1; /* for the \0 */ |
| if (n > ep - bp || n >= MAXHOSTNAMELEN) { |
| had_error++; |
| continue; |
| } |
| strlcpy(bp, tbuf, (size_t)(ep - bp)); |
| canonname = bp; |
| bp += n; |
| continue; |
| } |
| if (qtype == T_ANY) { |
| if (!(type == T_A || type == T_AAAA)) { |
| cp += n; |
| continue; |
| } |
| } else if (type != qtype) { |
| if (type != T_KEY && type != T_SIG) |
| syslog(LOG_NOTICE|LOG_AUTH, |
| "gethostby*.getanswer: asked for \"%s %s %s\", got type \"%s\"", |
| qname, p_class(C_IN), p_type(qtype), |
| p_type(type)); |
| cp += n; |
| continue; /* XXX - had_error++ ? */ |
| } |
| switch (type) { |
| case T_A: |
| case T_AAAA: |
| if (strcasecmp(canonname, bp) != 0) { |
| syslog(LOG_NOTICE|LOG_AUTH, |
| AskedForGot, canonname, bp); |
| cp += n; |
| continue; /* XXX - had_error++ ? */ |
| } |
| if (type == T_A && n != INADDRSZ) { |
| cp += n; |
| continue; |
| } |
| if (type == T_AAAA && n != IN6ADDRSZ) { |
| cp += n; |
| continue; |
| } |
| if (type == T_AAAA) { |
| struct in6_addr in6; |
| memcpy(&in6, cp, IN6ADDRSZ); |
| if (IN6_IS_ADDR_V4MAPPED(&in6)) { |
| cp += n; |
| continue; |
| } |
| } |
| if (!haveanswer) { |
| int nn; |
| |
| canonname = bp; |
| nn = strlen(bp) + 1; /* for the \0 */ |
| bp += nn; |
| } |
| |
| /* don't overwrite pai */ |
| ai = *pai; |
| ai.ai_family = (type == T_A) ? AF_INET : AF_INET6; |
| afd = find_afd(ai.ai_family); |
| if (afd == NULL) { |
| cp += n; |
| continue; |
| } |
| cur->ai_next = get_ai(&ai, afd, (const char *)cp); |
| if (cur->ai_next == NULL) |
| had_error++; |
| while (cur && cur->ai_next) |
| cur = cur->ai_next; |
| cp += n; |
| break; |
| default: |
| abort(); |
| } |
| if (!had_error) |
| haveanswer++; |
| } |
| if (haveanswer) { |
| if (!canonname) |
| (void)get_canonname(pai, sentinel.ai_next, qname); |
| else |
| (void)get_canonname(pai, sentinel.ai_next, canonname); |
| h_errno = NETDB_SUCCESS; |
| return sentinel.ai_next; |
| } |
| |
| h_errno = NO_RECOVERY; |
| return NULL; |
| } |
| |
| struct addrinfo_sort_elem { |
| struct addrinfo *ai; |
| int has_src_addr; |
| sockaddr_union src_addr; |
| int original_order; |
| }; |
| |
| /*ARGSUSED*/ |
| static int |
| _get_scope(const struct sockaddr *addr) |
| { |
| if (addr->sa_family == AF_INET6) { |
| const struct sockaddr_in6 *addr6 = (const struct sockaddr_in6 *)addr; |
| if (IN6_IS_ADDR_MULTICAST(&addr6->sin6_addr)) { |
| return IPV6_ADDR_MC_SCOPE(&addr6->sin6_addr); |
| } else if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr) || |
| IN6_IS_ADDR_LINKLOCAL(&addr6->sin6_addr)) { |
| /* |
| * RFC 4291 section 2.5.3 says loopback is to be treated as having |
| * link-local scope. |
| */ |
| return IPV6_ADDR_SCOPE_LINKLOCAL; |
| } else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) { |
| return IPV6_ADDR_SCOPE_SITELOCAL; |
| } else { |
| return IPV6_ADDR_SCOPE_GLOBAL; |
| } |
| } else if (addr->sa_family == AF_INET) { |
| const struct sockaddr_in *addr4 = (const struct sockaddr_in *)addr; |
| unsigned long int na = ntohl(addr4->sin_addr.s_addr); |
| |
| if (IN_LOOPBACK(na) || /* 127.0.0.0/8 */ |
| (na & 0xffff0000) == 0xa9fe0000) { /* 169.254.0.0/16 */ |
| return IPV6_ADDR_SCOPE_LINKLOCAL; |
| } else { |
| /* |
| * According to draft-ietf-6man-rfc3484-revise-01 section 2.3, |
| * it is best not to treat the private IPv4 ranges |
| * (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16) as being |
