| /*- |
| * Copyright (c) 1992, 1993 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * This product includes software developed by the University of |
| * California, Berkeley and its contributors. |
| * 4. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| /* @(#)gamma.c 8.1 (Berkeley) 6/4/93 */ |
| #include <sys/cdefs.h> |
| __FBSDID("$FreeBSD$"); |
| |
| /* |
| * This code by P. McIlroy, Oct 1992; |
| * |
| * The financial support of UUNET Communications Services is greatfully |
| * acknowledged. |
| */ |
| |
| #include <math.h> |
| #include "mathimpl.h" |
| |
| /* METHOD: |
| * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)) |
| * At negative integers, return NaN and raise invalid. |
| * |
| * x < 6.5: |
| * Use argument reduction G(x+1) = xG(x) to reach the |
| * range [1.066124,2.066124]. Use a rational |
| * approximation centered at the minimum (x0+1) to |
| * ensure monotonicity. |
| * |
| * x >= 6.5: Use the asymptotic approximation (Stirling's formula) |
| * adjusted for equal-ripples: |
| * |
| * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x)) |
| * |
| * Keep extra precision in multiplying (x-.5)(log(x)-1), to |
| * avoid premature round-off. |
| * |
| * Special values: |
| * -Inf: return NaN and raise invalid; |
| * negative integer: return NaN and raise invalid; |
| * other x ~< 177.79: return +-0 and raise underflow; |
| * +-0: return +-Inf and raise divide-by-zero; |
| * finite x ~> 171.63: return +Inf and raise overflow; |
| * +Inf: return +Inf; |
| * NaN: return NaN. |
| * |
| * Accuracy: tgamma(x) is accurate to within |
| * x > 0: error provably < 0.9ulp. |
| * Maximum observed in 1,000,000 trials was .87ulp. |
| * x < 0: |
| * Maximum observed error < 4ulp in 1,000,000 trials. |
| */ |
| |
| static double neg_gam(double); |
| static double small_gam(double); |
| static double smaller_gam(double); |
| static struct Double large_gam(double); |
| static struct Double ratfun_gam(double, double); |
| |
| /* |
| * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval |
| * [1.066.., 2.066..] accurate to 4.25e-19. |
| */ |
| #define LEFT -.3955078125 /* left boundary for rat. approx */ |
| #define x0 .461632144968362356785 /* xmin - 1 */ |
| |
| #define a0_hi 0.88560319441088874992 |
| #define a0_lo -.00000000000000004996427036469019695 |
| #define P0 6.21389571821820863029017800727e-01 |
| #define P1 2.65757198651533466104979197553e-01 |
| #define P2 5.53859446429917461063308081748e-03 |
| #define P3 1.38456698304096573887145282811e-03 |
| #define P4 2.40659950032711365819348969808e-03 |
| #define Q0 1.45019531250000000000000000000e+00 |
| #define Q1 1.06258521948016171343454061571e+00 |
| #define Q2 -2.07474561943859936441469926649e-01 |
| #define Q3 -1.46734131782005422506287573015e-01 |
| #define Q4 3.07878176156175520361557573779e-02 |
| #define Q5 5.12449347980666221336054633184e-03 |
| #define Q6 -1.76012741431666995019222898833e-03 |
| #define Q7 9.35021023573788935372153030556e-05 |
| #define Q8 6.13275507472443958924745652239e-06 |
| /* |
| * Constants for large x approximation (x in [6, Inf]) |
| * (Accurate to 2.8*10^-19 absolute) |
| */ |
| #define lns2pi_hi 0.418945312500000 |
| #define lns2pi_lo -.000006779295327258219670263595 |
| #define Pa0 8.33333333333333148296162562474e-02 |
| #define Pa1 -2.77777777774548123579378966497e-03 |
| #define Pa2 7.93650778754435631476282786423e-04 |
| #define Pa3 -5.95235082566672847950717262222e-04 |
| #define Pa4 8.41428560346653702135821806252e-04 |
| #define Pa5 -1.89773526463879200348872089421e-03 |
| #define Pa6 5.69394463439411649408050664078e-03 |
| #define Pa7 -1.44705562421428915453880392761e-02 |
| |
| static const double zero = 0., one = 1.0, tiny = 1e-300; |
| |
| double |
| tgamma(x) |
| double x; |
| { |
| struct Double u; |
| |
| if (x >= 6) { |
| if(x > 171.63) |
| return (x / zero); |
| u = large_gam(x); |
| return(__exp__D(u.a, u.b)); |
| } else if (x >= 1.0 + LEFT + x0) |
| return (small_gam(x)); |
| else if (x > 1.e-17) |
| return (smaller_gam(x)); |
| else if (x > -1.e-17) { |
| if (x != 0.0) |
