| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include "resolv_cache.h" |
| #include <resolv.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| #include "pthread.h" |
| |
| #include <errno.h> |
| #include "arpa_nameser.h" |
| #include <sys/system_properties.h> |
| #include <net/if.h> |
| #include <netdb.h> |
| #include <linux/if.h> |
| |
| #include <arpa/inet.h> |
| #include "resolv_private.h" |
| #include "resolv_iface.h" |
| #include "res_private.h" |
| |
| /* This code implements a small and *simple* DNS resolver cache. |
| * |
| * It is only used to cache DNS answers for a time defined by the smallest TTL |
| * among the answer records in order to reduce DNS traffic. It is not supposed |
| * to be a full DNS cache, since we plan to implement that in the future in a |
| * dedicated process running on the system. |
| * |
| * Note that its design is kept simple very intentionally, i.e.: |
| * |
| * - it takes raw DNS query packet data as input, and returns raw DNS |
| * answer packet data as output |
| * |
| * (this means that two similar queries that encode the DNS name |
| * differently will be treated distinctly). |
| * |
| * the smallest TTL value among the answer records are used as the time |
| * to keep an answer in the cache. |
| * |
| * this is bad, but we absolutely want to avoid parsing the answer packets |
| * (and should be solved by the later full DNS cache process). |
| * |
| * - the implementation is just a (query-data) => (answer-data) hash table |
| * with a trivial least-recently-used expiration policy. |
| * |
| * Doing this keeps the code simple and avoids to deal with a lot of things |
| * that a full DNS cache is expected to do. |
| * |
| * The API is also very simple: |
| * |
| * - the client calls _resolv_cache_get() to obtain a handle to the cache. |
| * this will initialize the cache on first usage. the result can be NULL |
| * if the cache is disabled. |
| * |
| * - the client calls _resolv_cache_lookup() before performing a query |
| * |
| * if the function returns RESOLV_CACHE_FOUND, a copy of the answer data |
| * has been copied into the client-provided answer buffer. |
| * |
| * if the function returns RESOLV_CACHE_NOTFOUND, the client should perform |
| * a request normally, *then* call _resolv_cache_add() to add the received |
| * answer to the cache. |
| * |
| * if the function returns RESOLV_CACHE_UNSUPPORTED, the client should |
| * perform a request normally, and *not* call _resolv_cache_add() |
| * |
| * note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer |
| * is too short to accomodate the cached result. |
| * |
| * - when network settings change, the cache must be flushed since the list |
| * of DNS servers probably changed. this is done by calling |
| * _resolv_cache_reset() |
| * |
| * the parameter to this function must be an ever-increasing generation |
| * number corresponding to the current network settings state. |
| * |
| * This is done because several threads could detect the same network |
| * settings change (but at different times) and will all end up calling the |
| * same function. Comparing with the last used generation number ensures |
| * that the cache is only flushed once per network change. |
| */ |
| |
| /* the name of an environment variable that will be checked the first time |
| * this code is called if its value is "0", then the resolver cache is |
| * disabled. |
| */ |
| #define CONFIG_ENV "BIONIC_DNSCACHE" |
| |
| /* entries older than CONFIG_SECONDS seconds are always discarded. |
| */ |
| #define CONFIG_SECONDS (60*10) /* 10 minutes */ |
| |
| /* default number of entries kept in the cache. This value has been |
| * determined by browsing through various sites and counting the number |
| * of corresponding requests. Keep in mind that our framework is currently |
| * performing two requests per name lookup (one for IPv4, the other for IPv6) |
| * |
| * www.google.com 4 |
| * www.ysearch.com 6 |
| * www.amazon.com 8 |
| * www.nytimes.com 22 |
| * www.espn.com 28 |
| * www.msn.com 28 |
| * www.lemonde.fr 35 |
| * |
| * (determined in 2009-2-17 from Paris, France, results may vary depending |
| * on location) |
| * |
| * most high-level websites use lots of media/ad servers with different names |
| * but these are generally reused when browsing through the site. |
| * |
| * As such, a value of 64 should be relatively comfortable at the moment. |
| * |
| * The system property ro.net.dns_cache_size can be used to override the default |
| * value with a custom value |
| * |
| * |
| * ****************************************** |
| * * NOTE - this has changed. |
| * * 1) we've added IPv6 support so each dns query results in 2 responses |
| * * 2) we've made this a system-wide cache, so the cost is less (it's not |
| * * duplicated in each process) and the need is greater (more processes |
| * * making different requests). |
| * * Upping by 2x for IPv6 |
| * * Upping by another 5x for the centralized nature |
| * ***************************************** |
| */ |
| #define CONFIG_MAX_ENTRIES 64 * 2 * 5 |
| /* name of the system property that can be used to set the cache size */ |
| #define DNS_CACHE_SIZE_PROP_NAME "ro.net.dns_cache_size" |
| |
| /****************************************************************************/ |
| /****************************************************************************/ |
| /***** *****/ |
| /***** *****/ |
| /***** *****/ |
| /****************************************************************************/ |
| /****************************************************************************/ |
| |
| /* set to 1 to debug cache operations */ |
| #define DEBUG 0 |
| |
| /* set to 1 to debug query data */ |
| #define DEBUG_DATA 0 |
| |
| #undef XLOG |
| #if DEBUG |
| # include "libc_logging.h" |
| # define XLOG(...) __libc_format_log(ANDROID_LOG_DEBUG,"libc",__VA_ARGS__) |
| |
| #include <stdio.h> |
| #include <stdarg.h> |
| |
| /** BOUNDED BUFFER FORMATTING |
| **/ |
| |
| /* technical note: |
| * |
| * the following debugging routines are used to append data to a bounded |
| * buffer they take two parameters that are: |
| * |
| * - p : a pointer to the current cursor position in the buffer |
| * this value is initially set to the buffer's address. |
| * |
| * - end : the address of the buffer's limit, i.e. of the first byte |
| * after the buffer. this address should never be touched. |
| * |
| * IMPORTANT: it is assumed that end > buffer_address, i.e. |
| * that the buffer is at least one byte. |
| * |
| * the _bprint_() functions return the new value of 'p' after the data |
| * has been appended, and also ensure the following: |
| * |
| * - the returned value will never be strictly greater than 'end' |
| * |
| * - a return value equal to 'end' means that truncation occured |
| * (in which case, end[-1] will be set to 0) |
| * |
| * - after returning from a _bprint_() function, the content of the buffer |
| * is always 0-terminated, even in the event of truncation. |
| * |
| * these conventions allow you to call _bprint_ functions multiple times and |
| * only check for truncation at the end of the sequence, as in: |
| * |
| * char buff[1000], *p = buff, *end = p + sizeof(buff); |
| * |
| * p = _bprint_c(p, end, '"'); |
| * p = _bprint_s(p, end, my_string); |
| * p = _bprint_c(p, end, '"'); |
| * |
| * if (p >= end) { |
| * // buffer was too small |
| * } |
| * |
| * printf( "%s", buff ); |
| */ |
| |
| /* add a char to a bounded buffer */ |
| static char* |
| _bprint_c( char* p, char* end, int c ) |
| { |
| if (p < end) { |
| if (p+1 == end) |
| *p++ = 0; |
| else { |
| *p++ = (char) c; |
| *p = 0; |
| } |
| } |
| return p; |
| } |
| |
| /* add a sequence of bytes to a bounded buffer */ |
| static char* |
| _bprint_b( char* p, char* end, const char* buf, int len ) |
| { |
| int avail = end - p; |
| |
| if (avail <= 0 || len <= 0) |
| return p; |
| |
| if (avail > len) |
| avail = len; |
| |
| memcpy( p, buf, avail ); |
| p += avail; |
| |
| if (p < end) |
| p[0] = 0; |
| else |
| end[-1] = 0; |
| |
| return p; |
| } |
| |
| /* add a string to a bounded buffer */ |
| static char* |
| _bprint_s( char* p, char* end, const char* str ) |
| { |
| return _bprint_b(p, end, str, strlen(str)); |
| } |
| |
| /* add a formatted string to a bounded buffer */ |
| static char* |
| _bprint( char* p, char* end, const char* format, ... ) |