| * in a special scope, so we don't. |
| */ |
| return IPV6_ADDR_SCOPE_GLOBAL; |
| } |
| } else { |
| /* |
| * This should never happen. |
| * Return a scope with low priority as a last resort. |
| */ |
| return IPV6_ADDR_SCOPE_NODELOCAL; |
| } |
| } |
| |
| /* These macros are modelled after the ones in <netinet/in6.h>. */ |
| |
| /* RFC 4380, section 2.6 */ |
| #define IN6_IS_ADDR_TEREDO(a) \ |
| ((*(const uint32_t *)(const void *)(&(a)->s6_addr[0]) == ntohl(0x20010000))) |
| |
| /* RFC 3056, section 2. */ |
| #define IN6_IS_ADDR_6TO4(a) \ |
| (((a)->s6_addr[0] == 0x20) && ((a)->s6_addr[1] == 0x02)) |
| |
| /* 6bone testing address area (3ffe::/16), deprecated in RFC 3701. */ |
| #define IN6_IS_ADDR_6BONE(a) \ |
| (((a)->s6_addr[0] == 0x3f) && ((a)->s6_addr[1] == 0xfe)) |
| |
| /* |
| * Get the label for a given IPv4/IPv6 address. |
| * RFC 3484, section 2.1, plus changes from draft-ietf-6man-rfc3484-revise-01. |
| */ |
| |
| /*ARGSUSED*/ |
| static int |
| _get_label(const struct sockaddr *addr) |
| { |
| if (addr->sa_family == AF_INET) { |
| return 3; |
| } else if (addr->sa_family == AF_INET6) { |
| const struct sockaddr_in6 *addr6 = (const struct sockaddr_in6 *)addr; |
| if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) { |
| return 0; |
| } else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) { |
| return 1; |
| } else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) { |
| return 3; |
| } else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) { |
| return 4; |
| } else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) { |
| return 5; |
| } else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr)) { |
| return 10; |
| } else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) { |
| return 11; |
| } else if (IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) { |
| return 12; |
| } else { |
| return 2; |
| } |
| } else { |
| /* |
| * This should never happen. |
| * Return a semi-random label as a last resort. |
| */ |
| return 1; |
| } |
| } |
| |
| /* |
| * Get the precedence for a given IPv4/IPv6 address. |
| * RFC 3484, section 2.1, plus changes from draft-ietf-6man-rfc3484-revise-01. |
| */ |
| |
| /*ARGSUSED*/ |
| static int |
| _get_precedence(const struct sockaddr *addr) |
| { |
| if (addr->sa_family == AF_INET) { |
| return 30; |
| } else if (addr->sa_family == AF_INET6) { |
| const struct sockaddr_in6 *addr6 = (const struct sockaddr_in6 *)addr; |
| if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) { |
| return 60; |
| } else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) { |
| return 50; |
| } else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) { |
| return 30; |
| } else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) { |
| return 20; |
| } else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) { |
| return 10; |
| } else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr) || |
| IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr) || |
| IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) { |
| return 1; |
| } else { |
| return 40; |
| } |
| } else { |
| return 1; |
| } |
| } |
| |
| /* |
| * Find number of matching initial bits between the two addresses a1 and a2. |
| */ |
| |
| /*ARGSUSED*/ |
| static int |
| _common_prefix_len(const struct in6_addr *a1, const struct in6_addr *a2) |
| { |
| const char *p1 = (const char *)a1; |