| u.a = one - tiny; /* raise inexact */ |
| return (one/x); |
| } else if (!finite(x)) |
| return (x - x); /* x is NaN or -Inf */ |
| else |
| return (neg_gam(x)); |
| } |
| /* |
| * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error. |
| */ |
| static struct Double |
| large_gam(x) |
| double x; |
| { |
| double z, p; |
| struct Double t, u, v; |
| |
| z = one/(x*x); |
| p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7)))))); |
| p = p/x; |
| |
| u = __log__D(x); |
| u.a -= one; |
| v.a = (x -= .5); |
| TRUNC(v.a); |
| v.b = x - v.a; |
| t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */ |
| t.b = v.b*u.a + x*u.b; |
| /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */ |
| t.b += lns2pi_lo; t.b += p; |
| u.a = lns2pi_hi + t.b; u.a += t.a; |
| u.b = t.a - u.a; |
| u.b += lns2pi_hi; u.b += t.b; |
| return (u); |
| } |
| /* |
| * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.) |
| * It also has correct monotonicity. |
| */ |
| static double |
| small_gam(x) |
| double x; |
| { |
| double y, ym1, t; |
| struct Double yy, r; |
| y = x - one; |
| ym1 = y - one; |
| if (y <= 1.0 + (LEFT + x0)) { |
| yy = ratfun_gam(y - x0, 0); |
| return (yy.a + yy.b); |
| } |
| r.a = y; |
| TRUNC(r.a); |
| yy.a = r.a - one; |
| y = ym1; |
| yy.b = r.b = y - yy.a; |
| /* Argument reduction: G(x+1) = x*G(x) */ |
| for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) { |
| t = r.a*yy.a; |
| r.b = r.a*yy.b + y*r.b; |
| r.a = t; |
| TRUNC(r.a); |
| r.b += (t - r.a); |
| } |
| /* Return r*tgamma(y). */ |
| yy = ratfun_gam(y - x0, 0); |
| y = r.b*(yy.a + yy.b) + r.a*yy.b; |
| y += yy.a*r.a; |
| return (y); |
| } |
| /* |
| * Good on (0, 1+x0+LEFT]. Accurate to 1ulp. |
| */ |
| static double |
| smaller_gam(x) |
| double x; |
| { |
| double t, d; |
| struct Double r, xx; |
| if (x < x0 + LEFT) { |
| t = x, TRUNC(t); |
| d = (t+x)*(x-t); |
| t *= t; |
| xx.a = (t + x), TRUNC(xx.a); |
| xx.b = x - xx.a; xx.b += t; xx.b += d; |
| t = (one-x0); t += x; |
| d = (one-x0); d -= t; d += x; |
| x = xx.a + xx.b; |
| } else { |
| xx.a = x, TRUNC(xx.a); |
| xx.b = x - xx.a; |
| t = x - x0; |
| d = (-x0 -t); d += x; |
| } |
| r = ratfun_gam(t, d); |
| d = r.a/x, TRUNC(d); |
| r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b; |
| return (d + r.a/x); |
| } |
| /* |
| * returns (z+c)^2 * P(z)/Q(z) + a0 |
| */ |
| static struct Double |
| ratfun_gam(z, c) |
| double z, c; |
| { |
| double p, q; |
| struct Double r, t; |
| |
| q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8))))))); |
| p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4))); |
| |
| /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */ |
| p = p/q; |
| t.a = z, TRUNC(t.a); /* t ~= z + c */ |
| t.b = (z - t.a) + c; |
| t.b *= (t.a + z); |
| q = (t.a *= t.a); /* t = (z+c)^2 */ |
| TRUNC(t.a); |
| t.b += (q - t.a); |
| r.a = p, TRUNC(r.a); /* r = P/Q */ |
| r.b = p - r.a; |
| t.b = t.b*p + t.a*r.b + a0_lo; |
| t.a *= r.a; /* t = (z+c)^2*(P/Q) */ |
| r.a = t.a + a0_hi, TRUNC(r.a); |
| r.b = ((a0_hi-r.a) + t.a) + t.b; |
| return (r); /* r = a0 + t */ |
| } |
| |
| static double |
| neg_gam(x) |
| double x; |
| { |
| int sgn = 1; |
| struct Double lg, lsine; |
| double y, z; |
| |
| y = ceil(x); |
| if (y == x) /* Negative integer. */ |
| return ((x - x) / zero); |
| z = y - x; |
| if (z > 0.5) |
| z = one - z; |
| y = 0.5 * y; |
| if (y == ceil(y)) |
| sgn = -1; |
| if (z < .25) |
| z = sin(M_PI*z); |
| else |
| z = cos(M_PI*(0.5-z)); |
| /* Special case: G(1-x) = Inf; G(x) may be nonzero. */ |
| if (x < -170) { |
| if (x < -190) |
| return ((double)sgn*tiny*tiny); |
| y = one - x; /* exact: 128 < |x| < 255 */ |
| lg = large_gam(y); |
| lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */ |
| lg.a -= lsine.a; /* exact (opposite signs) */ |
| lg.b -= lsine.b; |
| y = -(lg.a + lg.b); |
| z = (y + lg.a) + lg.b; |
| y = __exp__D(y, z); |
| if (sgn < 0) y = -y; |
| return (y); |
| } |
| y = one-x; |
| if (one-y == x) |
| y = tgamma(y); |
| else /* 1-x is inexact */ |
| y = -x*tgamma(-x); |
| if (sgn < 0) y = -y; |
| return (M_PI / (y*z)); |
| } |