| |
| /* ----------------------------------------------------------------------------------------------------------- |
| Software License for The Fraunhofer FDK AAC Codec Library for Android |
| |
| © Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. |
| All rights reserved. |
| |
| 1. INTRODUCTION |
| The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements |
| the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. |
| This FDK AAC Codec software is intended to be used on a wide variety of Android devices. |
| |
| AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual |
| audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by |
| independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part |
| of the MPEG specifications. |
| |
| Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) |
| may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners |
| individually for the purpose of encoding or decoding bit streams in products that are compliant with |
| the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license |
| these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec |
| software may already be covered under those patent licenses when it is used for those licensed purposes only. |
| |
| Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, |
| are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional |
| applications information and documentation. |
| |
| 2. COPYRIGHT LICENSE |
| |
| Redistribution and use in source and binary forms, with or without modification, are permitted without |
| payment of copyright license fees provided that you satisfy the following conditions: |
| |
| You must retain the complete text of this software license in redistributions of the FDK AAC Codec or |
| your modifications thereto in source code form. |
| |
| You must retain the complete text of this software license in the documentation and/or other materials |
| provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. |
| You must make available free of charge copies of the complete source code of the FDK AAC Codec and your |
| modifications thereto to recipients of copies in binary form. |
| |
| The name of Fraunhofer may not be used to endorse or promote products derived from this library without |
| prior written permission. |
| |
| You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec |
| software or your modifications thereto. |
| |
| Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software |
| and the date of any change. For modified versions of the FDK AAC Codec, the term |
| "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term |
| "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." |
| |
| 3. NO PATENT LICENSE |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, |
| ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with |
| respect to this software. |
| |
| You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized |
| by appropriate patent licenses. |
| |
| 4. DISCLAIMER |
| |
| This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors |
| "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties |
| of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
| CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, |
| including but not limited to procurement of substitute goods or services; loss of use, data, or profits, |
| or business interruption, however caused and on any theory of liability, whether in contract, strict |