| { |
| int avail, n; |
| va_list args; |
| |
| avail = end - p; |
| |
| if (avail <= 0) |
| return p; |
| |
| va_start(args, format); |
| n = vsnprintf( p, avail, format, args); |
| va_end(args); |
| |
| /* certain C libraries return -1 in case of truncation */ |
| if (n < 0 || n > avail) |
| n = avail; |
| |
| p += n; |
| /* certain C libraries do not zero-terminate in case of truncation */ |
| if (p == end) |
| p[-1] = 0; |
| |
| return p; |
| } |
| |
| /* add a hex value to a bounded buffer, up to 8 digits */ |
| static char* |
| _bprint_hex( char* p, char* end, unsigned value, int numDigits ) |
| { |
| char text[sizeof(unsigned)*2]; |
| int nn = 0; |
| |
| while (numDigits-- > 0) { |
| text[nn++] = "0123456789abcdef"[(value >> (numDigits*4)) & 15]; |
| } |
| return _bprint_b(p, end, text, nn); |
| } |
| |
| /* add the hexadecimal dump of some memory area to a bounded buffer */ |
| static char* |
| _bprint_hexdump( char* p, char* end, const uint8_t* data, int datalen ) |
| { |
| int lineSize = 16; |
| |
| while (datalen > 0) { |
| int avail = datalen; |
| int nn; |
| |
| if (avail > lineSize) |
| avail = lineSize; |
| |
| for (nn = 0; nn < avail; nn++) { |
| if (nn > 0) |
| p = _bprint_c(p, end, ' '); |
| p = _bprint_hex(p, end, data[nn], 2); |
| } |
| for ( ; nn < lineSize; nn++ ) { |
| p = _bprint_s(p, end, " "); |
| } |
| p = _bprint_s(p, end, " "); |
| |
| for (nn = 0; nn < avail; nn++) { |
| int c = data[nn]; |
| |
| if (c < 32 || c > 127) |
| c = '.'; |
| |
| p = _bprint_c(p, end, c); |
| } |
| p = _bprint_c(p, end, '\n'); |
| |
| data += avail; |
| datalen -= avail; |
| } |
| return p; |
| } |
| |
| /* dump the content of a query of packet to the log */ |
| static void |
| XLOG_BYTES( const void* base, int len ) |
| { |
| char buff[1024]; |
| char* p = buff, *end = p + sizeof(buff); |
| |
| p = _bprint_hexdump(p, end, base, len); |
| XLOG("%s",buff); |
| } |
| |
| #else /* !DEBUG */ |
| # define XLOG(...) ((void)0) |
| # define XLOG_BYTES(a,b) ((void)0) |
| #endif |
| |
| static time_t |
| _time_now( void ) |
| { |
| struct timeval tv; |
| |
| gettimeofday( &tv, NULL ); |
| return tv.tv_sec; |
| } |
| |
| /* reminder: the general format of a DNS packet is the following: |
| * |
| * HEADER (12 bytes) |
| * QUESTION (variable) |
| * ANSWER (variable) |
| * AUTHORITY (variable) |
| * ADDITIONNAL (variable) |
| * |
| * the HEADER is made of: |
| * |
| * ID : 16 : 16-bit unique query identification field |
| * |
| * QR : 1 : set to 0 for queries, and 1 for responses |
| * Opcode : 4 : set to 0 for queries |
| * AA : 1 : set to 0 for queries |
| * TC : 1 : truncation flag, will be set to 0 in queries |
| * RD : 1 : recursion desired |
| * |
| * RA : 1 : recursion available (0 in queries) |
| * Z : 3 : three reserved zero bits |
| * RCODE : 4 : response code (always 0=NOERROR in queries) |
| * |
| * QDCount: 16 : question count |
| * ANCount: 16 : Answer count (0 in queries) |
| * NSCount: 16: Authority Record count (0 in queries) |
| * ARCount: 16: Additionnal Record count (0 in queries) |
| * |
| * the QUESTION is made of QDCount Question Record (QRs) |
| * the ANSWER is made of ANCount RRs |
| * the AUTHORITY is made of NSCount RRs |
| * the ADDITIONNAL is made of ARCount RRs |
| * |
| * Each Question Record (QR) is made of: |
| * |
| * QNAME : variable : Query DNS NAME |
| * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255) |
| * CLASS : 16 : class of query (IN=1) |
| * |
| * Each Resource Record (RR) is made of: |
| * |
| * NAME : variable : DNS NAME |
| * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255) |
| * CLASS : 16 : class of query (IN=1) |
| * TTL : 32 : seconds to cache this RR (0=none) |
| * RDLENGTH: 16 : size of RDDATA in bytes |
| * RDDATA : variable : RR data (depends on TYPE) |
| * |
| * Each QNAME contains a domain name encoded as a sequence of 'labels' |
| * terminated by a zero. Each label has the following format: |
| * |
| * LEN : 8 : lenght of label (MUST be < 64) |
| * NAME : 8*LEN : label length (must exclude dots) |
| * |
| * A value of 0 in the encoding is interpreted as the 'root' domain and |
| * terminates the encoding. So 'www.android.com' will be encoded as: |
| * |
| * <3>www<7>android<3>com<0> |
| * |
| * Where <n> represents the byte with value 'n' |
| * |
| * Each NAME reflects the QNAME of the question, but has a slightly more |
| * complex encoding in order to provide message compression. This is achieved |
| * by using a 2-byte pointer, with format: |
| * |
| * TYPE : 2 : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved |
| * OFFSET : 14 : offset to another part of the DNS packet |
| * |
| * The offset is relative to the start of the DNS packet and must point |
| * A pointer terminates the encoding. |
| * |
| * The NAME can be encoded in one of the following formats: |
| * |
| * - a sequence of simple labels terminated by 0 (like QNAMEs) |
| * - a single pointer |
| * - a sequence of simple labels terminated by a pointer |
| * |
| * A pointer shall always point to either a pointer of a sequence of |
| * labels (which can themselves be terminated by either a 0 or a pointer) |
| * |
| * The expanded length of a given domain name should not exceed 255 bytes. |
| * |
| * NOTE: we don't parse the answer packets, so don't need to deal with NAME |
| * records, only QNAMEs. |
| */ |
| |
| #define DNS_HEADER_SIZE 12 |
| |
| #define DNS_TYPE_A "\00\01" /* big-endian decimal 1 */ |
| #define DNS_TYPE_PTR "\00\014" /* big-endian decimal 12 */ |
| #define DNS_TYPE_MX "\00\017" /* big-endian decimal 15 */ |
| #define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */ |
| #define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */ |
| |
| #define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */ |
| |
| typedef struct { |
| const uint8_t* base; |
| const uint8_t* end; |
| const uint8_t* cursor; |
| } DnsPacket; |
| |
| static void |
| _dnsPacket_init( DnsPacket* packet, const uint8_t* buff, int bufflen ) |
| { |
| packet->base = buff; |
| packet->end = buff + bufflen; |
| packet->cursor = buff; |
| } |
| |
| static void |
| _dnsPacket_rewind( DnsPacket* packet ) |
| { |
| packet->cursor = packet->base; |
| } |
| |
| static void |
| _dnsPacket_skip( DnsPacket* packet, int count ) |
| { |
| const uint8_t* p = packet->cursor + count; |
| |
| if (p > packet->end) |
| p = packet->end; |
| |
| packet->cursor = p; |
| } |
| |
| static int |
| _dnsPacket_readInt16( DnsPacket* packet ) |
| { |
| const uint8_t* p = packet->cursor; |
| |
| if (p+2 > packet->end) |
| return -1; |
| |
| packet->cursor = p+2; |
| return (p[0]<< 8) | p[1]; |
| } |
| |
| /** QUERY CHECKING |
| **/ |
| |
| /* check bytes in a dns packet. returns 1 on success, 0 on failure. |
| * the cursor is only advanced in the case of success |
| */ |
| static int |
| _dnsPacket_checkBytes( DnsPacket* packet, int numBytes, const void* bytes ) |
| { |
| const uint8_t* p = packet->cursor; |
| |
| if (p + numBytes > packet->end) |
| return 0; |
| |
| if (memcmp(p, bytes, numBytes) != 0) |
| return 0; |
| |
| packet->cursor = p + numBytes; |
| return 1; |
| } |
| |
| /* parse and skip a given QNAME stored in a query packet, |
| * from the current cursor position. returns 1 on success, |
| * or 0 for malformed data. |
| */ |
| static int |
| _dnsPacket_checkQName( DnsPacket* packet ) |
| { |
| const uint8_t* p = packet->cursor; |
| const uint8_t* end = packet->end; |
| |
| for (;;) { |
| int c; |
| |
| if (p >= end) |
| break; |
| |
| c = *p++; |
| |
| if (c == 0) { |
| packet->cursor = p; |
| return 1; |
| } |
| |
| /* we don't expect label compression in QNAMEs */ |
| if (c >= 64) |
| break; |
| |
| p += c; |
| /* we rely on the bound check at the start |
| * of the loop here */ |
| } |
| /* malformed data */ |
| XLOG("malformed QNAME"); |
| return 0; |
| } |
| |
| /* parse and skip a given QR stored in a packet. |
| * returns 1 on success, and 0 on failure |
| */ |
| static int |
| _dnsPacket_checkQR( DnsPacket* packet ) |
| { |
| if (!_dnsPacket_checkQName(packet)) |
| return 0; |
| |
| /* TYPE must be one of the things we support */ |
| if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) && |
| !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) && |
| !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) && |
| !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) && |
