blob: 01b143b7994712c8ce3fbe1f49349e9e9d26a81b [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
#include <EGL/egl.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include "FullPipelineRenderer.h"
#include <graphics/BasicMeshNode.h>
#include <graphics/GLUtils.h>
#include <graphics/TransformationNode.h>
#include <Trace.h>
static const int FP_NUM_VERTICES = 6;
static const float FP_VERTICES[FP_NUM_VERTICES * 3] = {
1.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f };
static const float FP_NORMALS[FP_NUM_VERTICES * 3] = {
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f };
static const float FP_TEX_COORDS[FP_NUM_VERTICES * 2] = {
1.0f, 1.0f,
0.0f, 1.0f,
0.0f, 0.0f,
0.0f, 0.0f,
1.0f, 0.0f,
1.0f, 1.0f };
static const char* FP_VERTEX =
"uniform mat4 u_MVPMatrix;"
"uniform mat4 u_MVMatrix;"
"attribute vec4 a_Position;"
"attribute vec3 a_Normal;"
"attribute vec2 a_TexCoordinate;"
"varying vec3 v_Position;"
"varying vec3 v_Normal;"
"varying vec2 v_TexCoordinate;"
"void main() {\n"
" // Transform the vertex into eye space.\n"
" v_Position = vec3(u_MVMatrix * a_Position);\n"
" // Pass through the texture coordinate.\n"
" v_TexCoordinate = a_TexCoordinate;\n"
" // Transform the normal\'s orientation into eye space.\n"
" v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0));\n"
" // Multiply to get the final point in normalized screen coordinates.\n"
" gl_Position = u_MVPMatrix * a_Position;\n"
"}";
static const char* FP_FRAGMENT =
"precision mediump float;"
"uniform vec3 u_LightPos;"
"uniform sampler2D u_Texture;"
"varying vec3 v_Position;"
"varying vec3 v_Normal;"
"varying vec2 v_TexCoordinate;"
"void main() {\n"
" // Will be used for attenuation.\n"
" float distance = length(u_LightPos - v_Position);\n"
" // Get a lighting direction vector from the light to the vertex.\n"
" vec3 lightVector = normalize(u_LightPos - v_Position);\n"
" // Calculate the dot product of the light vector and vertex normal.\n"
" float diffuse = max(dot(v_Normal, lightVector), 0.0);\n"
" // Add attenuation.\n"
" diffuse = diffuse * (1.0 / (1.0 + (0.01 * distance)));\n"
" // Add ambient lighting\n"
" diffuse = diffuse + 0.25;\n"
" // Multiply the diffuse illumination and texture to get final output color.\n"
" gl_FragColor = (diffuse * texture2D(u_Texture, v_TexCoordinate));\n"
"}";
FullPipelineRenderer::FullPipelineRenderer(ANativeWindow* window, bool offscreen, int workload) :
Renderer(window, offscreen, workload), mProgram(NULL), mSceneGraph(NULL),
mModelMatrix(NULL), mViewMatrix(NULL), mProjectionMatrix(NULL), mMesh(NULL),
mTextureId(0) {
}
bool FullPipelineRenderer::setUp() {
SCOPED_TRACE();
if (!Renderer::setUp()) {
return false;
}
mProgramId = GLUtils::createProgram(&FP_VERTEX, &FP_FRAGMENT);
if (mProgramId == 0) {
return false;
}
mProgram = new BasicProgram(mProgramId);
mModelMatrix = new Matrix();
// Position the eye in front of the origin.
float eyeX = 0.0f;
float eyeY = 0.0f;
float eyeZ = 1.5f;
// We are looking at the origin
float centerX = 0.0f;
float centerY = 0.0f;
float centerZ = 0.0f;
// Set our up vector.
float upX = 0.0f;
float upY = 1.0f;
float upZ = 0.0f;
// Set the view matrix.
mViewMatrix = Matrix::newLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ);
// Create a new perspective projection matrix. The height will stay the same
// while the width will vary as per aspect ratio.
float ratio = (float) mWidth / mHeight;
float left = -ratio;
float right = ratio;
float bottom = -1.0f;
float top = 1.0f;
float near = 1.0f;
float far = 2.0f;
mProjectionMatrix = Matrix::newFrustum(left, right, bottom, top, near, far);
// Setup texture.
mTextureId = GLUtils::genTexture(mWidth, mHeight, GLUtils::RANDOM_FILL);
if (mTextureId == 0) {
return false;
}
float count = mWorkload * mWorkload;
float middle = count / 2.0f;
float scale = 2.0f / count;
mMesh = new Mesh(FP_VERTICES, FP_NORMALS, FP_TEX_COORDS, FP_NUM_VERTICES);
mSceneGraph = new ProgramNode();
for (int i = 0; i < count; i++) {
for (int j = 0; j < count; j++) {
Matrix* transformMatrix = Matrix::newScale(scale, scale, scale);
transformMatrix->translate(i - middle, j - middle, 0.0f);
TransformationNode* transformNode = new TransformationNode(transformMatrix);
mSceneGraph->addChild(transformNode);
BasicMeshNode* meshNode = new BasicMeshNode(mMesh, mTextureId);
transformNode->addChild(meshNode);
}
}
return true;
}
bool FullPipelineRenderer::tearDown() {
SCOPED_TRACE();
if (mTextureId != 0) {
glDeleteTextures(1, &mTextureId);
mTextureId = 0;
}
if (!Renderer::tearDown()) {
return false;
}
delete mModelMatrix;
mModelMatrix = NULL;
delete mViewMatrix;
mViewMatrix = NULL;
delete mProjectionMatrix;
mProjectionMatrix = NULL;
delete mProgram;
mProgram = NULL;
delete mSceneGraph;
mSceneGraph = NULL;
delete mMesh;
mMesh = NULL;
return true;
}
bool FullPipelineRenderer::draw() {
SCOPED_TRACE();
if (mOffscreen) {
glBindFramebuffer(GL_FRAMEBUFFER, mFboId);
}
// Set the background clear color to black.
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
// Use culling to remove back faces.
glEnable(GL_CULL_FACE);
// Use depth testing.
glEnable(GL_DEPTH_TEST);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
mModelMatrix->identity();
mSceneGraph->draw(*mProgram, *mModelMatrix, *mViewMatrix, *mProjectionMatrix);
return Renderer::draw();
}