| |
| /* ----------------------------------------------------------------------------------------------------------- |
| Software License for The Fraunhofer FDK AAC Codec Library for Android |
| |
| © Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. |
| All rights reserved. |
| |
| 1. INTRODUCTION |
| The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements |
| the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. |
| This FDK AAC Codec software is intended to be used on a wide variety of Android devices. |
| |
| AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual |
| audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by |
| independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part |
| of the MPEG specifications. |
| |
| Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) |
| may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners |
| individually for the purpose of encoding or decoding bit streams in products that are compliant with |
| the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license |
| these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec |
| software may already be covered under those patent licenses when it is used for those licensed purposes only. |
| |
| Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, |
| are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional |
| applications information and documentation. |
| |
| 2. COPYRIGHT LICENSE |
| |
| Redistribution and use in source and binary forms, with or without modification, are permitted without |
| payment of copyright license fees provided that you satisfy the following conditions: |
| |
| You must retain the complete text of this software license in redistributions of the FDK AAC Codec or |
| your modifications thereto in source code form. |
| |
| You must retain the complete text of this software license in the documentation and/or other materials |
| provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. |
| You must make available free of charge copies of the complete source code of the FDK AAC Codec and your |
| modifications thereto to recipients of copies in binary form. |
| |
| The name of Fraunhofer may not be used to endorse or promote products derived from this library without |
| prior written permission. |
| |
| You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec |
| software or your modifications thereto. |
| |
| Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software |
| and the date of any change. For modified versions of the FDK AAC Codec, the term |
| "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term |
| "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." |
| |
| 3. NO PATENT LICENSE |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, |
| ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with |
| respect to this software. |
| |
| You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized |
| by appropriate patent licenses. |
| |
| 4. DISCLAIMER |
| |
| This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors |
| "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties |
| of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
| CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, |
| including but not limited to procurement of substitute goods or services; loss of use, data, or profits, |
| or business interruption, however caused and on any theory of liability, whether in contract, strict |
| liability, or tort (including negligence), arising in any way out of the use of this software, even if |