| const char *p2 = (const char *)a2; |
| unsigned i; |
| |
| for (i = 0; i < sizeof(*a1); ++i) { |
| int x, j; |
| |
| if (p1[i] == p2[i]) { |
| continue; |
| } |
| x = p1[i] ^ p2[i]; |
| for (j = 0; j < CHAR_BIT; ++j) { |
| if (x & (1 << (CHAR_BIT - 1))) { |
| return i * CHAR_BIT + j; |
| } |
| x <<= 1; |
| } |
| } |
| return sizeof(*a1) * CHAR_BIT; |
| } |
| |
| /* |
| * Compare two source/destination address pairs. |
| * RFC 3484, section 6. |
| */ |
| |
| /*ARGSUSED*/ |
| static int |
| _rfc3484_compare(const void *ptr1, const void* ptr2) |
| { |
| const struct addrinfo_sort_elem *a1 = (const struct addrinfo_sort_elem *)ptr1; |
| const struct addrinfo_sort_elem *a2 = (const struct addrinfo_sort_elem *)ptr2; |
| int scope_src1, scope_dst1, scope_match1; |
| int scope_src2, scope_dst2, scope_match2; |
| int label_src1, label_dst1, label_match1; |
| int label_src2, label_dst2, label_match2; |
| int precedence1, precedence2; |
| int prefixlen1, prefixlen2; |
| |
| /* Rule 1: Avoid unusable destinations. */ |
| if (a1->has_src_addr != a2->has_src_addr) { |
| return a2->has_src_addr - a1->has_src_addr; |
| } |
| |
| /* Rule 2: Prefer matching scope. */ |
| scope_src1 = _get_scope(&a1->src_addr.generic); |
| scope_dst1 = _get_scope(a1->ai->ai_addr); |
| scope_match1 = (scope_src1 == scope_dst1); |
| |
| scope_src2 = _get_scope(&a2->src_addr.generic); |
| scope_dst2 = _get_scope(a2->ai->ai_addr); |
| scope_match2 = (scope_src2 == scope_dst2); |
| |
| if (scope_match1 != scope_match2) { |
| return scope_match2 - scope_match1; |
| } |
| |
| /* |
| * Rule 3: Avoid deprecated addresses. |
| * TODO(sesse): We don't currently have a good way of finding this. |
| */ |
| |
| /* |
| * Rule 4: Prefer home addresses. |
| * TODO(sesse): We don't currently have a good way of finding this. |
| */ |
| |
| /* Rule 5: Prefer matching label. */ |
| label_src1 = _get_label(&a1->src_addr.generic); |
| label_dst1 = _get_label(a1->ai->ai_addr); |
| label_match1 = (label_src1 == label_dst1); |
| |
| label_src2 = _get_label(&a2->src_addr.generic); |
| label_dst2 = _get_label(a2->ai->ai_addr); |
| label_match2 = (label_src2 == label_dst2); |
| |
| if (label_match1 != label_match2) { |
| return label_match2 - label_match1; |
| } |
| |
| /* Rule 6: Prefer higher precedence. */ |
| precedence1 = _get_precedence(a1->ai->ai_addr); |
| precedence2 = _get_precedence(a2->ai->ai_addr); |
| if (precedence1 != precedence2) { |
| return precedence2 - precedence1; |
| } |
| |
| /* |
| * Rule 7: Prefer native transport. |
| * TODO(sesse): We don't currently have a good way of finding this. |
| */ |
| |
| /* Rule 8: Prefer smaller scope. */ |
| if (scope_dst1 != scope_dst2) { |
| return scope_dst1 - scope_dst2; |
| } |
| |
| /* |
| * Rule 9: Use longest matching prefix. |
| * We implement this for IPv6 only, as the rules in RFC 3484 don't seem |
| * to work very well directly applied to IPv4. (glibc uses information from |
| * the routing table for a custom IPv4 implementation here.) |
| */ |
| if (a1->has_src_addr && a1->ai->ai_addr->sa_family == AF_INET6 && |
| a2->has_src_addr && a2->ai->ai_addr->sa_family == AF_INET6) { |
| const struct sockaddr_in6 *a1_src = &a1->src_addr.in6; |
| const struct sockaddr_in6 *a1_dst = (const struct sockaddr_in6 *)a1->ai->ai_addr; |
| const struct sockaddr_in6 *a2_src = &a2->src_addr.in6; |
