| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| #include <sys/cdefs.h> |
| __FBSDID("$FreeBSD$"); |
| |
| /* |
| * Float version of e_log2.c. See the latter for most comments. |
| */ |
| |
| #include "math.h" |
| #include "math_private.h" |
| #include "k_logf.h" |
| |
| static const float |
| two25 = 3.3554432000e+07, /* 0x4c000000 */ |
| ivln2hi = 1.4428710938e+00, /* 0x3fb8b000 */ |
| ivln2lo = -1.7605285393e-04; /* 0xb9389ad4 */ |
| |
| static const float zero = 0.0; |
| |
| float |
| __ieee754_log2f(float x) |
| { |
| float f,hfsq,hi,lo,r,y; |
| int32_t i,k,hx; |
| |
| GET_FLOAT_WORD(hx,x); |
| |
| k=0; |
| if (hx < 0x00800000) { /* x < 2**-126 */ |
| if ((hx&0x7fffffff)==0) |
| return -two25/zero; /* log(+-0)=-inf */ |
| if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ |
| k -= 25; x *= two25; /* subnormal number, scale up x */ |
| GET_FLOAT_WORD(hx,x); |
| } |
| if (hx >= 0x7f800000) return x+x; |
| if (hx == 0x3f800000) |
| return zero; /* log(1) = +0 */ |
| k += (hx>>23)-127; |
| hx &= 0x007fffff; |
| i = (hx+(0x4afb0d))&0x800000; |
| SET_FLOAT_WORD(x,hx|(i^0x3f800000)); /* normalize x or x/2 */ |
| k += (i>>23); |
| y = (float)k; |
| f = x - (float)1.0; |
| hfsq = (float)0.5*f*f; |
| r = k_log1pf(f); |
| |
| /* |
| * We no longer need to avoid falling into the multi-precision |
| * calculations due to compiler bugs breaking Dekker's theorem. |
| * Keep avoiding this as an optimization. See e_log2.c for more |
| * details (some details are here only because the optimization |
| * is not yet available in double precision). |
| * |
| * Another compiler bug turned up. With gcc on i386, |
| * (ivln2lo + ivln2hi) would be evaluated in float precision |
| * despite runtime evaluations using double precision. So we |
| * must cast one of its terms to float_t. This makes the whole |
| * expression have type float_t, so return is forced to waste |
| * time clobbering its extra precision. |
| */ |
| if (sizeof(float_t) > sizeof(float)) |
| return (r - hfsq + f) * ((float_t)ivln2lo + ivln2hi) + y; |
| |
| hi = f - hfsq; |
| GET_FLOAT_WORD(hx,hi); |
| SET_FLOAT_WORD(hi,hx&0xfffff000); |
| lo = (f - hi) - hfsq + r; |
| return (lo+hi)*ivln2lo + lo*ivln2hi + hi*ivln2hi + y; |
| } |