| advised of the possibility of such damage. |
| |
| 5. CONTACT INFORMATION |
| |
| Fraunhofer Institute for Integrated Circuits IIS |
| Attention: Audio and Multimedia Departments - FDK AAC LL |
| Am Wolfsmantel 33 |
| 91058 Erlangen, Germany |
| |
| www.iis.fraunhofer.de/amm |
| amm-info@iis.fraunhofer.de |
| ----------------------------------------------------------------------------------------------------------- */ |
| |
| /***************************** MPEG-4 AAC Decoder ************************** |
| |
| Author(s): Josef Hoepfl |
| Description: independent channel concealment |
| |
| ******************************************************************************/ |
| |
| /*! |
| \page concealment AAC core concealment |
| |
| This AAC core implementation includes a concealment function, which can be enabled |
| using the several defines during compilation. |
| |
| There are various tests inside the core, starting with simple CRC tests and ending in |
| a variety of plausibility checks. If such a check indicates an invalid bitstream, then |
| concealment is applied. |
| |
| Concealment is also applied when the calling main program indicates a distorted or missing |
| data frame using the frameOK flag. This is used for error detection on the transport layer. |
| (See below) |
| |
| There are three concealment-modes: |
| |
| 1) Muting: The spectral data is simply set to zero in case of an detected error. |
| |
| 2) Noise substitution: In case of an detected error, concealment copies the last frame and adds |
| attenuates the spectral data. For this mode you have to set the #CONCEAL_NOISE define. |
| Noise substitution adds no additional delay. |
| |
| 3) Interpolation: The interpolation routine swaps the spectral data from the previous and the |
| current frame just before the final frequency to time conversion. In case a single frame is |
| corrupted, concealmant interpolates between the last good and the first good frame to create |
| the spectral data for the missing frame. If multiple frames are corrupted, concealment |
| implements first a fade out based on slightly modified spectral values from the last good |
| frame. As soon as good frames are available, concealmant fades in the new spectral data. |
| For this mode you have to set the #CONCEAL_INTER define. Note that in this case, you also |
| need to set #SBR_BS_DELAY_ENABLE, which basically adds approriate delay in the SBR decoder. |
| Note that the Interpolating-Concealment increases the delay of your decoder by one frame |
| and that it does require additional resources such as memory and computational complexity. |
| |
| <h2>How concealment can be used with errors on the transport layer</h2> |
| |
| Many errors can or have to be detected on the transport layer. For example in IP based systems |
| packet loss can occur. The transport protocol used should indicate such packet loss by inserting |
| an empty frame with frameOK=0. |
| */ |
| |
| #include "conceal.h" |
| |
| #include "aac_rom.h" |
| #include "genericStds.h" |
| |
| |
| /* PNS (of block) */ |
| #include "aacdec_pns.h" |
| #include "block.h" |
| |
| #include "FDK_tools_rom.h" |
| |
| #define CONCEAL_DFLT_COMF_NOISE_LEVEL ( 46 ) /* ~= -70 dB */ |
| |
| |
| /* default settings */ |
| #define CONCEAL_DFLT_FADEOUT_FRAMES ( 5 ) |
| #define CONCEAL_DFLT_FADEIN_FRAMES ( 5 ) |
| #define CONCEAL_DFLT_MUTE_RELEASE_FRAMES ( 3 ) |
| |
| #define CONCEAL_DFLT_FADE_FACTOR ( 0.707106781186548f ) /* 1/sqrt(2) */ |
| |
| /* some often used constants: */ |
| #define FIXP_ZERO FL2FXCONST_DBL(0.0f) |