| liability, or tort (including negligence), arising in any way out of the use of this software, even if |
| advised of the possibility of such damage. |
| |
| 5. CONTACT INFORMATION |
| |
| Fraunhofer Institute for Integrated Circuits IIS |
| Attention: Audio and Multimedia Departments - FDK AAC LL |
| Am Wolfsmantel 33 |
| 91058 Erlangen, Germany |
| |
| www.iis.fraunhofer.de/amm |
| amm-info@iis.fraunhofer.de |
| ----------------------------------------------------------------------------------------------------------- */ |
| |
| /*************************** Fraunhofer IIS FDK Tools *********************** |
| |
| Author(s): M. Lohwasser |
| Description: auto-correlation functions |
| |
| ******************************************************************************/ |
| |
| #include "autocorr2nd.h" |
| |
| |
| |
| /* If the accumulator does not provide enough overflow bits, |
| products have to be shifted down in the autocorrelation below. */ |
| #define SHIFT_FACTOR (5) |
| #define SHIFT >> (SHIFT_FACTOR) |
| |
| |
| #if defined(__CC_ARM) || defined(__arm__) |
| #include "arm/autocorr2nd.cpp" |
| #endif |
| |
| |
| /*! |
| * |
| * \brief Calculate second order autocorrelation using 2 accumulators |
| * |
| */ |
| #if !defined(FUNCTION_autoCorr2nd_real) |
| INT |
| autoCorr2nd_real (ACORR_COEFS *ac, /*!< Pointer to autocorrelation coeffs */ |
| const FIXP_DBL *reBuffer, /*!< Pointer to to real part of input samples */ |
| const int len /*!< Number input samples */ |
| ) |
| { |
| int j, autoCorrScaling, mScale; |
| |
| FIXP_DBL accu1, accu2, accu3, accu4, accu5; |
| |
| const FIXP_DBL *pReBuf; |
| |
| const FIXP_DBL *realBuf = reBuffer; |
| |
| /* |
| r11r,r22r |
| r01r,r12r |
| r02r |
| */ |
| pReBuf = realBuf-2; |
| accu5 = ( (fMultDiv2(pReBuf[0], pReBuf[2]) + |
| fMultDiv2(pReBuf[1], pReBuf[3])) SHIFT); |
| pReBuf++; |
| |
| //len must be even |
| accu1 = fPow2Div2(pReBuf[0]) SHIFT; |
| accu3 = fMultDiv2(pReBuf[0], pReBuf[1]) SHIFT; |
| pReBuf++; |
| |
| for ( j = (len - 2)>>1; j != 0; j--,pReBuf+=2 ) { |
| |
| accu1 += ( (fPow2Div2(pReBuf[0]) + |
| fPow2Div2(pReBuf[1])) SHIFT); |
| |
| accu3 += ( (fMultDiv2(pReBuf[0], pReBuf[1]) + |
| fMultDiv2(pReBuf[1], pReBuf[2])) SHIFT); |
| |
| accu5 += ( (fMultDiv2(pReBuf[0], pReBuf[2]) + |
| fMultDiv2(pReBuf[1], pReBuf[3])) SHIFT); |
| |
| } |
| |
| accu2 = (fPow2Div2(realBuf[-2]) SHIFT); |
| accu2 += accu1; |
| |
| accu1 += (fPow2Div2(realBuf[len - 2]) SHIFT); |
| |
| accu4 = (fMultDiv2(realBuf[-1],realBuf[-2]) SHIFT); |
| accu4 += accu3; |
| |
| accu3 += (fMultDiv2(realBuf[len - 1],realBuf[len - 2]) SHIFT); |
| |
| mScale = CntLeadingZeros( (accu1 | accu2 | fAbs(accu3) | fAbs(accu4) | fAbs(accu5)) ) - 1; |
| autoCorrScaling = mScale - 1 - SHIFT_FACTOR; /* -1 because of fMultDiv2*/ |
| |
| /* Scale to common scale factor */ |
| ac->r11r = accu1 << mScale; |
| ac->r22r = accu2 << mScale; |
| ac->r01r = accu3 << mScale; |
| ac->r12r = accu4 << mScale; |
| ac->r02r = accu5 << mScale; |
| |
| ac->det = (fMultDiv2(ac->r11r,ac->r22r) - fMultDiv2(ac->r12r,ac->r12r)) ; |
| mScale = CountLeadingBits(fAbs(ac->det)); |
| |
| ac->det <<= mScale; |
| ac->det_scale = mScale - 1; |
| |
| return autoCorrScaling; |
| } |
| #endif |
| |
| #ifndef LOW_POWER_SBR_ONLY |
| #if !defined(FUNCTION_autoCorr2nd_cplx) |
| INT |
| autoCorr2nd_cplx (ACORR_COEFS *ac, /*!< Pointer to autocorrelation coeffs */ |