| const struct sockaddr_in6 *a2_dst = (const struct sockaddr_in6 *)a2->ai->ai_addr; |
| prefixlen1 = _common_prefix_len(&a1_src->sin6_addr, &a1_dst->sin6_addr); |
| prefixlen2 = _common_prefix_len(&a2_src->sin6_addr, &a2_dst->sin6_addr); |
| if (prefixlen1 != prefixlen2) { |
| return prefixlen2 - prefixlen1; |
| } |
| } |
| |
| /* |
| * Rule 10: Leave the order unchanged. |
| * We need this since qsort() is not necessarily stable. |
| */ |
| return a1->original_order - a2->original_order; |
| } |
| |
| /* |
| * Find the source address that will be used if trying to connect to the given |
| * address. src_addr must be large enough to hold a struct sockaddr_in6. |
| * |
| * Returns 1 if a source address was found, 0 if the address is unreachable, |
| * and -1 if a fatal error occurred. If 0 or 1, the contents of src_addr are |
| * undefined. |
| */ |
| |
| /*ARGSUSED*/ |
| static int |
| _find_src_addr(const struct sockaddr *addr, struct sockaddr *src_addr) |
| { |
| int sock; |
| int ret; |
| socklen_t len; |
| |
| switch (addr->sa_family) { |
| case AF_INET: |
| len = sizeof(struct sockaddr_in); |
| break; |
| case AF_INET6: |
| len = sizeof(struct sockaddr_in6); |
| break; |
| default: |
| /* No known usable source address for non-INET families. */ |
| return 0; |
| } |
| |
| sock = socket(addr->sa_family, SOCK_DGRAM, IPPROTO_UDP); |
| if (sock == -1) { |
| if (errno == EAFNOSUPPORT) { |
| return 0; |
| } else { |
| return -1; |
| } |
| } |
| |
| do { |
| ret = connect(sock, addr, len); |
| } while (ret == -1 && errno == EINTR); |
| |
| if (ret == -1) { |
| close(sock); |
| return 0; |
| } |
| |
| if (getsockname(sock, src_addr, &len) == -1) { |
| close(sock); |
| return -1; |
| } |
| close(sock); |
| return 1; |
| } |
| |
| /* |
| * Sort the linked list starting at sentinel->ai_next in RFC3484 order. |
| * Will leave the list unchanged if an error occurs. |
| */ |
| |
| /*ARGSUSED*/ |
| static void |
| _rfc3484_sort(struct addrinfo *list_sentinel) |
| { |
| struct addrinfo *cur; |
| int nelem = 0, i; |
| struct addrinfo_sort_elem *elems; |
| |
| cur = list_sentinel->ai_next; |
| while (cur) { |
| ++nelem; |
| cur = cur->ai_next; |
| } |
| |
| elems = (struct addrinfo_sort_elem *)malloc(nelem * sizeof(struct addrinfo_sort_elem)); |
| if (elems == NULL) { |
| goto error; |
| } |
| |
| /* |
| * Convert the linked list to an array that also contains the candidate |
| * source address for each destination address. |
| */ |
| for (i = 0, cur = list_sentinel->ai_next; i < nelem; ++i, cur = cur->ai_next) { |
| int has_src_addr; |
| assert(cur != NULL); |
| elems[i].ai = cur; |
| elems[i].original_order = i; |
| |
| has_src_addr = _find_src_addr(cur->ai_addr, &elems[i].src_addr.generic); |
| if (has_src_addr == -1) { |
| goto error; |
| } |
| elems[i].has_src_addr = has_src_addr; |
| } |
| |
| /* Sort the addresses, and rearrange the linked list so it matches the sorted order. */ |
| qsort((void *)elems, nelem, sizeof(struct addrinfo_sort_elem), _rfc3484_compare); |
| |
| list_sentinel->ai_next = elems[0].ai; |
| for (i = 0; i < nelem - 1; ++i) { |
| elems[i].ai->ai_next = elems[i + 1].ai; |
| } |
| elems[nelem - 1].ai->ai_next = NULL; |
| |
| error: |
| free(elems); |
| } |
| |
| static int _using_alt_dns() |
| { |
| char propname[PROP_NAME_MAX]; |
| char propvalue[PROP_VALUE_MAX]; |
| |
| propvalue[0] = 0; |
| snprintf(propname, sizeof(propname), "net.dns1.%d", getpid()); |
