| #!/usr/bin/python |
| # |
| # Copyright 2006 Google Inc. All Rights Reserved. |
| |
| """Module for looking up symbolic debugging information. |
| |
| The information can include symbol names, offsets, and source locations. |
| """ |
| |
| import os |
| import re |
| import subprocess |
| |
| ANDROID_BUILD_TOP = os.environ["ANDROID_BUILD_TOP"] |
| if not ANDROID_BUILD_TOP: |
| ANDROID_BUILD_TOP = "." |
| |
| def FindSymbolsDir(): |
| saveddir = os.getcwd() |
| os.chdir(ANDROID_BUILD_TOP) |
| try: |
| cmd = ("CALLED_FROM_SETUP=true BUILD_SYSTEM=build/core " |
| "SRC_TARGET_DIR=build/target make -f build/core/config.mk " |
| "dumpvar-abs-TARGET_OUT_UNSTRIPPED") |
| stream = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True).stdout |
| return os.path.join(ANDROID_BUILD_TOP, stream.read().strip()) |
| finally: |
| os.chdir(saveddir) |
| |
| SYMBOLS_DIR = FindSymbolsDir() |
| |
| def Uname(): |
| """'uname' for constructing prebuilt/<...> and out/host/<...> paths.""" |
| uname = os.uname()[0] |
| if uname == "Darwin": |
| proc = os.uname()[-1] |
| if proc == "i386" or proc == "x86_64": |
| return "darwin-x86" |
| return "darwin-ppc" |
| if uname == "Linux": |
| return "linux-x86" |
| return uname |
| |
| def ToolPath(tool, toolchain_info=None): |
| """Return a full qualified path to the specified tool""" |
| if not toolchain_info: |
| toolchain_info = TOOLCHAIN_INFO |
| (label, target) = toolchain_info |
| return os.path.join(ANDROID_BUILD_TOP, "prebuilt", Uname(), "toolchain", label, "bin", |
| target + "-" + tool) |
| |
| def FindToolchain(): |
| """Look for the latest available toolchain |
| |
| Args: |
| None |
| |
| Returns: |
| A pair of strings containing toolchain label and target prefix. |
| """ |
| |
| ## Known toolchains, newer ones in the front. |
| known_toolchains = [ |
| ("arm-linux-androideabi-4.4.x", "arm-linux-androideabi"), |
| ("arm-eabi-4.4.3", "arm-eabi"), |
| ("arm-eabi-4.4.0", "arm-eabi"), |
| ("arm-eabi-4.3.1", "arm-eabi"), |
| ("arm-eabi-4.2.1", "arm-eabi") |
| ] |
| |
| # Look for addr2line to check for valid toolchain path. |
| for (label, target) in known_toolchains: |
| toolchain_info = (label, target); |
| if os.path.exists(ToolPath("addr2line", toolchain_info)): |
| return toolchain_info |
| |
| raise Exception("Could not find tool chain") |
| |
| TOOLCHAIN_INFO = FindToolchain() |
| |
| def SymbolInformation(lib, addr): |
| """Look up symbol information about an address. |
| |
| Args: |
| lib: library (or executable) pathname containing symbols |
| addr: string hexidecimal address |
| |
| Returns: |
| For a given library and address, return tuple of: (source_symbol, |
| source_location, object_symbol_with_offset) the values may be None |
| if the information was unavailable. |
| |
| source_symbol may not be a prefix of object_symbol_with_offset if |
| the source function was inlined in the object code of another |
| function. |
| |
| usually you want to display the object_symbol_with_offset and |
| source_location, the source_symbol is only useful to show if the |
| address was from an inlined function. |
| """ |
| info = SymbolInformationForSet(lib, set([addr])) |
| return (info and info.get(addr)) or (None, None, None) |
| |
| |
| def SymbolInformationForSet(lib, unique_addrs): |
| """Look up symbol information for a set of addresses from the given library. |
| |
| Args: |
| lib: library (or executable) pathname containing symbols |
| unique_addrs: set of hexidecimal addresses |
| |
| Returns: |
| For a given library and set of addresses, returns a dictionary of the form |
| {addr: (source_symbol, source_location, object_symbol_with_offset)}. The |
| values may be None if the information was unavailable. |
| |
| For a given address, source_symbol may not be a prefix of |
| object_symbol_with_offset if the source function was inlined in the |
| object code of another function. |
| |
| Usually you want to display the object_symbol_with_offset and |
| source_location; the source_symbol is only useful to show if the |
| address was from an inlined function. |
| """ |
| if not lib: |
| return None |
| |
| addr_to_line = CallAddr2LineForSet(lib, unique_addrs) |
| if not addr_to_line: |
| return None |
| |
| addr_to_objdump = CallObjdumpForSet(lib, unique_addrs) |
| if not addr_to_objdump: |
| return None |
| |
| result = {} |
| for addr in unique_addrs: |
| (source_symbol, source_location) = addr_to_line.get(addr, (None, None)) |
| if addr in addr_to_objdump: |
| (object_symbol, object_offset) = addr_to_objdump.get(addr) |
| object_symbol_with_offset = FormatSymbolWithOffset(object_symbol, |