| #define FIXP_ONE FL2FXCONST_DBL(1.0f) |
| #define FIXP_FL_CORRECTION FL2FXCONST_DBL(0.53333333333333333f) |
| |
| /* For parameter conversion */ |
| #define CONCEAL_PARAMETER_BITS ( 8 ) |
| #define CONCEAL_MAX_QUANT_FACTOR ( (1<<CONCEAL_PARAMETER_BITS)-1 ) |
| /*#define CONCEAL_MIN_ATTENUATION_FACTOR_025 ( FL2FXCONST_DBL(0.971627951577106174) )*/ /* -0.25 dB */ |
| #define CONCEAL_MIN_ATTENUATION_FACTOR_025_LD FL2FXCONST_DBL(-0.041524101186092029596853445212299) |
| /*#define CONCEAL_MIN_ATTENUATION_FACTOR_050 ( FL2FXCONST_DBL(0.944060876285923380) )*/ /* -0.50 dB */ |
| #define CONCEAL_MIN_ATTENUATION_FACTOR_050_LD FL2FXCONST_DBL(-0.083048202372184059253597008145293) |
| |
| typedef enum { |
| CConcealment_NoExpand, |
| CConcealment_Expand, |
| CConcealment_Compress |
| } |
| CConcealmentExpandType; |
| |
| static const FIXP_SGL facMod4Table[4] = { |
| FL2FXCONST_SGL(0.500000000f), /* FIXP_SGL(0x4000), 2^-(1-0,00) */ |
| FL2FXCONST_SGL(0.594603558f), /* FIXP_SGL(0x4c1b), 2^-(1-0,25) */ |
| FL2FXCONST_SGL(0.707106781f), /* FIXP_SGL(0x5a82), 2^-(1-0,50) */ |
| FL2FXCONST_SGL(0.840896415f) /* FIXP_SGL(0x6ba2) 2^-(1-0,75) */ |
| }; |
| |
| |
| |
| |
| static void |
| CConcealment_CalcBandEnergy ( |
| FIXP_DBL *spectrum, |
| const SamplingRateInfo *pSamplingRateInfo, |
| const int blockType, |
| CConcealmentExpandType ex, |
| int *sfbEnergy |
| ); |
| |
| static void |
| CConcealment_InterpolateBuffer ( |
| FIXP_DBL *spectrum, |
| SHORT *pSpecScalePrev, |
| SHORT *pSpecScaleAct, |
| SHORT *pSpecScaleOut, |
| int *enPrv, |
| int *enAct, |
| int sfbCnt, |
| const SHORT *pSfbOffset |
| ); |
| |
| static int |
| CConcealment_ApplyInter ( |
| CConcealmentInfo *pConcealmentInfo, |
| CAacDecoderChannelInfo *pAacDecoderChannelInfo, |
| const SamplingRateInfo *pSamplingRateInfo, |
| const int samplesPerFrame, |
| const int improveTonal, |
| const int frameOk |
| ); |
| |
| |
| |
| static int |
| CConcealment_ApplyNoise ( |
| CConcealmentInfo *pConcealmentInfo, |
| CAacDecoderChannelInfo *pAacDecoderChannelInfo, |
| CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo, |
| const SamplingRateInfo *pSamplingRateInfo, |
| const int samplesPerFrame, |
| const UINT flags |
| ); |
| |
| static void |
| CConcealment_UpdateState ( |
| CConcealmentInfo *pConcealmentInfo, |
| int frameOk |
| ); |
| |
| static void |
| CConcealment_ApplyRandomSign ( |
| int iRandomPhase, |
| FIXP_DBL *spec, |
| int samplesPerFrame |
| ); |
| |
| |
| static int CConcealment_GetWinSeq(int prevWinSeq) |
| { |
| int newWinSeq = OnlyLongSequence; |
| |
| /* Try to have only long blocks */ |
| if ( prevWinSeq == LongStartSequence |
| || prevWinSeq == EightShortSequence ) |
| { |
| newWinSeq = LongStopSequence; |
| } |
| |
| return (newWinSeq); |
| } |
| |
| |
| /*! |
| \brief Init common concealment information data |
| |
| \pConcealCommonData Pointer to the concealment common data structure. |
| |
| \return none |
| */ |
| void |
| CConcealment_InitCommonData (CConcealParams *pConcealCommonData) |
| { |
| if (pConcealCommonData != NULL) |
| { |
| int i; |
| |
| /* Set default error concealment technique */ |
| pConcealCommonData->method = ConcealMethodInter; |
| |
| pConcealCommonData->numFadeOutFrames = CONCEAL_DFLT_FADEOUT_FRAMES; |
| pConcealCommonData->numFadeInFrames = CONCEAL_DFLT_FADEIN_FRAMES; |
| pConcealCommonData->numMuteReleaseFrames = CONCEAL_DFLT_MUTE_RELEASE_FRAMES; |
| |
| pConcealCommonData->comfortNoiseLevel = CONCEAL_DFLT_COMF_NOISE_LEVEL; |
| |
| /* Init fade factors (symetric) */ |