| if (__system_property_get(propname, propvalue) > 0 ) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| _dns_getaddrinfo(void *rv, void *cb_data, va_list ap) |
| { |
| struct addrinfo *ai; |
| querybuf *buf, *buf2; |
| const char *name; |
| const struct addrinfo *pai; |
| struct addrinfo sentinel, *cur; |
| struct res_target q, q2; |
| res_state res; |
| |
| name = va_arg(ap, char *); |
| pai = va_arg(ap, const struct addrinfo *); |
| //fprintf(stderr, "_dns_getaddrinfo() name = '%s'\n", name); |
| |
| memset(&q, 0, sizeof(q)); |
| memset(&q2, 0, sizeof(q2)); |
| memset(&sentinel, 0, sizeof(sentinel)); |
| cur = &sentinel; |
| |
| buf = malloc(sizeof(*buf)); |
| if (buf == NULL) { |
| h_errno = NETDB_INTERNAL; |
| return NS_NOTFOUND; |
| } |
| buf2 = malloc(sizeof(*buf2)); |
| if (buf2 == NULL) { |
| free(buf); |
| h_errno = NETDB_INTERNAL; |
| return NS_NOTFOUND; |
| } |
| |
| switch (pai->ai_family) { |
| case AF_UNSPEC: |
| /* prefer IPv6 */ |
| q.name = name; |
| q.qclass = C_IN; |
| q.answer = buf->buf; |
| q.anslen = sizeof(buf->buf); |
| int query_ipv6 = 1, query_ipv4 = 1; |
| if (pai->ai_flags & AI_ADDRCONFIG) { |
| // Only implement AI_ADDRCONFIG if the application is not |
| // using its own DNS servers, since our implementation |
| // only works on the default connection. |
| if (!_using_alt_dns()) { |
| query_ipv6 = _have_ipv6(); |
| query_ipv4 = _have_ipv4(); |
| } |
| } |
| if (query_ipv6) { |
| q.qtype = T_AAAA; |
| if (query_ipv4) { |
| q.next = &q2; |
| q2.name = name; |
| q2.qclass = C_IN; |
| q2.qtype = T_A; |
| q2.answer = buf2->buf; |
| q2.anslen = sizeof(buf2->buf); |
| } |
| } else if (query_ipv4) { |
| q.qtype = T_A; |
| } else { |
| free(buf); |
| free(buf2); |
| return NS_NOTFOUND; |
| } |
| break; |
| case AF_INET: |
| q.name = name; |
| q.qclass = C_IN; |
| q.qtype = T_A; |
| q.answer = buf->buf; |
| q.anslen = sizeof(buf->buf); |
| break; |
| case AF_INET6: |
| q.name = name; |
| q.qclass = C_IN; |
| q.qtype = T_AAAA; |
| q.answer = buf->buf; |
| q.anslen = sizeof(buf->buf); |
| break; |
| default: |
| free(buf); |
| free(buf2); |
| return NS_UNAVAIL; |
| } |
| |
| res = __res_get_state(); |
| if (res == NULL) { |
| free(buf); |
| free(buf2); |
| return NS_NOTFOUND; |
| } |
| |
| if (res_searchN(name, &q, res) < 0) { |
| __res_put_state(res); |
| free(buf); |
| free(buf2); |
| return NS_NOTFOUND; |
| } |
| ai = getanswer(buf, q.n, q.name, q.qtype, pai); |
| if (ai) { |
| cur->ai_next = ai; |
| while (cur && cur->ai_next) |
| cur = cur->ai_next; |
| } |
| if (q.next) { |
| ai = getanswer(buf2, q2.n, q2.name, q2.qtype, pai); |
| if (ai) |
| cur->ai_next = ai; |
| } |
| free(buf); |
| free(buf2); |
| if (sentinel.ai_next == NULL) { |
| __res_put_state(res); |
| switch (h_errno) { |
| case HOST_NOT_FOUND: |
| return NS_NOTFOUND; |
| case TRY_AGAIN: |
| return NS_TRYAGAIN; |
| default: |
| return NS_UNAVAIL; |
| } |
| } |
| |
| _rfc3484_sort(&sentinel); |
| |
| __res_put_state(res); |
| |
| *((struct addrinfo **)rv) = sentinel.ai_next; |
| return NS_SUCCESS; |
| } |
| |
| static void |
| _sethtent(FILE **hostf) |
| { |
| |
| if (!*hostf) |
| *hostf = fopen(_PATH_HOSTS, "r" ); |
| else |
| rewind(*hostf); |
| } |
| |
| static void |
| _endhtent(FILE **hostf) |
| { |
| |
| if (*hostf) { |
| (void) fclose(*hostf); |
| *hostf = NULL; |
| } |
| } |
| |