| !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL)) |
| { |
| XLOG("unsupported TYPE"); |
| return 0; |
| } |
| /* CLASS must be IN */ |
| if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) { |
| XLOG("unsupported CLASS"); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* check the header of a DNS Query packet, return 1 if it is one |
| * type of query we can cache, or 0 otherwise |
| */ |
| static int |
| _dnsPacket_checkQuery( DnsPacket* packet ) |
| { |
| const uint8_t* p = packet->base; |
| int qdCount, anCount, dnCount, arCount; |
| |
| if (p + DNS_HEADER_SIZE > packet->end) { |
| XLOG("query packet too small"); |
| return 0; |
| } |
| |
| /* QR must be set to 0, opcode must be 0 and AA must be 0 */ |
| /* RA, Z, and RCODE must be 0 */ |
| if ((p[2] & 0xFC) != 0 || p[3] != 0) { |
| XLOG("query packet flags unsupported"); |
| return 0; |
| } |
| |
| /* Note that we ignore the TC and RD bits here for the |
| * following reasons: |
| * |
| * - there is no point for a query packet sent to a server |
| * to have the TC bit set, but the implementation might |
| * set the bit in the query buffer for its own needs |
| * between a _resolv_cache_lookup and a |
| * _resolv_cache_add. We should not freak out if this |
| * is the case. |
| * |
| * - we consider that the result from a RD=0 or a RD=1 |
| * query might be different, hence that the RD bit |
| * should be used to differentiate cached result. |
| * |
| * this implies that RD is checked when hashing or |
| * comparing query packets, but not TC |
| */ |
| |
| /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */ |
| qdCount = (p[4] << 8) | p[5]; |
| anCount = (p[6] << 8) | p[7]; |
| dnCount = (p[8] << 8) | p[9]; |
| arCount = (p[10]<< 8) | p[11]; |
| |
| if (anCount != 0 || dnCount != 0 || arCount != 0) { |
| XLOG("query packet contains non-query records"); |
| return 0; |
| } |
| |
| if (qdCount == 0) { |
| XLOG("query packet doesn't contain query record"); |
| return 0; |
| } |
| |
| /* Check QDCOUNT QRs */ |
| packet->cursor = p + DNS_HEADER_SIZE; |
| |
| for (;qdCount > 0; qdCount--) |
| if (!_dnsPacket_checkQR(packet)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /** QUERY DEBUGGING |
| **/ |
| #if DEBUG |
| static char* |
| _dnsPacket_bprintQName(DnsPacket* packet, char* bp, char* bend) |
| { |
| const uint8_t* p = packet->cursor; |
| const uint8_t* end = packet->end; |
| int first = 1; |
| |
| for (;;) { |
| int c; |
| |
| if (p >= end) |
| break; |
| |
| c = *p++; |
| |
| if (c == 0) { |
| packet->cursor = p; |
| return bp; |
| } |
| |
| /* we don't expect label compression in QNAMEs */ |
| if (c >= 64) |
| break; |
| |
| if (first) |
| first = 0; |
| else |
| bp = _bprint_c(bp, bend, '.'); |
| |
| bp = _bprint_b(bp, bend, (const char*)p, c); |
| |
| p += c; |
| /* we rely on the bound check at the start |
| * of the loop here */ |
| } |
| /* malformed data */ |
| bp = _bprint_s(bp, bend, "<MALFORMED>"); |
| return bp; |
| } |
| |
| static char* |
| _dnsPacket_bprintQR(DnsPacket* packet, char* p, char* end) |
| { |
| #define QQ(x) { DNS_TYPE_##x, #x } |
| static const struct { |
| const char* typeBytes; |
| const char* typeString; |
| } qTypes[] = |
| { |
| QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL), |
| { NULL, NULL } |
| }; |
| int nn; |
| const char* typeString = NULL; |
| |
| /* dump QNAME */ |
| p = _dnsPacket_bprintQName(packet, p, end); |
| |
| /* dump TYPE */ |
| p = _bprint_s(p, end, " ("); |
| |
| for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) { |
| if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) { |
| typeString = qTypes[nn].typeString; |
| break; |
| } |
| } |
| |
| if (typeString != NULL) |
| p = _bprint_s(p, end, typeString); |
| else { |
| int typeCode = _dnsPacket_readInt16(packet); |
| p = _bprint(p, end, "UNKNOWN-%d", typeCode); |
| } |
| |
| p = _bprint_c(p, end, ')'); |
| |
| /* skip CLASS */ |
| _dnsPacket_skip(packet, 2); |
| return p; |
| } |
| |
| /* this function assumes the packet has already been checked */ |
| static char* |
| _dnsPacket_bprintQuery( DnsPacket* packet, char* p, char* end ) |
| { |
| int qdCount; |
| |
| if (packet->base[2] & 0x1) { |
| p = _bprint_s(p, end, "RECURSIVE "); |
| } |
| |
| _dnsPacket_skip(packet, 4); |
| qdCount = _dnsPacket_readInt16(packet); |
| _dnsPacket_skip(packet, 6); |
| |
| for ( ; qdCount > 0; qdCount-- ) { |
| p = _dnsPacket_bprintQR(packet, p, end); |
| } |
| return p; |
| } |
| #endif |
| |
| |
| /** QUERY HASHING SUPPORT |
| ** |
| ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY |
| ** BEEN SUCCESFULLY CHECKED. |
| **/ |
| |
| /* use 32-bit FNV hash function */ |
| #define FNV_MULT 16777619U |
| #define FNV_BASIS 2166136261U |
| |
| static unsigned |
| _dnsPacket_hashBytes( DnsPacket* packet, int numBytes, unsigned hash ) |
| { |
| const uint8_t* p = packet->cursor; |
| const uint8_t* end = packet->end; |
| |
| while (numBytes > 0 && p < end) { |
| hash = hash*FNV_MULT ^ *p++; |
| } |
| packet->cursor = p; |
| return hash; |
| } |
| |
| |
| static unsigned |
| _dnsPacket_hashQName( DnsPacket* packet, unsigned hash ) |
| { |
| const uint8_t* p = packet->cursor; |
| const uint8_t* end = packet->end; |
| |
| for (;;) { |
| int c; |
| |
| if (p >= end) { /* should not happen */ |
| XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__); |
| break; |
| } |
| |
| c = *p++; |
| |
| if (c == 0) |
| break; |
| |
| if (c >= 64) { |
| XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__); |
| break; |
| } |
| if (p + c >= end) { |
| XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n", |
| __FUNCTION__); |
| break; |
| } |
| while (c > 0) { |
| hash = hash*FNV_MULT ^ *p++; |
| c -= 1; |
| } |
| } |
| packet->cursor = p; |
| return hash; |
| } |
| |
| static unsigned |
| _dnsPacket_hashQR( DnsPacket* packet, unsigned hash ) |
| { |
| hash = _dnsPacket_hashQName(packet, hash); |
| hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */ |
| return hash; |
| } |
| |
| static unsigned |
| _dnsPacket_hashQuery( DnsPacket* packet ) |
| { |
| unsigned hash = FNV_BASIS; |
| int count; |
| _dnsPacket_rewind(packet); |
| |
| /* we ignore the TC bit for reasons explained in |
| * _dnsPacket_checkQuery(). |
| * |
| * however we hash the RD bit to differentiate |
| * between answers for recursive and non-recursive |
| * queries. |
| */ |
| hash = hash*FNV_MULT ^ (packet->base[2] & 1); |
| |
| /* assume: other flags are 0 */ |
| _dnsPacket_skip(packet, 4); |
| |
| /* read QDCOUNT */ |
| count = _dnsPacket_readInt16(packet); |
| |
| /* assume: ANcount, NScount, ARcount are 0 */ |
| _dnsPacket_skip(packet, 6); |
| |
| /* hash QDCOUNT QRs */ |
| for ( ; count > 0; count-- ) |
| hash = _dnsPacket_hashQR(packet, hash); |
| |
| return hash; |
| } |
| |
| |
| /** QUERY COMPARISON |
| ** |
| ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY |
| ** BEEN SUCCESFULLY CHECKED. |
| **/ |
| |
| static int |
| _dnsPacket_isEqualDomainName( DnsPacket* pack1, DnsPacket* pack2 ) |
| { |
| const uint8_t* p1 = pack1->cursor; |
| const uint8_t* end1 = pack1->end; |
| const uint8_t* p2 = pack2->cursor; |
| const uint8_t* end2 = pack2->end; |
| |
| for (;;) { |
| int c1, c2; |
| |
| if (p1 >= end1 || p2 >= end2) { |
| XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__); |
| break; |
| } |
| c1 = *p1++; |
| c2 = *p2++; |
| if (c1 != c2) |
| break; |
| |
| if (c1 == 0) { |
| pack1->cursor = p1; |
| pack2->cursor = p2; |
| return 1; |
| } |
| if (c1 >= 64) { |
| XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__); |
| break; |
| } |
| if ((p1+c1 > end1) || (p2+c1 > end2)) { |
| XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n", |
| __FUNCTION__); |
| break; |
| } |
| if (memcmp(p1, p2, c1) != 0) |
| break; |
| p1 += c1; |
| p2 += c1; |
| /* we rely on the bound checks at the start of the loop */ |
| } |
| /* not the same, or one is malformed */ |
| XLOG("different DN"); |
| return 0; |
| } |
| |
| static int |
| _dnsPacket_isEqualBytes( DnsPacket* pack1, DnsPacket* pack2, int numBytes ) |
| { |
| const uint8_t* p1 = pack1->cursor; |
| const uint8_t* p2 = pack2->cursor; |
| |
| if ( p1 + numBytes > pack1->end || p2 + numBytes > pack2->end ) |
| return 0; |
| |
| if ( memcmp(p1, p2, numBytes) != 0 ) |
| return 0; |
| |
| pack1->cursor += numBytes; |
| pack2->cursor += numBytes; |
| return 1; |
| } |
| |
| static int |
| _dnsPacket_isEqualQR( DnsPacket* pack1, DnsPacket* pack2 ) |