| pConcealCommonData->fadeOutFactor[0] = FL2FXCONST_SGL( CONCEAL_DFLT_FADE_FACTOR ); |
| pConcealCommonData->fadeInFactor[0] = pConcealCommonData->fadeOutFactor[0]; |
| |
| for (i = 1; i < CONCEAL_MAX_NUM_FADE_FACTORS; i++) { |
| pConcealCommonData->fadeOutFactor[i] = FX_DBL2FX_SGL(fMult(pConcealCommonData->fadeOutFactor[i-1],FL2FXCONST_SGL(CONCEAL_DFLT_FADE_FACTOR))); |
| pConcealCommonData->fadeInFactor[i] = pConcealCommonData->fadeOutFactor[i]; |
| } |
| } |
| } |
| |
| |
| |
| /*! |
| \brief Get current concealment method. |
| |
| \pConcealCommonData Pointer to common concealment data (for all channels) |
| |
| \return Concealment method. |
| */ |
| CConcealmentMethod |
| CConcealment_GetMethod( CConcealParams *pConcealCommonData ) |
| { |
| CConcealmentMethod method = ConcealMethodNone; |
| |
| if (pConcealCommonData != NULL) { |
| method = pConcealCommonData->method; |
| } |
| |
| return (method); |
| } |
| |
| |
| /*! |
| \brief Init concealment information for each channel |
| |
| The function initializes the concealment information. Two methods can be chosen: |
| 0 = interpolation method (adds delay) |
| 1 = noise substitution (no delay, low complexity) |
| |
| \return none |
| */ |
| void |
| CConcealment_InitChannelData ( |
| CConcealmentInfo *pConcealChannelInfo, |
| CConcealParams *pConcealCommonData, |
| int samplesPerFrame ) |
| { |
| int i; |
| |
| pConcealChannelInfo->pConcealParams = pConcealCommonData; |
| |
| FDKmemclear(pConcealChannelInfo->spectralCoefficient, 1024 * sizeof(FIXP_CNCL)); |
| |
| for (i = 0; i < 8; i++) { |
| pConcealChannelInfo->specScale[i] = 0; |
| } |
| |
| pConcealChannelInfo->iRandomPhase = 0; |
| |
| pConcealChannelInfo->windowSequence = 0; |
| pConcealChannelInfo->windowShape = 0; |
| |
| pConcealChannelInfo->prevFrameOk[0] = 1; |
| pConcealChannelInfo->prevFrameOk[1] = 1; |
| |
| pConcealChannelInfo->cntFadeFrames = 0; |
| pConcealChannelInfo->cntValidFrames = 0; |
| |
| pConcealChannelInfo->concealState = ConcealState_Ok; |
| |
| } |
| |
| |
| /*! |
| \brief Set error concealment parameters |
| |
| \concealParams |
| \method |
| \fadeOutSlope |
| \fadeInSlope |
| \muteRelease |
| \comfNoiseLevel |
| |
| \return none |
| */ |
| AAC_DECODER_ERROR |
| CConcealment_SetParams ( |
| CConcealParams *concealParams, |
| int method, |
| int fadeOutSlope, |
| int fadeInSlope, |
| int muteRelease, |
| int comfNoiseLevel ) |
| { |
| /* set concealment technique */ |
| if (method != AACDEC_CONCEAL_PARAM_NOT_SPECIFIED) { |
| switch ((CConcealmentMethod)method) |
| { |
| case ConcealMethodMute: |
| case ConcealMethodNoise: |
| case ConcealMethodInter: |
| /* Be sure to enable delay adjustment of SBR decoder! */ |
| if (concealParams == NULL) { |
| return AAC_DEC_INVALID_HANDLE; |
| } else { |
| /* set param */ |
| concealParams->method = (CConcealmentMethod)method; |
| } |
| break; |
| |
| default: |
| return AAC_DEC_SET_PARAM_FAIL; |
| } |
| } |
| |
| /* set number of frames for fade-out slope */ |
| if (fadeOutSlope != AACDEC_CONCEAL_PARAM_NOT_SPECIFIED) { |
| if ( (fadeOutSlope < CONCEAL_MAX_NUM_FADE_FACTORS) |
| && (fadeOutSlope >= 0) ) |
| { |
| if (concealParams == NULL) { |
| return AAC_DEC_INVALID_HANDLE; |
| } else { |
| /* set param */ |
| concealParams->numFadeOutFrames = fadeOutSlope; |
| } |
| } else { |
| return AAC_DEC_SET_PARAM_FAIL; |
| } |
| } |
| |
| /* set number of frames for fade-in slope */ |
| if (fadeInSlope != AACDEC_CONCEAL_PARAM_NOT_SPECIFIED) { |
| if ( (fadeInSlope < CONCEAL_MAX_NUM_FADE_FACTORS) |
| && (fadeInSlope >= 1) ) |
| { |