| static struct addrinfo * |
| _gethtent(FILE **hostf, const char *name, const struct addrinfo *pai) |
| { |
| char *p; |
| char *cp, *tname, *cname; |
| struct addrinfo hints, *res0, *res; |
| int error; |
| const char *addr; |
| char hostbuf[8*1024]; |
| |
| // fprintf(stderr, "_gethtent() name = '%s'\n", name); |
| assert(name != NULL); |
| assert(pai != NULL); |
| |
| if (!*hostf && !(*hostf = fopen(_PATH_HOSTS, "r" ))) |
| return (NULL); |
| again: |
| if (!(p = fgets(hostbuf, sizeof hostbuf, *hostf))) |
| return (NULL); |
| if (*p == '#') |
| goto again; |
| if (!(cp = strpbrk(p, "#\n"))) |
| goto again; |
| *cp = '\0'; |
| if (!(cp = strpbrk(p, " \t"))) |
| goto again; |
| *cp++ = '\0'; |
| addr = p; |
| /* if this is not something we're looking for, skip it. */ |
| cname = NULL; |
| while (cp && *cp) { |
| if (*cp == ' ' || *cp == '\t') { |
| cp++; |
| continue; |
| } |
| if (!cname) |
| cname = cp; |
| tname = cp; |
| if ((cp = strpbrk(cp, " \t")) != NULL) |
| *cp++ = '\0'; |
| // fprintf(stderr, "\ttname = '%s'", tname); |
| if (strcasecmp(name, tname) == 0) |
| goto found; |
| } |
| goto again; |
| |
| found: |
| hints = *pai; |
| hints.ai_flags = AI_NUMERICHOST; |
| error = getaddrinfo(addr, NULL, &hints, &res0); |
| if (error) |
| goto again; |
| for (res = res0; res; res = res->ai_next) { |
| /* cover it up */ |
| res->ai_flags = pai->ai_flags; |
| |
| if (pai->ai_flags & AI_CANONNAME) { |
| if (get_canonname(pai, res, cname) != 0) { |
| freeaddrinfo(res0); |
| goto again; |
| } |
| } |
| } |
| return res0; |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| _files_getaddrinfo(void *rv, void *cb_data, va_list ap) |
| { |
| const char *name; |
| const struct addrinfo *pai; |
| struct addrinfo sentinel, *cur; |
| struct addrinfo *p; |
| FILE *hostf = NULL; |
| |
| name = va_arg(ap, char *); |
| pai = va_arg(ap, struct addrinfo *); |
| |
| // fprintf(stderr, "_files_getaddrinfo() name = '%s'\n", name); |
| memset(&sentinel, 0, sizeof(sentinel)); |
| cur = &sentinel; |
| |
| _sethtent(&hostf); |
| while ((p = _gethtent(&hostf, name, pai)) != NULL) { |
| cur->ai_next = p; |
| while (cur && cur->ai_next) |
| cur = cur->ai_next; |
| } |
| _endhtent(&hostf); |
| |
| *((struct addrinfo **)rv) = sentinel.ai_next; |
| if (sentinel.ai_next == NULL) |
| return NS_NOTFOUND; |
| return NS_SUCCESS; |
| } |
| |
| /* resolver logic */ |
| |
| /* |
| * Formulate a normal query, send, and await answer. |
| * Returned answer is placed in supplied buffer "answer". |
| * Perform preliminary check of answer, returning success only |
| * if no error is indicated and the answer count is nonzero. |
| * Return the size of the response on success, -1 on error. |
| * Error number is left in h_errno. |
| * |
| * Caller must parse answer and determine whether it answers the question. |
| */ |
| static int |
| res_queryN(const char *name, /* domain name */ struct res_target *target, |
| res_state res) |
| { |
| u_char buf[MAXPACKET]; |
| HEADER *hp; |
| int n; |
| struct res_target *t; |
| int rcode; |
| int ancount; |
| |
| assert(name != NULL); |
| /* XXX: target may be NULL??? */ |
| |
| rcode = NOERROR; |
| ancount = 0; |
| |
| for (t = target; t; t = t->next) { |
| int class, type; |
| u_char *answer; |
| int anslen; |
| |
| hp = (HEADER *)(void *)t->answer; |
| hp->rcode = NOERROR; /* default */ |
| |
| /* make it easier... */ |