| { |
| /* compare domain name encoding + TYPE + CLASS */ |
| if ( !_dnsPacket_isEqualDomainName(pack1, pack2) || |
| !_dnsPacket_isEqualBytes(pack1, pack2, 2+2) ) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int |
| _dnsPacket_isEqualQuery( DnsPacket* pack1, DnsPacket* pack2 ) |
| { |
| int count1, count2; |
| |
| /* compare the headers, ignore most fields */ |
| _dnsPacket_rewind(pack1); |
| _dnsPacket_rewind(pack2); |
| |
| /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */ |
| if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) { |
| XLOG("different RD"); |
| return 0; |
| } |
| |
| /* assume: other flags are all 0 */ |
| _dnsPacket_skip(pack1, 4); |
| _dnsPacket_skip(pack2, 4); |
| |
| /* compare QDCOUNT */ |
| count1 = _dnsPacket_readInt16(pack1); |
| count2 = _dnsPacket_readInt16(pack2); |
| if (count1 != count2 || count1 < 0) { |
| XLOG("different QDCOUNT"); |
| return 0; |
| } |
| |
| /* assume: ANcount, NScount and ARcount are all 0 */ |
| _dnsPacket_skip(pack1, 6); |
| _dnsPacket_skip(pack2, 6); |
| |
| /* compare the QDCOUNT QRs */ |
| for ( ; count1 > 0; count1-- ) { |
| if (!_dnsPacket_isEqualQR(pack1, pack2)) { |
| XLOG("different QR"); |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /****************************************************************************/ |
| /****************************************************************************/ |
| /***** *****/ |
| /***** *****/ |
| /***** *****/ |
| /****************************************************************************/ |
| /****************************************************************************/ |
| |
| /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this |
| * structure though they are conceptually part of the hash table. |
| * |
| * similarly, mru_next and mru_prev are part of the global MRU list |
| */ |
| typedef struct Entry { |
| unsigned int hash; /* hash value */ |
| struct Entry* hlink; /* next in collision chain */ |
| struct Entry* mru_prev; |
| struct Entry* mru_next; |
| |
| const uint8_t* query; |
| int querylen; |
| const uint8_t* answer; |
| int answerlen; |
| time_t expires; /* time_t when the entry isn't valid any more */ |
| int id; /* for debugging purpose */ |
| } Entry; |
| |
| /** |
| * Find the TTL for a negative DNS result. This is defined as the minimum |
| * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308). |
| * |
| * Return 0 if not found. |
| */ |
| static u_long |
| answer_getNegativeTTL(ns_msg handle) { |
| int n, nscount; |
| u_long result = 0; |
| ns_rr rr; |
| |
| nscount = ns_msg_count(handle, ns_s_ns); |
| for (n = 0; n < nscount; n++) { |
| if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) { |
| const u_char *rdata = ns_rr_rdata(rr); // find the data |
| const u_char *edata = rdata + ns_rr_rdlen(rr); // add the len to find the end |
| int len; |
| u_long ttl, rec_result = ns_rr_ttl(rr); |
| |
| // find the MINIMUM-TTL field from the blob of binary data for this record |
| // skip the server name |
| len = dn_skipname(rdata, edata); |
| if (len == -1) continue; // error skipping |
| rdata += len; |
| |
| // skip the admin name |
| len = dn_skipname(rdata, edata); |
| if (len == -1) continue; // error skipping |
| rdata += len; |
| |
| if (edata - rdata != 5*NS_INT32SZ) continue; |
| // skip: serial number + refresh interval + retry interval + expiry |
| rdata += NS_INT32SZ * 4; |
| // finally read the MINIMUM TTL |
| ttl = ns_get32(rdata); |
| if (ttl < rec_result) { |
| rec_result = ttl; |
| } |
| // Now that the record is read successfully, apply the new min TTL |
| if (n == 0 || rec_result < result) { |
| result = rec_result; |
| } |
| } |
| } |
| return result; |
| } |
| |
| /** |
| * Parse the answer records and find the appropriate |
| * smallest TTL among the records. This might be from |
| * the answer records if found or from the SOA record |
| * if it's a negative result. |
| * |
| * The returned TTL is the number of seconds to |
| * keep the answer in the cache. |
| * |
| * In case of parse error zero (0) is returned which |
| * indicates that the answer shall not be cached. |
| */ |
| static u_long |
| answer_getTTL(const void* answer, int answerlen) |
| { |
| ns_msg handle; |
| int ancount, n; |
| u_long result, ttl; |
| ns_rr rr; |
| |
| result = 0; |
| if (ns_initparse(answer, answerlen, &handle) >= 0) { |
| // get number of answer records |
| ancount = ns_msg_count(handle, ns_s_an); |
| |
| if (ancount == 0) { |
| // a response with no answers? Cache this negative result. |
| result = answer_getNegativeTTL(handle); |
| } else { |
| for (n = 0; n < ancount; n++) { |
| if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) { |
| ttl = ns_rr_ttl(rr); |
| if (n == 0 || ttl < result) { |
| result = ttl; |
| } |
| } else { |
| XLOG("ns_parserr failed ancount no = %d. errno = %s\n", n, strerror(errno)); |
| } |
| } |
| } |
| } else { |
| XLOG("ns_parserr failed. %s\n", strerror(errno)); |
| } |
| |
| XLOG("TTL = %d\n", result); |
| |
| return result; |
| } |
| |
| static void |
| entry_free( Entry* e ) |
| { |
| /* everything is allocated in a single memory block */ |
| if (e) { |
| free(e); |
| } |
| } |
| |
| static __inline__ void |
| entry_mru_remove( Entry* e ) |
| { |
| e->mru_prev->mru_next = e->mru_next; |
| e->mru_next->mru_prev = e->mru_prev; |
| } |
| |
| static __inline__ void |
| entry_mru_add( Entry* e, Entry* list ) |
| { |
| Entry* first = list->mru_next; |
| |
| e->mru_next = first; |
| e->mru_prev = list; |
| |
| list->mru_next = e; |
| first->mru_prev = e; |
| } |
| |
| /* compute the hash of a given entry, this is a hash of most |
| * data in the query (key) */ |
| static unsigned |
| entry_hash( const Entry* e ) |
| { |
| DnsPacket pack[1]; |
| |
| _dnsPacket_init(pack, e->query, e->querylen); |
| return _dnsPacket_hashQuery(pack); |
| } |
| |
| /* initialize an Entry as a search key, this also checks the input query packet |
| * returns 1 on success, or 0 in case of unsupported/malformed data */ |
| static int |
| entry_init_key( Entry* e, const void* query, int querylen ) |
| { |
| DnsPacket pack[1]; |
| |
| memset(e, 0, sizeof(*e)); |
| |
| e->query = query; |
| e->querylen = querylen; |
| e->hash = entry_hash(e); |
| |
| _dnsPacket_init(pack, query, querylen); |
| |
| return _dnsPacket_checkQuery(pack); |
| } |
| |
| /* allocate a new entry as a cache node */ |
| static Entry* |
| entry_alloc( const Entry* init, const void* answer, int answerlen ) |
| { |
| Entry* e; |
| int size; |
| |
| size = sizeof(*e) + init->querylen + answerlen; |
| e = calloc(size, 1); |
| if (e == NULL) |
| return e; |
| |
| e->hash = init->hash; |
| e->query = (const uint8_t*)(e+1); |
| e->querylen = init->querylen; |
| |
| memcpy( (char*)e->query, init->query, e->querylen ); |
| |
| e->answer = e->query + e->querylen; |
| e->answerlen = answerlen; |
| |
| memcpy( (char*)e->answer, answer, e->answerlen ); |
| |
| return e; |
| } |
| |
| static int |
| entry_equals( const Entry* e1, const Entry* e2 ) |
| { |
| DnsPacket pack1[1], pack2[1]; |
| |
| if (e1->querylen != e2->querylen) { |
| return 0; |
| } |
| _dnsPacket_init(pack1, e1->query, e1->querylen); |
| _dnsPacket_init(pack2, e2->query, e2->querylen); |
| |
| return _dnsPacket_isEqualQuery(pack1, pack2); |
| } |
| |
| /****************************************************************************/ |
| /****************************************************************************/ |
| /***** *****/ |
| /***** *****/ |
| /***** *****/ |
| /****************************************************************************/ |
| /****************************************************************************/ |
| |
| /* We use a simple hash table with external collision lists |
| * for simplicity, the hash-table fields 'hash' and 'hlink' are |
| * inlined in the Entry structure. |
| */ |
| |
| /* Maximum time for a thread to wait for an pending request */ |
| #define PENDING_REQUEST_TIMEOUT 20; |
| |
| typedef struct pending_req_info { |
| unsigned int hash; |
| pthread_cond_t cond; |
| struct pending_req_info* next; |
| } PendingReqInfo; |
| |
| typedef struct resolv_cache { |
| int max_entries; |
| int num_entries; |
| Entry mru_list; |
| pthread_mutex_t lock; |
| unsigned generation; |
| int last_id; |
| Entry* entries; |
| PendingReqInfo pending_requests; |
| } Cache; |
| |
| typedef struct resolv_cache_info { |