| object_offset) |
| else: |
| object_symbol_with_offset = None |
| result[addr] = (source_symbol, source_location, object_symbol_with_offset) |
| |
| return result |
| |
| |
| def CallAddr2LineForSet(lib, unique_addrs): |
| """Look up line and symbol information for a set of addresses. |
| |
| Args: |
| lib: library (or executable) pathname containing symbols |
| unique_addrs: set of string hexidecimal addresses look up. |
| |
| Returns: |
| A dictionary of the form {addr: (symbol, file:line)}. The values may |
| be (None, None) if the address could not be looked up. |
| """ |
| if not lib: |
| return None |
| |
| |
| symbols = SYMBOLS_DIR + lib |
| if not os.path.exists(symbols): |
| return None |
| |
| (label, target) = TOOLCHAIN_INFO |
| cmd = [ToolPath("addr2line"), "--functions", "--demangle", "--exe=" + symbols] |
| child = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) |
| |
| result = {} |
| addrs = sorted(unique_addrs) |
| for addr in addrs: |
| child.stdin.write("0x%s\n" % addr) |
| child.stdin.flush() |
| symbol = child.stdout.readline().strip() |
| if symbol == "??": |
| symbol = None |
| location = child.stdout.readline().strip() |
| if location == "??:0": |
| location = None |
| result[addr] = (symbol, location) |
| child.stdin.close() |
| child.stdout.close() |
| return result |
| |
| |
| def CallObjdumpForSet(lib, unique_addrs): |
| """Use objdump to find out the names of the containing functions. |
| |
| Args: |
| lib: library (or executable) pathname containing symbols |
| unique_addrs: set of string hexidecimal addresses to find the functions for. |
| |
| Returns: |
| A dictionary of the form {addr: (string symbol, offset)}. |
| """ |
| if not lib: |
| return None |
| |
| symbols = SYMBOLS_DIR + lib |
| if not os.path.exists(symbols): |
| return None |
| |
| symbols = SYMBOLS_DIR + lib |
| if not os.path.exists(symbols): |
| return None |
| |
| addrs = sorted(unique_addrs) |
| start_addr_hex = addrs[0] |
| stop_addr_dec = str(int(addrs[-1], 16) + 8) |
| cmd = [ToolPath("objdump"), |
| "--section=.text", |
| "--demangle", |
| "--disassemble", |
| "--start-address=0x" + start_addr_hex, |
| "--stop-address=" + stop_addr_dec, |
| symbols] |
| |
| # Function lines look like: |
| # 000177b0 <android::IBinder::~IBinder()+0x2c>: |
| # We pull out the address and function first. Then we check for an optional |
| # offset. This is tricky due to functions that look like "operator+(..)+0x2c" |
| func_regexp = re.compile("(^[a-f0-9]*) \<(.*)\>:$") |
| offset_regexp = re.compile("(.*)\+0x([a-f0-9]*)") |
| |
| # A disassembly line looks like: |
| # 177b2: b510 push {r4, lr} |
| asm_regexp = re.compile("(^[ a-f0-9]*):[ a-f0-0]*.*$") |
| |
| current_symbol = None # The current function symbol in the disassembly. |
| current_symbol_addr = 0 # The address of the current function. |
| addr_index = 0 # The address that we are currently looking for. |
| |
| stream = subprocess.Popen(cmd, stdout=subprocess.PIPE).stdout |
| result = {} |
| for line in stream: |
| # Is it a function line like: |
| # 000177b0 <android::IBinder::~IBinder()>: |
| components = func_regexp.match(line) |
| if components: |
| # This is a new function, so record the current function and its address. |
| current_symbol_addr = int(components.group(1), 16) |
| current_symbol = components.group(2) |
| |
| # Does it have an optional offset like: "foo(..)+0x2c"? |
| components = offset_regexp.match(current_symbol) |
| if components: |
| current_symbol = components.group(1) |
| offset = components.group(2) |
| if offset: |
| current_symbol_addr -= int(offset, 16) |
| |
| # Is it an disassembly line like: |
| # 177b2: b510 push {r4, lr} |
| components = asm_regexp.match(line) |
| if components: |
| addr = components.group(1) |
| target_addr = addrs[addr_index] |
| i_addr = int(addr, 16) |
| i_target = int(target_addr, 16) |
| if i_addr == i_target: |
| result[target_addr] = (current_symbol, i_target - current_symbol_addr) |
| addr_index += 1 |
| if addr_index >= len(addrs): |
| break |
| stream.close() |
| |
| return result |
| |
| |
| def CallCppFilt(mangled_symbol): |
| cmd = [ToolPath("c++filt")] |
| process = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) |
| process.stdin.write(mangled_symbol) |
| process.stdin.write("\n") |
| process.stdin.close() |
| demangled_symbol = process.stdout.readline().strip() |
| process.stdout.close() |
| return demangled_symbol |
| |
| def FormatSymbolWithOffset(symbol, offset): |
| if offset == 0: |
| return symbol |
| return "%s+%d" % (symbol, offset) |