| if (concealParams == NULL) { |
| return AAC_DEC_INVALID_HANDLE; |
| } else { |
| /* set param */ |
| concealParams->numFadeInFrames = fadeInSlope; |
| } |
| } else { |
| return AAC_DEC_SET_PARAM_FAIL; |
| } |
| } |
| |
| /* set number of error-free frames after which the muting will be released */ |
| if (muteRelease != AACDEC_CONCEAL_PARAM_NOT_SPECIFIED) { |
| if ( (muteRelease < (CONCEAL_MAX_NUM_FADE_FACTORS<<1)) |
| && (muteRelease >= 0) ) |
| { |
| if (concealParams == NULL) { |
| return AAC_DEC_INVALID_HANDLE; |
| } else { |
| /* set param */ |
| concealParams->numMuteReleaseFrames = muteRelease; |
| } |
| } else { |
| return AAC_DEC_SET_PARAM_FAIL; |
| } |
| } |
| |
| /* set confort noise level which will be inserted while in state 'muting' */ |
| if (comfNoiseLevel != AACDEC_CONCEAL_PARAM_NOT_SPECIFIED) { |
| if ( (comfNoiseLevel < 0) |
| || (comfNoiseLevel > 127) ) { |
| return AAC_DEC_SET_PARAM_FAIL; |
| } |
| if (concealParams == NULL) { |
| return AAC_DEC_INVALID_HANDLE; |
| } else { |
| concealParams->comfortNoiseLevel = comfNoiseLevel; |
| } |
| } |
| |
| return (AAC_DEC_OK); |
| } |
| |
| |
| /*! |
| \brief Set fade-out/in attenuation factor vectors |
| |
| \concealParams |
| \fadeOutAttenuationVector |
| \fadeInAttenuationVector |
| |
| \return 0 if OK all other values indicate errors |
| */ |
| AAC_DECODER_ERROR |
| CConcealment_SetAttenuation ( |
| CConcealParams *concealParams, |
| SHORT *fadeOutAttenuationVector, |
| SHORT *fadeInAttenuationVector ) |
| { |
| if ( (fadeOutAttenuationVector == NULL) |
| && (fadeInAttenuationVector == NULL) ) { |
| return AAC_DEC_SET_PARAM_FAIL; |
| } |
| |
| /* Fade-out factors */ |
| if (fadeOutAttenuationVector != NULL) |
| { |
| int i; |
| |
| /* check quantized factors first */ |
| for (i = 0; i < CONCEAL_MAX_NUM_FADE_FACTORS; i++) { |
| if ((fadeOutAttenuationVector[i] < 0) || (fadeOutAttenuationVector[i] > CONCEAL_MAX_QUANT_FACTOR)) { |
| return AAC_DEC_SET_PARAM_FAIL; |
| } |
| } |
| if (concealParams == NULL) { |
| return AAC_DEC_INVALID_HANDLE; |
| } |
| |
| /* now dequantize factors */ |
| for (i = 0; i < CONCEAL_MAX_NUM_FADE_FACTORS; i++) |
| { |
| concealParams->fadeOutFactor[i] = |
| FX_DBL2FX_SGL( fLdPow( CONCEAL_MIN_ATTENUATION_FACTOR_025_LD, |
| 0, |
| (FIXP_DBL)((INT)(FL2FXCONST_DBL(1.0/2.0)>>(CONCEAL_PARAMETER_BITS-1)) * (INT)fadeOutAttenuationVector[i]), |
| CONCEAL_PARAMETER_BITS |
| ) |
| ); |
| } |
| } |
| |
| /* Fade-in factors */ |
| if (fadeInAttenuationVector != NULL) |
| { |
| int i; |
| |
| /* check quantized factors first */ |
| for (i = 0; i < CONCEAL_MAX_NUM_FADE_FACTORS; i++) { |
| if ((fadeInAttenuationVector[i] < 0) || (fadeInAttenuationVector[i] > CONCEAL_MAX_QUANT_FACTOR)) { |
| return AAC_DEC_SET_PARAM_FAIL; |
| } |
| } |
| if (concealParams == NULL) { |
| return AAC_DEC_INVALID_HANDLE; |
| } |
| |
| /* now dequantize factors */ |
| for (i = 0; i < CONCEAL_MAX_NUM_FADE_FACTORS; i++) |
| { |
| concealParams->fadeInFactor[i] = |
| FX_DBL2FX_SGL( fLdPow( CONCEAL_MIN_ATTENUATION_FACTOR_025_LD, |
| 0, |
| (FIXP_DBL)((INT)(FIXP_ONE>>CONCEAL_PARAMETER_BITS) * (INT)fadeInAttenuationVector[i]), |
| CONCEAL_PARAMETER_BITS |
| ) |
| ); |
| } |
| } |
| |
| return (AAC_DEC_OK); |
| } |
| |
| |
| /*! |
| \brief Get state of concealment module. |
| |
| \pConcealChannelInfo |
| |
| \return Concealment state. |
| */ |
| CConcealmentState |
| CConcealment_GetState ( |
| CConcealmentInfo *pConcealChannelInfo |
| ) |
| { |
| CConcealmentState state = ConcealState_Ok; |
| |
| if (pConcealChannelInfo != NULL) { |
| state = pConcealChannelInfo->concealState; |