| char ifname[IF_NAMESIZE + 1]; |
| struct in_addr ifaddr; |
| Cache* cache; |
| struct resolv_cache_info* next; |
| char* nameservers[MAXNS +1]; |
| struct addrinfo* nsaddrinfo[MAXNS + 1]; |
| char defdname[256]; |
| int dnsrch_offset[MAXDNSRCH+1]; // offsets into defdname |
| } CacheInfo; |
| |
| typedef struct resolv_pidiface_info { |
| int pid; |
| char ifname[IF_NAMESIZE + 1]; |
| struct resolv_pidiface_info* next; |
| } PidIfaceInfo; |
| |
| #define HTABLE_VALID(x) ((x) != NULL && (x) != HTABLE_DELETED) |
| |
| static void |
| _cache_flush_pending_requests_locked( struct resolv_cache* cache ) |
| { |
| struct pending_req_info *ri, *tmp; |
| if (cache) { |
| ri = cache->pending_requests.next; |
| |
| while (ri) { |
| tmp = ri; |
| ri = ri->next; |
| pthread_cond_broadcast(&tmp->cond); |
| |
| pthread_cond_destroy(&tmp->cond); |
| free(tmp); |
| } |
| |
| cache->pending_requests.next = NULL; |
| } |
| } |
| |
| /* return 0 if no pending request is found matching the key |
| * if a matching request is found the calling thread will wait |
| * and return 1 when released */ |
| static int |
| _cache_check_pending_request_locked( struct resolv_cache* cache, Entry* key ) |
| { |
| struct pending_req_info *ri, *prev; |
| int exist = 0; |
| |
| if (cache && key) { |
| ri = cache->pending_requests.next; |
| prev = &cache->pending_requests; |
| while (ri) { |
| if (ri->hash == key->hash) { |
| exist = 1; |
| break; |
| } |
| prev = ri; |
| ri = ri->next; |
| } |
| |
| if (!exist) { |
| ri = calloc(1, sizeof(struct pending_req_info)); |
| if (ri) { |
| ri->hash = key->hash; |
| pthread_cond_init(&ri->cond, NULL); |
| prev->next = ri; |
| } |
| } else { |
| struct timespec ts = {0,0}; |
| XLOG("Waiting for previous request"); |
| ts.tv_sec = _time_now() + PENDING_REQUEST_TIMEOUT; |
| pthread_cond_timedwait(&ri->cond, &cache->lock, &ts); |
| } |
| } |
| |
| return exist; |
| } |
| |
| /* notify any waiting thread that waiting on a request |
| * matching the key has been added to the cache */ |
| static void |
| _cache_notify_waiting_tid_locked( struct resolv_cache* cache, Entry* key ) |
| { |
| struct pending_req_info *ri, *prev; |
| |
| if (cache && key) { |
| ri = cache->pending_requests.next; |
| prev = &cache->pending_requests; |
| while (ri) { |
| if (ri->hash == key->hash) { |
| pthread_cond_broadcast(&ri->cond); |
| break; |
| } |
| prev = ri; |
| ri = ri->next; |
| } |
| |
| // remove item from list and destroy |
| if (ri) { |
| prev->next = ri->next; |
| pthread_cond_destroy(&ri->cond); |
| free(ri); |
| } |
| } |
| } |
| |
| /* notify the cache that the query failed */ |
| void |
| _resolv_cache_query_failed( struct resolv_cache* cache, |
| const void* query, |
| int querylen) |
| { |
| Entry key[1]; |
| |
| if (cache && entry_init_key(key, query, querylen)) { |
| pthread_mutex_lock(&cache->lock); |
| _cache_notify_waiting_tid_locked(cache, key); |
| pthread_mutex_unlock(&cache->lock); |
| } |
| } |
| |
| static void |
| _cache_flush_locked( Cache* cache ) |
| { |
| int nn; |
| |
| for (nn = 0; nn < cache->max_entries; nn++) |
| { |
| Entry** pnode = (Entry**) &cache->entries[nn]; |
| |
| while (*pnode != NULL) { |
| Entry* node = *pnode; |
| *pnode = node->hlink; |
| entry_free(node); |
| } |
| } |
| |
| // flush pending request |
| _cache_flush_pending_requests_locked(cache); |
| |
| cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list; |
| cache->num_entries = 0; |
| cache->last_id = 0; |
| |
| XLOG("*************************\n" |
| "*** DNS CACHE FLUSHED ***\n" |
| "*************************"); |
| } |
| |
| /* Return max number of entries allowed in the cache, |
| * i.e. cache size. The cache size is either defined |
| * by system property ro.net.dns_cache_size or by |
| * CONFIG_MAX_ENTRIES if system property not set |
| * or set to invalid value. */ |
| static int |
| _res_cache_get_max_entries( void ) |
| { |
| int result = -1; |
| char cache_size[PROP_VALUE_MAX]; |
| |
| const char* cache_mode = getenv("ANDROID_DNS_MODE"); |
| |
| if (cache_mode == NULL || strcmp(cache_mode, "local") != 0) { |
| // Don't use the cache in local mode. This is used by the |
| // proxy itself. |
| XLOG("setup cache for non-cache process. size=0, %s", cache_mode); |
| return 0; |
| } |
| |
| if (__system_property_get(DNS_CACHE_SIZE_PROP_NAME, cache_size) > 0) { |
| result = atoi(cache_size); |
| } |
| |
| // ro.net.dns_cache_size not set or set to negative value |
| if (result <= 0) { |
| result = CONFIG_MAX_ENTRIES; |
| } |
| |
| XLOG("cache size: %d", result); |
| return result; |
| } |
| |
| static struct resolv_cache* |
| _resolv_cache_create( void ) |
| { |
| struct resolv_cache* cache; |
| |
| cache = calloc(sizeof(*cache), 1); |
| if (cache) { |
| cache->max_entries = _res_cache_get_max_entries(); |
| cache->entries = calloc(sizeof(*cache->entries), cache->max_entries); |
| if (cache->entries) { |
| cache->generation = ~0U; |
| pthread_mutex_init( &cache->lock, NULL ); |
| cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list; |
| XLOG("%s: cache created\n", __FUNCTION__); |
| } else { |
| free(cache); |
| cache = NULL; |
| } |
| } |
| return cache; |
| } |
| |
| |
| #if DEBUG |
| static void |
| _dump_query( const uint8_t* query, int querylen ) |
| { |
| char temp[256], *p=temp, *end=p+sizeof(temp); |
| DnsPacket pack[1]; |
| |
| _dnsPacket_init(pack, query, querylen); |
| p = _dnsPacket_bprintQuery(pack, p, end); |
| XLOG("QUERY: %s", temp); |
| } |
| |
| static void |
| _cache_dump_mru( Cache* cache ) |
| { |
| char temp[512], *p=temp, *end=p+sizeof(temp); |
| Entry* e; |
| |
| p = _bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries); |
| for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next) |
| p = _bprint(p, end, " %d", e->id); |
| |
| XLOG("%s", temp); |
| } |
| |
| static void |
| _dump_answer(const void* answer, int answerlen) |
| { |
| res_state statep; |
| FILE* fp; |
| char* buf; |
| int fileLen; |
| |
| fp = fopen("/data/reslog.txt", "w+"); |
| if (fp != NULL) { |
| statep = __res_get_state(); |
| |
| res_pquery(statep, answer, answerlen, fp); |
| |
| //Get file length |
| fseek(fp, 0, SEEK_END); |
| fileLen=ftell(fp); |
| fseek(fp, 0, SEEK_SET); |
| buf = (char *)malloc(fileLen+1); |
| if (buf != NULL) { |
| //Read file contents into buffer |
| fread(buf, fileLen, 1, fp); |
| XLOG("%s\n", buf); |
| free(buf); |
| } |
| fclose(fp); |
| remove("/data/reslog.txt"); |
| } |
| else { |
| errno = 0; // else debug is introducing error signals |
| XLOG("_dump_answer: can't open file\n"); |
| } |
| } |
| #endif |
| |
| #if DEBUG |
| # define XLOG_QUERY(q,len) _dump_query((q), (len)) |
| # define XLOG_ANSWER(a, len) _dump_answer((a), (len)) |
| #else |
| # define XLOG_QUERY(q,len) ((void)0) |
| # define XLOG_ANSWER(a,len) ((void)0) |
| #endif |
| |
| /* This function tries to find a key within the hash table |
| * In case of success, it will return a *pointer* to the hashed key. |
| * In case of failure, it will return a *pointer* to NULL |
| * |
| * So, the caller must check '*result' to check for success/failure. |
| * |
| * The main idea is that the result can later be used directly in |
| * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup' |
| * parameter. This makes the code simpler and avoids re-searching |
| * for the key position in the htable. |
| * |
| * The result of a lookup_p is only valid until you alter the hash |
| * table. |
| */ |
| static Entry** |
| _cache_lookup_p( Cache* cache, |
| Entry* key ) |
| { |
| int index = key->hash % cache->max_entries; |
| Entry** pnode = (Entry**) &cache->entries[ index ]; |
| |
| while (*pnode != NULL) { |
| Entry* node = *pnode; |
| |
| if (node == NULL) |
| break; |
| |
| if (node->hash == key->hash && entry_equals(node, key)) |
| break; |
| |
| pnode = &node->hlink; |
| } |
| return pnode; |
| } |
| |
| /* Add a new entry to the hash table. 'lookup' must be the |
| * result of an immediate previous failed _lookup_p() call |
| * (i.e. with *lookup == NULL), and 'e' is the pointer to the |
| * newly created entry |
| */ |
| static void |
| _cache_add_p( Cache* cache, |
| Entry** lookup, |
| Entry* e ) |
| { |
| *lookup = e; |
| e->id = ++cache->last_id; |
| entry_mru_add(e, &cache->mru_list); |
| cache->num_entries += 1; |
| |
| XLOG("%s: entry %d added (count=%d)", __FUNCTION__, |
| e->id, cache->num_entries); |
| } |
| |