| class = t->qclass; |
| type = t->qtype; |
| answer = t->answer; |
| anslen = t->anslen; |
| #ifdef DEBUG |
| if (res->options & RES_DEBUG) |
| printf(";; res_nquery(%s, %d, %d)\n", name, class, type); |
| #endif |
| |
| n = res_nmkquery(res, QUERY, name, class, type, NULL, 0, NULL, |
| buf, sizeof(buf)); |
| #ifdef RES_USE_EDNS0 |
| if (n > 0 && (res->options & RES_USE_EDNS0) != 0) |
| n = res_nopt(res, n, buf, sizeof(buf), anslen); |
| #endif |
| if (n <= 0) { |
| #ifdef DEBUG |
| if (res->options & RES_DEBUG) |
| printf(";; res_nquery: mkquery failed\n"); |
| #endif |
| h_errno = NO_RECOVERY; |
| return n; |
| } |
| n = res_nsend(res, buf, n, answer, anslen); |
| #if 0 |
| if (n < 0) { |
| #ifdef DEBUG |
| if (res->options & RES_DEBUG) |
| printf(";; res_query: send error\n"); |
| #endif |
| h_errno = TRY_AGAIN; |
| return n; |
| } |
| #endif |
| |
| if (n < 0 || hp->rcode != NOERROR || ntohs(hp->ancount) == 0) { |
| rcode = hp->rcode; /* record most recent error */ |
| #ifdef DEBUG |
| if (res->options & RES_DEBUG) |
| printf(";; rcode = %u, ancount=%u\n", hp->rcode, |
| ntohs(hp->ancount)); |
| #endif |
| continue; |
| } |
| |
| ancount += ntohs(hp->ancount); |
| |
| t->n = n; |
| } |
| |
| if (ancount == 0) { |
| switch (rcode) { |
| case NXDOMAIN: |
| h_errno = HOST_NOT_FOUND; |
| break; |
| case SERVFAIL: |
| h_errno = TRY_AGAIN; |
| break; |
| case NOERROR: |
| h_errno = NO_DATA; |
| break; |
| case FORMERR: |
| case NOTIMP: |
| case REFUSED: |
| default: |
| h_errno = NO_RECOVERY; |
| break; |
| } |
| return -1; |
| } |
| return ancount; |
| } |
| |
| /* |
| * Formulate a normal query, send, and retrieve answer in supplied buffer. |
| * Return the size of the response on success, -1 on error. |
| * If enabled, implement search rules until answer or unrecoverable failure |
| * is detected. Error code, if any, is left in h_errno. |
| */ |
| static int |
| res_searchN(const char *name, struct res_target *target, res_state res) |
| { |
| const char *cp, * const *domain; |
| HEADER *hp; |
| u_int dots; |
| int trailing_dot, ret, saved_herrno; |
| int got_nodata = 0, got_servfail = 0, tried_as_is = 0; |
| |
| assert(name != NULL); |
| assert(target != NULL); |
| |
| hp = (HEADER *)(void *)target->answer; /*XXX*/ |
| |
| errno = 0; |
| h_errno = HOST_NOT_FOUND; /* default, if we never query */ |
| dots = 0; |
| for (cp = name; *cp; cp++) |
| dots += (*cp == '.'); |
| trailing_dot = 0; |
| if (cp > name && *--cp == '.') |
| trailing_dot++; |
| |
| |
| //fprintf(stderr, "res_searchN() name = '%s'\n", name); |
| |
| /* |
| * if there aren't any dots, it could be a user-level alias |
| */ |
| if (!dots && (cp = __hostalias(name)) != NULL) { |
| ret = res_queryN(cp, target, res); |
| return ret; |
| } |
| |
| /* |
| * If there are dots in the name already, let's just give it a try |
| * 'as is'. The threshold can be set with the "ndots" option. |
| */ |
| saved_herrno = -1; |
| if (dots >= res->ndots) { |
| ret = res_querydomainN(name, NULL, target, res); |
| if (ret > 0) |
| return (ret); |
| saved_herrno = h_errno; |
| tried_as_is++; |
| } |
| |
| /* |
| * We do at least one level of search if |
| * - there is no dot and RES_DEFNAME is set, or |
| * - there is at least one dot, there is no trailing dot, |
| * and RES_DNSRCH is set. |
| */ |
| if ((!dots && (res->options & RES_DEFNAMES)) || |
| (dots && !trailing_dot && (res->options & RES_DNSRCH))) { |