| const FIXP_DBL *reBuffer, /*!< Pointer to real part of input samples */ |
| const FIXP_DBL *imBuffer, /*!< Pointer to imag part of input samples */ |
| const int len /*!< Number of input samples */ |
| ) |
| { |
| |
| int j, autoCorrScaling, mScale, len_scale; |
| |
| FIXP_DBL accu0, accu1,accu2, accu3, accu4, accu5, accu6, accu7, accu8; |
| |
| const FIXP_DBL *pReBuf, *pImBuf; |
| |
| const FIXP_DBL *realBuf = reBuffer; |
| const FIXP_DBL *imagBuf = imBuffer; |
| |
| (len>64) ? (len_scale = 6) : (len_scale = 5); |
| /* |
| r00r, |
| r11r,r22r |
| r01r,r12r |
| r01i,r12i |
| r02r,r02i |
| */ |
| accu1 = accu3 = accu5 = accu7 = accu8 = FL2FXCONST_DBL(0.0f); |
| |
| pReBuf = realBuf-2, pImBuf = imagBuf-2; |
| accu7 += ( (fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >> len_scale); |
| accu8 += ( (fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >> len_scale); |
| |
| pReBuf = realBuf-1, pImBuf = imagBuf-1; |
| for ( j = (len - 1); j != 0; j--,pReBuf++,pImBuf++ ){ |
| accu1 += ( (fPow2Div2(pReBuf[0] ) + fPow2Div2(pImBuf[0] )) >> len_scale); |
| accu3 += ( (fMultDiv2(pReBuf[0], pReBuf[1]) + fMultDiv2(pImBuf[0], pImBuf[1])) >> len_scale); |
| accu5 += ( (fMultDiv2(pImBuf[1], pReBuf[0]) - fMultDiv2(pReBuf[1], pImBuf[0])) >> len_scale); |
| accu7 += ( (fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >> len_scale); |
| accu8 += ( (fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >> len_scale); |
| } |
| |
| accu2 = ( (fPow2Div2(realBuf[-2]) + fPow2Div2(imagBuf[-2])) >> len_scale); |
| accu2 += accu1; |
| |
| accu1 += ( (fPow2Div2(realBuf[len-2]) + |
| fPow2Div2(imagBuf[len-2])) >> len_scale); |
| accu0 = ( (fPow2Div2(realBuf[len-1]) + |
| fPow2Div2(imagBuf[len-1])) >> len_scale) - |
| ( (fPow2Div2(realBuf[-1]) + |
| fPow2Div2(imagBuf[-1])) >> len_scale); |
| accu0 += accu1; |
| |
| accu4 = ( (fMultDiv2(realBuf[-1], realBuf[-2]) + |
| fMultDiv2(imagBuf[-1], imagBuf[-2])) >> len_scale); |
| accu4 += accu3; |
| |
| accu3 += ( (fMultDiv2(realBuf[len-1], realBuf[len-2]) + |
| fMultDiv2(imagBuf[len-1], imagBuf[len-2])) >> len_scale); |
| |
| accu6 = ( (fMultDiv2(imagBuf[-1], realBuf[-2]) - |
| fMultDiv2(realBuf[-1], imagBuf[-2])) >> len_scale); |
| accu6 += accu5; |
| |
| accu5 += ( (fMultDiv2(imagBuf[len - 1], realBuf[len - 2]) - |
| fMultDiv2(realBuf[len - 1], imagBuf[len - 2])) >> len_scale); |
| |
| mScale = CntLeadingZeros( (accu0 | accu1 | accu2 | fAbs(accu3) | fAbs(accu4) | fAbs(accu5) | |
| fAbs(accu6) | fAbs(accu7) | fAbs(accu8)) ) - 1; |
| autoCorrScaling = mScale - 1 - len_scale; /* -1 because of fMultDiv2*/ |
| |
| /* Scale to common scale factor */ |
| ac->r00r = (FIXP_DBL)accu0 << mScale; |
| ac->r11r = (FIXP_DBL)accu1 << mScale; |
| ac->r22r = (FIXP_DBL)accu2 << mScale; |
| ac->r01r = (FIXP_DBL)accu3 << mScale; |
| ac->r12r = (FIXP_DBL)accu4 << mScale; |
| ac->r01i = (FIXP_DBL)accu5 << mScale; |
| ac->r12i = (FIXP_DBL)accu6 << mScale; |
| ac->r02r = (FIXP_DBL)accu7 << mScale; |
| ac->r02i = (FIXP_DBL)accu8 << mScale; |
| |
| ac->det = ( fMultDiv2(ac->r11r,ac->r22r) >> 1 ) - |
| ( (fMultDiv2(ac->r12r,ac->r12r) + fMultDiv2(ac->r12i,ac->r12i)) >> 1 ); |
| mScale = CountLeadingBits(fAbs(ac->det)); |
| |
| ac->det <<= mScale; |
| ac->det_scale = mScale - 2; |
| |
| return autoCorrScaling; |
| } |
| #endif /* FUNCTION_autoCorr2nd_cplx */ |
| #endif /* LOW_POWER_SBR_ONLY */ |
| |
| |