| } |
| |
| return (state); |
| } |
| |
| |
| static void CConcealment_fakePnsData ( |
| CPnsData *pPnsData, |
| CIcsInfo *pIcsInfo, |
| const SamplingRateInfo *pSamplingRateInfo, |
| SHORT *pSpecScale, |
| SHORT *pScaleFactor, |
| const int level ) |
| { |
| CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData; |
| |
| int pnsBand, band, group, win; |
| //int delta = 0; |
| int windowsPerFrame = GetWindowsPerFrame(pIcsInfo); |
| int refLevel = (windowsPerFrame > 1) ? 82 : 91; |
| |
| FDK_ASSERT(level >= 0 && level <= 127); |
| |
| for (win = 0; win < windowsPerFrame; win++) { |
| pSpecScale[win] = 31; |
| } |
| |
| /* fake ICS info if necessary */ |
| if (!IsValid(pIcsInfo)) { |
| pIcsInfo->WindowGroups = 1; |
| if (IsLongBlock(pIcsInfo)) { |
| pIcsInfo->TotalSfBands = pSamplingRateInfo->NumberOfScaleFactorBands_Long; |
| pIcsInfo->WindowGroupLength[0] = 1; |
| } |
| else { |
| pIcsInfo->TotalSfBands = pSamplingRateInfo->NumberOfScaleFactorBands_Short; |
| pIcsInfo->WindowGroupLength[0] = 8; |
| } |
| pIcsInfo->MaxSfBands = pIcsInfo->TotalSfBands; |
| } |
| |
| /* global activate PNS */ |
| pPnsData->PnsActive = 1; |
| /* set energy level */ |
| pPnsData->CurrentEnergy = fixMax( 0, refLevel - level ); |
| |
| /* |
| value: | Avg. RMS power | Avg. RMS power | |
| | specScale = 22 | specScale = 31 | |
| -------+----------------+----------------+ |
| 5 | | -99.0 dB |
| 15 | | -90.0 dB |
| 25 | | -89.7 dB |
| 35 | | -85.3 dB |
| ... | ... | ... |
| 45 | -69.9 dB | -70.0 dB |
| 50 | -62.2 dB | |
| 55 | -55.6 dB | -54.6 dB |
| 60 | -47.0 dB | |
| 65 | -39.5 dB | -39.5 dB |
| 70 | -31.9 dB | |
| 75 | -24.4 dB | -24.4 dB |
| 80 | -16.9 dB | |
| 85 | -9.4 dB (c) | -9.4 dB |
| 90 | -3.9 dB (c) | |
| 95 | | -2.1 dB |
| 100 | | -1.6 dB |
| 105 | | -1.4 dB |
| */ |
| |
| for (group=0; group < GetWindowGroups(pIcsInfo); group++) |
| { |
| for (band=0; band < GetScaleFactorBandsTransmitted(pIcsInfo); band++) |
| { |
| pnsBand = group * 16 + band; |
| |
| if (pnsBand >= NO_OFBANDS) { |
| return; |
| } |
| //pPnsData->CurrentEnergy += delta ; |
| pScaleFactor[pnsBand] = pPnsData->CurrentEnergy; |
| pInterChannelData->correlated[pnsBand] = 0; |
| pPnsData->pnsUsed[pnsBand] = 1; |
| } |
| } |
| } |
| |
| |
| /*! |
| \brief Store data for concealment techniques applied later |
| |
| Interface function to store data for different concealment strategies |
| |
| \return none |
| */ |
| void |
| CConcealment_Store ( |
| CConcealmentInfo *hConcealmentInfo, |
| CAacDecoderChannelInfo *pAacDecoderChannelInfo, |
| CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo ) |
| { |
| if ( !(pAacDecoderChannelInfo->renderMode == AACDEC_RENDER_LPD |
| ) ) |
| { |
| FIXP_DBL *pSpectralCoefficient = SPEC_LONG(pAacDecoderChannelInfo->pSpectralCoefficient); |
| SHORT *pSpecScale = pAacDecoderChannelInfo->specScale; |
| CIcsInfo *pIcsInfo = &pAacDecoderChannelInfo->icsInfo; |
| |
| SHORT tSpecScale[8]; |
| UCHAR tWindowShape, tWindowSequence; |
| |
| /* store old window infos for swapping */ |
| tWindowSequence = hConcealmentInfo->windowSequence; |
| tWindowShape = hConcealmentInfo->windowShape; |
| |
| /* store old scale factors for swapping */ |
| FDKmemcpy(tSpecScale, hConcealmentInfo->specScale, 8*sizeof(SHORT)); |
| |
| /* store new window infos */ |
| hConcealmentInfo->windowSequence = GetWindowSequence(pIcsInfo); |
| hConcealmentInfo->windowShape = GetWindowShape(pIcsInfo); |
| hConcealmentInfo->lastWinGrpLen = *(GetWindowGroupLengthTable(pIcsInfo)+GetWindowGroups(pIcsInfo)-1); |
| |