| /* Remove an existing entry from the hash table, |
| * 'lookup' must be the result of an immediate previous |
| * and succesful _lookup_p() call. |
| */ |
| static void |
| _cache_remove_p( Cache* cache, |
| Entry** lookup ) |
| { |
| Entry* e = *lookup; |
| |
| XLOG("%s: entry %d removed (count=%d)", __FUNCTION__, |
| e->id, cache->num_entries-1); |
| |
| entry_mru_remove(e); |
| *lookup = e->hlink; |
| entry_free(e); |
| cache->num_entries -= 1; |
| } |
| |
| /* Remove the oldest entry from the hash table. |
| */ |
| static void |
| _cache_remove_oldest( Cache* cache ) |
| { |
| Entry* oldest = cache->mru_list.mru_prev; |
| Entry** lookup = _cache_lookup_p(cache, oldest); |
| |
| if (*lookup == NULL) { /* should not happen */ |
| XLOG("%s: OLDEST NOT IN HTABLE ?", __FUNCTION__); |
| return; |
| } |
| if (DEBUG) { |
| XLOG("Cache full - removing oldest"); |
| XLOG_QUERY(oldest->query, oldest->querylen); |
| } |
| _cache_remove_p(cache, lookup); |
| } |
| |
| /* Remove all expired entries from the hash table. |
| */ |
| static void _cache_remove_expired(Cache* cache) { |
| Entry* e; |
| time_t now = _time_now(); |
| |
| for (e = cache->mru_list.mru_next; e != &cache->mru_list;) { |
| // Entry is old, remove |
| if (now >= e->expires) { |
| Entry** lookup = _cache_lookup_p(cache, e); |
| if (*lookup == NULL) { /* should not happen */ |
| XLOG("%s: ENTRY NOT IN HTABLE ?", __FUNCTION__); |
| return; |
| } |
| e = e->mru_next; |
| _cache_remove_p(cache, lookup); |
| } else { |
| e = e->mru_next; |
| } |
| } |
| } |
| |
| ResolvCacheStatus |
| _resolv_cache_lookup( struct resolv_cache* cache, |
| const void* query, |
| int querylen, |
| void* answer, |
| int answersize, |
| int *answerlen ) |
| { |
| Entry key[1]; |
| Entry** lookup; |
| Entry* e; |
| time_t now; |
| |
| ResolvCacheStatus result = RESOLV_CACHE_NOTFOUND; |
| |
| XLOG("%s: lookup", __FUNCTION__); |
| XLOG_QUERY(query, querylen); |
| |
| /* we don't cache malformed queries */ |
| if (!entry_init_key(key, query, querylen)) { |
| XLOG("%s: unsupported query", __FUNCTION__); |
| return RESOLV_CACHE_UNSUPPORTED; |
| } |
| /* lookup cache */ |
| pthread_mutex_lock( &cache->lock ); |
| |
| /* see the description of _lookup_p to understand this. |
| * the function always return a non-NULL pointer. |
| */ |
| lookup = _cache_lookup_p(cache, key); |
| e = *lookup; |
| |
| if (e == NULL) { |
| XLOG( "NOT IN CACHE"); |
| // calling thread will wait if an outstanding request is found |
| // that matching this query |
| if (!_cache_check_pending_request_locked(cache, key)) { |
| goto Exit; |
| } else { |
| lookup = _cache_lookup_p(cache, key); |
| e = *lookup; |
| if (e == NULL) { |
| goto Exit; |
| } |
| } |
| } |
| |
| now = _time_now(); |
| |
| /* remove stale entries here */ |
| if (now >= e->expires) { |
| XLOG( " NOT IN CACHE (STALE ENTRY %p DISCARDED)", *lookup ); |
| XLOG_QUERY(e->query, e->querylen); |
| _cache_remove_p(cache, lookup); |
| goto Exit; |
| } |
| |
| *answerlen = e->answerlen; |
| if (e->answerlen > answersize) { |
| /* NOTE: we return UNSUPPORTED if the answer buffer is too short */ |
| result = RESOLV_CACHE_UNSUPPORTED; |
| XLOG(" ANSWER TOO LONG"); |
| goto Exit; |
| } |
| |
| memcpy( answer, e->answer, e->answerlen ); |
| |
| /* bump up this entry to the top of the MRU list */ |
| if (e != cache->mru_list.mru_next) { |
| entry_mru_remove( e ); |
| entry_mru_add( e, &cache->mru_list ); |
| } |
| |
| XLOG( "FOUND IN CACHE entry=%p", e ); |
| result = RESOLV_CACHE_FOUND; |
| |
| Exit: |
| pthread_mutex_unlock( &cache->lock ); |
| return result; |
| } |
| |
| |
| void |
| _resolv_cache_add( struct resolv_cache* cache, |
| const void* query, |
| int querylen, |
| const void* answer, |
| int answerlen ) |
| { |
| Entry key[1]; |
| Entry* e; |
| Entry** lookup; |
| u_long ttl; |
| |
| /* don't assume that the query has already been cached |
| */ |
| if (!entry_init_key( key, query, querylen )) { |
| XLOG( "%s: passed invalid query ?", __FUNCTION__); |
| return; |
| } |
| |
| pthread_mutex_lock( &cache->lock ); |
| |
| XLOG( "%s: query:", __FUNCTION__ ); |
| XLOG_QUERY(query,querylen); |
| XLOG_ANSWER(answer, answerlen); |
| #if DEBUG_DATA |
| XLOG( "answer:"); |
| XLOG_BYTES(answer,answerlen); |
| #endif |
| |
| lookup = _cache_lookup_p(cache, key); |
| e = *lookup; |
| |
| if (e != NULL) { /* should not happen */ |
| XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD", |
| __FUNCTION__, e); |
| goto Exit; |
| } |
| |
| if (cache->num_entries >= cache->max_entries) { |
| _cache_remove_expired(cache); |
| if (cache->num_entries >= cache->max_entries) { |
| _cache_remove_oldest(cache); |
| } |
| /* need to lookup again */ |
| lookup = _cache_lookup_p(cache, key); |
| e = *lookup; |
| if (e != NULL) { |
| XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD", |
| __FUNCTION__, e); |
| goto Exit; |
| } |
| } |
| |
| ttl = answer_getTTL(answer, answerlen); |
| if (ttl > 0) { |
| e = entry_alloc(key, answer, answerlen); |
| if (e != NULL) { |
| e->expires = ttl + _time_now(); |
| _cache_add_p(cache, lookup, e); |
| } |
| } |
| #if DEBUG |
| _cache_dump_mru(cache); |
| #endif |
| Exit: |
| _cache_notify_waiting_tid_locked(cache, key); |
| pthread_mutex_unlock( &cache->lock ); |
| } |
| |
| /****************************************************************************/ |
| /****************************************************************************/ |
| /***** *****/ |
| /***** *****/ |
| /***** *****/ |
| /****************************************************************************/ |
| /****************************************************************************/ |
| |
| static pthread_once_t _res_cache_once = PTHREAD_ONCE_INIT; |
| |
| // Head of the list of caches. Protected by _res_cache_list_lock. |
| static struct resolv_cache_info _res_cache_list; |
| |
| // List of pid iface pairs |
| static struct resolv_pidiface_info _res_pidiface_list; |
| |
| // name of the current default inteface |
| static char _res_default_ifname[IF_NAMESIZE + 1]; |
| |
| // lock protecting everything in the _resolve_cache_info structs (next ptr, etc) |
| static pthread_mutex_t _res_cache_list_lock; |
| |
| // lock protecting the _res_pid_iface_list |
| static pthread_mutex_t _res_pidiface_list_lock; |
| |
| /* lookup the default interface name */ |
| static char *_get_default_iface_locked(); |
| /* find the first cache that has an associated interface and return the name of the interface */ |
| static char* _find_any_iface_name_locked( void ); |
| |
| /* insert resolv_cache_info into the list of resolv_cache_infos */ |
| static void _insert_cache_info_locked(struct resolv_cache_info* cache_info); |
| /* creates a resolv_cache_info */ |
| static struct resolv_cache_info* _create_cache_info( void ); |
| /* gets cache associated with an interface name, or NULL if none exists */ |
| static struct resolv_cache* _find_named_cache_locked(const char* ifname); |
| /* gets a resolv_cache_info associated with an interface name, or NULL if not found */ |
| static struct resolv_cache_info* _find_cache_info_locked(const char* ifname); |
| /* look up the named cache, and creates one if needed */ |
| static struct resolv_cache* _get_res_cache_for_iface_locked(const char* ifname); |
| /* empty the named cache */ |
| static void _flush_cache_for_iface_locked(const char* ifname); |
| /* empty the nameservers set for the named cache */ |
| static void _free_nameservers_locked(struct resolv_cache_info* cache_info); |
| /* lookup the namserver for the name interface */ |
| static int _get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen); |
| /* lookup the addr of the nameserver for the named interface */ |
| static struct addrinfo* _get_nameserver_addr_locked(const char* ifname, int n); |
| /* lookup the inteface's address */ |
| static struct in_addr* _get_addr_locked(const char * ifname); |
| /* return 1 if the provided list of name servers differs from the list of name servers |
| * currently attached to the provided cache_info */ |
| static int _resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info, |
| char** servers, int numservers); |
| /* remove a resolv_pidiface_info structure from _res_pidiface_list */ |
| static void _remove_pidiface_info_locked(int pid); |
| /* get a resolv_pidiface_info structure from _res_pidiface_list with a certain pid */ |
| static struct resolv_pidiface_info* _get_pid_iface_info_locked(int pid); |