| int done = 0; |
| |
| for (domain = (const char * const *)res->dnsrch; |
| *domain && !done; |
| domain++) { |
| |
| ret = res_querydomainN(name, *domain, target, res); |
| if (ret > 0) |
| return ret; |
| |
| /* |
| * If no server present, give up. |
| * If name isn't found in this domain, |
| * keep trying higher domains in the search list |
| * (if that's enabled). |
| * On a NO_DATA error, keep trying, otherwise |
| * a wildcard entry of another type could keep us |
| * from finding this entry higher in the domain. |
| * If we get some other error (negative answer or |
| * server failure), then stop searching up, |
| * but try the input name below in case it's |
| * fully-qualified. |
| */ |
| if (errno == ECONNREFUSED) { |
| h_errno = TRY_AGAIN; |
| return -1; |
| } |
| |
| switch (h_errno) { |
| case NO_DATA: |
| got_nodata++; |
| /* FALLTHROUGH */ |
| case HOST_NOT_FOUND: |
| /* keep trying */ |
| break; |
| case TRY_AGAIN: |
| if (hp->rcode == SERVFAIL) { |
| /* try next search element, if any */ |
| got_servfail++; |
| break; |
| } |
| /* FALLTHROUGH */ |
| default: |
| /* anything else implies that we're done */ |
| done++; |
| } |
| /* |
| * if we got here for some reason other than DNSRCH, |
| * we only wanted one iteration of the loop, so stop. |
| */ |
| if (!(res->options & RES_DNSRCH)) |
| done++; |
| } |
| } |
| |
| /* |
| * if we have not already tried the name "as is", do that now. |
| * note that we do this regardless of how many dots were in the |
| * name or whether it ends with a dot. |
| */ |
| if (!tried_as_is) { |
| ret = res_querydomainN(name, NULL, target, res); |
| if (ret > 0) |
| return ret; |
| } |
| |
| /* |
| * if we got here, we didn't satisfy the search. |
| * if we did an initial full query, return that query's h_errno |
| * (note that we wouldn't be here if that query had succeeded). |
| * else if we ever got a nodata, send that back as the reason. |
| * else send back meaningless h_errno, that being the one from |
| * the last DNSRCH we did. |
| */ |
| if (saved_herrno != -1) |
| h_errno = saved_herrno; |
| else if (got_nodata) |
| h_errno = NO_DATA; |
| else if (got_servfail) |
| h_errno = TRY_AGAIN; |
| return -1; |
| } |
| |
| /* |
| * Perform a call on res_query on the concatenation of name and domain, |
| * removing a trailing dot from name if domain is NULL. |
| */ |
| static int |
| res_querydomainN(const char *name, const char *domain, |
| struct res_target *target, res_state res) |
| { |
| char nbuf[MAXDNAME]; |
| const char *longname = nbuf; |
| size_t n, d; |
| |
| assert(name != NULL); |
| /* XXX: target may be NULL??? */ |
| |
| #ifdef DEBUG |
| if (res->options & RES_DEBUG) |
| printf(";; res_querydomain(%s, %s)\n", |
| name, domain?domain:"<Nil>"); |
| #endif |
| if (domain == NULL) { |
| /* |
| * Check for trailing '.'; |
| * copy without '.' if present. |
| */ |
| n = strlen(name); |
| if (n + 1 > sizeof(nbuf)) { |
| h_errno = NO_RECOVERY; |
| return -1; |
| } |
| if (n > 0 && name[--n] == '.') { |
| strncpy(nbuf, name, n); |
| nbuf[n] = '\0'; |
| } else |
| longname = name; |
| } else { |
| n = strlen(name); |
| d = strlen(domain); |
| if (n + 1 + d + 1 > sizeof(nbuf)) { |
| h_errno = NO_RECOVERY; |
| return -1; |
| } |
| snprintf(nbuf, sizeof(nbuf), "%s.%s", name, domain); |
| } |
| return res_queryN(longname, target, res); |
| } |