| |
| static void |
| _res_cache_init(void) |
| { |
| const char* env = getenv(CONFIG_ENV); |
| |
| if (env && atoi(env) == 0) { |
| /* the cache is disabled */ |
| return; |
| } |
| |
| memset(&_res_default_ifname, 0, sizeof(_res_default_ifname)); |
| memset(&_res_cache_list, 0, sizeof(_res_cache_list)); |
| memset(&_res_pidiface_list, 0, sizeof(_res_pidiface_list)); |
| pthread_mutex_init(&_res_cache_list_lock, NULL); |
| pthread_mutex_init(&_res_pidiface_list_lock, NULL); |
| } |
| |
| struct resolv_cache* |
| __get_res_cache(const char* ifname) |
| { |
| struct resolv_cache *cache; |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| |
| char* iface; |
| if (ifname == NULL || ifname[0] == '\0') { |
| iface = _get_default_iface_locked(); |
| if (iface[0] == '\0') { |
| char* tmp = _find_any_iface_name_locked(); |
| if (tmp) { |
| iface = tmp; |
| } |
| } |
| } else { |
| iface = (char *) ifname; |
| } |
| |
| cache = _get_res_cache_for_iface_locked(iface); |
| |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| XLOG("_get_res_cache: iface = %s, cache=%p\n", iface, cache); |
| return cache; |
| } |
| |
| static struct resolv_cache* |
| _get_res_cache_for_iface_locked(const char* ifname) |
| { |
| if (ifname == NULL) |
| return NULL; |
| |
| struct resolv_cache* cache = _find_named_cache_locked(ifname); |
| if (!cache) { |
| struct resolv_cache_info* cache_info = _create_cache_info(); |
| if (cache_info) { |
| cache = _resolv_cache_create(); |
| if (cache) { |
| int len = sizeof(cache_info->ifname); |
| cache_info->cache = cache; |
| strncpy(cache_info->ifname, ifname, len - 1); |
| cache_info->ifname[len - 1] = '\0'; |
| |
| _insert_cache_info_locked(cache_info); |
| } else { |
| free(cache_info); |
| } |
| } |
| } |
| return cache; |
| } |
| |
| void |
| _resolv_cache_reset(unsigned generation) |
| { |
| XLOG("%s: generation=%d", __FUNCTION__, generation); |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| |
| char* ifname = _get_default_iface_locked(); |
| // if default interface not set then use the first cache |
| // associated with an interface as the default one. |
| // Note: Copied the code from __get_res_cache since this |
| // method will be deleted/obsolete when cache per interface |
| // implemented all over |
| if (ifname[0] == '\0') { |
| struct resolv_cache_info* cache_info = _res_cache_list.next; |
| while (cache_info) { |
| if (cache_info->ifname[0] != '\0') { |
| ifname = cache_info->ifname; |
| break; |
| } |
| |
| cache_info = cache_info->next; |
| } |
| } |
| struct resolv_cache* cache = _get_res_cache_for_iface_locked(ifname); |
| |
| if (cache != NULL) { |
| pthread_mutex_lock( &cache->lock ); |
| if (cache->generation != generation) { |
| _cache_flush_locked(cache); |
| cache->generation = generation; |
| } |
| pthread_mutex_unlock( &cache->lock ); |
| } |
| |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| } |
| |
| void |
| _resolv_flush_cache_for_default_iface(void) |
| { |
| char* ifname; |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| |
| ifname = _get_default_iface_locked(); |
| _flush_cache_for_iface_locked(ifname); |
| |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| } |
| |
| void |
| _resolv_flush_cache_for_iface(const char* ifname) |
| { |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| |
| _flush_cache_for_iface_locked(ifname); |
| |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| } |
| |
| static void |
| _flush_cache_for_iface_locked(const char* ifname) |
| { |
| struct resolv_cache* cache = _find_named_cache_locked(ifname); |
| if (cache) { |
| pthread_mutex_lock(&cache->lock); |
| _cache_flush_locked(cache); |
| pthread_mutex_unlock(&cache->lock); |
| } |
| } |
| |
| static struct resolv_cache_info* |
| _create_cache_info(void) |
| { |
| struct resolv_cache_info* cache_info; |
| |
| cache_info = calloc(sizeof(*cache_info), 1); |
| return cache_info; |
| } |
| |
| static void |
| _insert_cache_info_locked(struct resolv_cache_info* cache_info) |
| { |
| struct resolv_cache_info* last; |
| |
| for (last = &_res_cache_list; last->next; last = last->next); |
| |
| last->next = cache_info; |
| |
| } |
| |
| static struct resolv_cache* |
| _find_named_cache_locked(const char* ifname) { |
| |
| struct resolv_cache_info* info = _find_cache_info_locked(ifname); |
| |
| if (info != NULL) return info->cache; |
| |
| return NULL; |
| } |
| |
| static struct resolv_cache_info* |
| _find_cache_info_locked(const char* ifname) |
| { |
| if (ifname == NULL) |
| return NULL; |
| |
| struct resolv_cache_info* cache_info = _res_cache_list.next; |
| |
| while (cache_info) { |
| if (strcmp(cache_info->ifname, ifname) == 0) { |
| break; |
| } |
| |
| cache_info = cache_info->next; |
| } |
| return cache_info; |
| } |
| |
| static char* |
| _get_default_iface_locked(void) |
| { |
| |
| char* iface = _res_default_ifname; |
| |
| return iface; |
| } |
| |
| static char* |
| _find_any_iface_name_locked( void ) { |
| char* ifname = NULL; |
| |
| struct resolv_cache_info* cache_info = _res_cache_list.next; |
| while (cache_info) { |
| if (cache_info->ifname[0] != '\0') { |
| ifname = cache_info->ifname; |
| break; |
| } |
| |
| cache_info = cache_info->next; |
| } |
| |
| return ifname; |
| } |
| |
| void |
| _resolv_set_default_iface(const char* ifname) |
| { |
| XLOG("_resolv_set_default_if ifname %s\n",ifname); |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| |
| int size = sizeof(_res_default_ifname); |
| memset(_res_default_ifname, 0, size); |
| strncpy(_res_default_ifname, ifname, size - 1); |
| _res_default_ifname[size - 1] = '\0'; |
| |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| } |
| |
| void |
| _resolv_set_nameservers_for_iface(const char* ifname, char** servers, int numservers, |
| const char *domains) |
| { |
| int i, rt, index; |
| struct addrinfo hints; |
| char sbuf[NI_MAXSERV]; |
| register char *cp; |
| int *offset; |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| |
| // creates the cache if not created |
| _get_res_cache_for_iface_locked(ifname); |
| |
| struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname); |
| |
| if (cache_info != NULL && |
| !_resolv_is_nameservers_equal_locked(cache_info, servers, numservers)) { |
| // free current before adding new |
| _free_nameservers_locked(cache_info); |
| |
| memset(&hints, 0, sizeof(hints)); |
| hints.ai_family = PF_UNSPEC; |
| hints.ai_socktype = SOCK_DGRAM; /*dummy*/ |
| hints.ai_flags = AI_NUMERICHOST; |
| sprintf(sbuf, "%u", NAMESERVER_PORT); |
| |
| index = 0; |
| for (i = 0; i < numservers && i < MAXNS; i++) { |
| rt = getaddrinfo(servers[i], sbuf, &hints, &cache_info->nsaddrinfo[index]); |
| if (rt == 0) { |
| cache_info->nameservers[index] = strdup(servers[i]); |
| index++; |
| XLOG("_resolv_set_nameservers_for_iface: iface = %s, addr = %s\n", |
| ifname, servers[i]); |
| } else { |
| cache_info->nsaddrinfo[index] = NULL; |
| } |
| } |
| |
| // code moved from res_init.c, load_domain_search_list |
| strlcpy(cache_info->defdname, domains, sizeof(cache_info->defdname)); |
| if ((cp = strchr(cache_info->defdname, '\n')) != NULL) |
| *cp = '\0'; |
| cp = cache_info->defdname; |
| offset = cache_info->dnsrch_offset; |
| while (offset < cache_info->dnsrch_offset + MAXDNSRCH) { |
| while (*cp == ' ' || *cp == '\t') /* skip leading white space */ |
| cp++; |
| if (*cp == '\0') /* stop if nothing more to do */ |
| break; |
| *offset++ = cp - cache_info->defdname; /* record this search domain */ |
| while (*cp) { /* zero-terminate it */ |
| if (*cp == ' '|| *cp == '\t') { |
| *cp++ = '\0'; |
| break; |
| } |
| cp++; |
| } |
| } |
| *offset = -1; /* cache_info->dnsrch_offset has MAXDNSRCH+1 items */ |
| |
| // flush cache since new settings |
| _flush_cache_for_iface_locked(ifname); |
| |
| } |
| |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| } |
| |
| static int |
| _resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info, |
| char** servers, int numservers) |
| { |
| int i; |
| char** ns; |
| int equal = 1; |
| |
| // compare each name server against current name servers |
| if (numservers > MAXNS) numservers = MAXNS; |
| for (i = 0; i < numservers && equal; i++) { |
| ns = cache_info->nameservers; |
| equal = 0; |
| while(*ns) { |
| if (strcmp(*ns, servers[i]) == 0) { |
| equal = 1; |
| break; |
| } |
| ns++; |
| } |
| } |
| |
| return equal; |
| } |
| |
| static void |
| _free_nameservers_locked(struct resolv_cache_info* cache_info) |
| { |
| int i; |
| for (i = 0; i <= MAXNS; i++) { |
| free(cache_info->nameservers[i]); |
| cache_info->nameservers[i] = NULL; |
| if (cache_info->nsaddrinfo[i] != NULL) { |
| freeaddrinfo(cache_info->nsaddrinfo[i]); |
| cache_info->nsaddrinfo[i] = NULL; |
| } |
| } |
| } |
| |
| int |
| _resolv_cache_get_nameserver(int n, char* addr, int addrLen) |
| { |
| char *ifname; |
| int result = 0; |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| |
| ifname = _get_default_iface_locked(); |
| result = _get_nameserver_locked(ifname, n, addr, addrLen); |
| |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| return result; |
| } |
| |
| static int |
| _get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen) |
| { |
| int len = 0; |
| char* ns; |
| struct resolv_cache_info* cache_info; |
| |
| if (n < 1 || n > MAXNS || !addr) |
| return 0; |
| |
| cache_info = _find_cache_info_locked(ifname); |
| if (cache_info) { |
| ns = cache_info->nameservers[n - 1]; |
| if (ns) { |
| len = strlen(ns); |
| if (len < addrLen) { |
| strncpy(addr, ns, len); |
| addr[len] = '\0'; |
| } else { |
| len = 0; |
| } |
| } |
| } |
| |
| return len; |
| } |
| |
| struct addrinfo* |
| _cache_get_nameserver_addr(int n) |
| { |
| struct addrinfo *result; |
| char* ifname; |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| |
| ifname = _get_default_iface_locked(); |
| |
| result = _get_nameserver_addr_locked(ifname, n); |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| return result; |
| } |
| |
| static struct addrinfo* |
| _get_nameserver_addr_locked(const char* ifname, int n) |
| { |
| struct addrinfo* ai = NULL; |
| struct resolv_cache_info* cache_info; |
| |
| if (n < 1 || n > MAXNS) |
| return NULL; |
| |
| cache_info = _find_cache_info_locked(ifname); |
| if (cache_info) { |
| ai = cache_info->nsaddrinfo[n - 1]; |
| } |
| return ai; |
| } |
| |
| void |
| _resolv_set_addr_of_iface(const char* ifname, struct in_addr* addr) |
| { |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname); |
| if (cache_info) { |
| memcpy(&cache_info->ifaddr, addr, sizeof(*addr)); |
| |
| if (DEBUG) { |
| char* addr_s = inet_ntoa(cache_info->ifaddr); |
| XLOG("address of interface %s is %s\n", ifname, addr_s); |
| } |
| } |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| } |
| |
| struct in_addr* |
| _resolv_get_addr_of_default_iface(void) |
| { |
| struct in_addr* ai = NULL; |
| char* ifname; |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| ifname = _get_default_iface_locked(); |
| ai = _get_addr_locked(ifname); |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| |
| return ai; |
| } |
| |
| struct in_addr* |
| _resolv_get_addr_of_iface(const char* ifname) |
| { |
| struct in_addr* ai = NULL; |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| ai =_get_addr_locked(ifname); |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| return ai; |
| } |
| |
| static struct in_addr* |
| _get_addr_locked(const char * ifname) |
| { |
| struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname); |
| if (cache_info) { |
| return &cache_info->ifaddr; |
| } |
| return NULL; |
| } |
| |
| static void |
| _remove_pidiface_info_locked(int pid) { |
| struct resolv_pidiface_info* result = &_res_pidiface_list; |
| struct resolv_pidiface_info* prev = NULL; |
| |
| while (result != NULL && result->pid != pid) { |
| prev = result; |
| result = result->next; |
| } |
| if (prev != NULL && result != NULL) { |
| prev->next = result->next; |
| free(result); |
| } |
| } |
| |
| static struct resolv_pidiface_info* |
| _get_pid_iface_info_locked(int pid) |
| { |
| struct resolv_pidiface_info* result = &_res_pidiface_list; |
| while (result != NULL && result->pid != pid) { |
| result = result->next; |
| } |
| |
| return result; |
| } |
| |
| void |
| _resolv_set_iface_for_pid(const char* ifname, int pid) |
| { |
| // make sure the pid iface list is created |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_pidiface_list_lock); |
| |
| struct resolv_pidiface_info* pidiface_info = _get_pid_iface_info_locked(pid); |
| if (!pidiface_info) { |
| pidiface_info = calloc(sizeof(*pidiface_info), 1); |
| if (pidiface_info) { |
| pidiface_info->pid = pid; |
| int len = sizeof(pidiface_info->ifname); |
| strncpy(pidiface_info->ifname, ifname, len - 1); |
| pidiface_info->ifname[len - 1] = '\0'; |
| |
| pidiface_info->next = _res_pidiface_list.next; |
| _res_pidiface_list.next = pidiface_info; |
| |
| XLOG("_resolv_set_iface_for_pid: pid %d , iface %s\n", pid, ifname); |
| } else { |
| XLOG("_resolv_set_iface_for_pid failing calloc"); |
| } |
| } |
| |
| pthread_mutex_unlock(&_res_pidiface_list_lock); |
| } |
| |
| void |
| _resolv_clear_iface_for_pid(int pid) |
| { |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_pidiface_list_lock); |
| |
| _remove_pidiface_info_locked(pid); |
| |
| XLOG("_resolv_clear_iface_for_pid: pid %d\n", pid); |
| |
| pthread_mutex_unlock(&_res_pidiface_list_lock); |
| } |
| |
| int |
| _resolv_get_pids_associated_interface(int pid, char* buff, int buffLen) |
| { |
| int len = 0; |
| |
| if (!buff) { |
| return -1; |
| } |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_pidiface_list_lock); |
| |
| struct resolv_pidiface_info* pidiface_info = _get_pid_iface_info_locked(pid); |
| buff[0] = '\0'; |
| if (pidiface_info) { |
| len = strlen(pidiface_info->ifname); |
| if (len < buffLen) { |
| strncpy(buff, pidiface_info->ifname, len); |
| buff[len] = '\0'; |
| } |
| } |
| |
| XLOG("_resolv_get_pids_associated_interface buff: %s\n", buff); |
| |
| pthread_mutex_unlock(&_res_pidiface_list_lock); |
| |
| return len; |
| } |
| |
| int |
| _resolv_get_default_iface(char* buff, int buffLen) |
| { |
| char* ifname; |
| int len = 0; |
| |
| if (!buff || buffLen == 0) { |
| return -1; |
| } |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| |
| ifname = _get_default_iface_locked(); // never null, but may be empty |
| |
| // if default interface not set. Get first cache with an interface |
| if (ifname[0] == '\0') { |
| ifname = _find_any_iface_name_locked(); // may be null |
| } |
| |
| // if we got the default iface or if (no-default) the find_any call gave an answer |
| if (ifname) { |
| len = strlen(ifname); |
| if (len < buffLen) { |
| strncpy(buff, ifname, len); |
| buff[len] = '\0'; |
| } |
| } else { |
| buff[0] = '\0'; |
| } |
| |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| |
| return len; |
| } |
| |
| int |
| _resolv_populate_res_for_iface(res_state statp) |
| { |
| int nserv; |
| struct resolv_cache_info* info = NULL; |
| |
| if (statp) { |
| struct addrinfo* ai; |
| |
| if (statp->iface[0] == '\0') { // no interface set assign default |
| _resolv_get_default_iface(statp->iface, sizeof(statp->iface)); |
| } |
| |
| pthread_once(&_res_cache_once, _res_cache_init); |
| pthread_mutex_lock(&_res_cache_list_lock); |
| info = _find_cache_info_locked(statp->iface); |
| |
| if (info == NULL) { |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| return 0; |
| } |
| |
| XLOG("_resolv_populate_res_for_iface: %s\n", statp->iface); |
| for (nserv = 0; nserv < MAXNS; nserv++) { |
| ai = info->nsaddrinfo[nserv]; |
| if (ai == NULL) { |
| break; |
| } |
| |
| if ((size_t) ai->ai_addrlen <= sizeof(statp->_u._ext.ext->nsaddrs[0])) { |
| if (statp->_u._ext.ext != NULL) { |
| memcpy(&statp->_u._ext.ext->nsaddrs[nserv], ai->ai_addr, ai->ai_addrlen); |
| statp->nsaddr_list[nserv].sin_family = AF_UNSPEC; |
| } else { |
| if ((size_t) ai->ai_addrlen |
| <= sizeof(statp->nsaddr_list[0])) { |
| memcpy(&statp->nsaddr_list[nserv], ai->ai_addr, |
| ai->ai_addrlen); |
| } else { |
| statp->nsaddr_list[nserv].sin_family = AF_UNSPEC; |
| } |
| } |
| } else { |
| XLOG("_resolv_populate_res_for_iface found too long addrlen"); |
| } |
| } |
| statp->nscount = nserv; |
| // now do search domains. Note that we cache the offsets as this code runs alot |
| // but the setting/offset-computer only runs when set/changed |
| strlcpy(statp->defdname, info->defdname, sizeof(statp->defdname)); |
| register char **pp = statp->dnsrch; |
| register int *p = info->dnsrch_offset; |
| while (pp < statp->dnsrch + MAXDNSRCH && *p != -1) { |
| *pp++ = &statp->defdname + *p++; |
| } |
| |
| pthread_mutex_unlock(&_res_cache_list_lock); |
| } |
| return nserv; |
| } |