| /* store new scale factors */ |
| FDKmemcpy(hConcealmentInfo->specScale, pSpecScale, 8*sizeof(SHORT)); |
| |
| if (CConcealment_GetDelay(hConcealmentInfo->pConcealParams) == 0) |
| { |
| /* store new spectral bins */ |
| #if (CNCL_FRACT_BITS == DFRACT_BITS) |
| FDKmemcpy(hConcealmentInfo->spectralCoefficient, pSpectralCoefficient, 1024 * sizeof(FIXP_CNCL)); |
| #else |
| FIXP_CNCL *RESTRICT pCncl = &hConcealmentInfo->spectralCoefficient[1024-1]; |
| FIXP_DBL *RESTRICT pSpec = &pSpectralCoefficient[1024-1]; |
| int i; |
| |
| for (i = 1024; i != 0; i--) { |
| *pCncl-- = FX_DBL2FX_CNCL(*pSpec--); |
| } |
| #endif |
| } |
| else |
| { |
| FIXP_CNCL *RESTRICT pCncl = &hConcealmentInfo->spectralCoefficient[1024-1]; |
| FIXP_DBL *RESTRICT pSpec = &pSpectralCoefficient[1024-1]; |
| int i; |
| |
| /* swap spectral data */ |
| for (i = 1024; i != 0; i--) { |
| FIXP_DBL tSpec = *pSpec; |
| *pSpec-- = FX_CNCL2FX_DBL(*pCncl); |
| *pCncl-- = FX_DBL2FX_CNCL( tSpec); |
| } |
| |
| /* complete swapping of window infos */ |
| pIcsInfo->WindowSequence = tWindowSequence; |
| pIcsInfo->WindowShape = tWindowShape; |
| |
| /* complete swapping of scale factors */ |
| FDKmemcpy(pSpecScale, tSpecScale, 8*sizeof(SHORT)); |
| } |
| } |
| |
| } |
| |
| |
| /*! |
| \brief Apply concealment |
| |
| Interface function to different concealment strategies |
| |
| \return none |
| */ |
| int |
| CConcealment_Apply ( |
| CConcealmentInfo *hConcealmentInfo, |
| CAacDecoderChannelInfo *pAacDecoderChannelInfo, |
| CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo, |
| const SamplingRateInfo *pSamplingRateInfo, |
| const int samplesPerFrame, |
| const UCHAR lastLpdMode, |
| const int frameOk, |
| const UINT flags) |
| { |
| int appliedProcessing = 0; |
| |
| if ( (frameOk == 0) |
| && (pAacDecoderChannelInfo->renderMode != (AACDEC_RENDER_MODE)hConcealmentInfo->lastRenderMode) ) { |
| /* restore the last render mode to stay in the same domain which allows to do a proper concealment */ |
| pAacDecoderChannelInfo->renderMode = (AACDEC_RENDER_MODE)hConcealmentInfo->lastRenderMode; |
| } else { |
| /* otherwise store the current mode */ |
| hConcealmentInfo->lastRenderMode = (SCHAR)pAacDecoderChannelInfo->renderMode; |
| } |
| |
| if ( frameOk ) |
| { |
| /* Rescue current data for concealment in future frames */ |
| CConcealment_Store ( hConcealmentInfo, |
| pAacDecoderChannelInfo, |
| pAacDecoderStaticChannelInfo ); |
| /* Reset index to random sign vector to make sign calculation frame agnostic |
| (only depends on number of subsequently concealed spectral blocks) */ |
| hConcealmentInfo->iRandomPhase = 0; |
| } |
| |
| /* hand current frame status to the state machine */ |
| CConcealment_UpdateState( hConcealmentInfo, |
| frameOk ); |
| |
| if ( !frameOk ) |
| { |
| /* Create data for signal rendering according to the selected concealment method and decoder operating mode. */ |
| |
| |
| if ( !(pAacDecoderChannelInfo->renderMode == AACDEC_RENDER_LPD |
| ) |
| ) |
| { |
| switch (hConcealmentInfo->pConcealParams->method) |
| { |
| default: |
| case ConcealMethodMute: |
| /* Mute spectral data in case of errors */ |
| FDKmemclear(pAacDecoderChannelInfo->pSpectralCoefficient, samplesPerFrame * sizeof(FIXP_DBL)); |
| /* Set last window shape */ |
| pAacDecoderChannelInfo->icsInfo.WindowShape = hConcealmentInfo->windowShape; |
| appliedProcessing = 1; |
| break; |
| |
| case ConcealMethodNoise: |
| /* Noise substitution error concealment technique */ |
| appliedProcessing = |
| CConcealment_ApplyNoise (hConcealmentInfo, |
| pAacDecoderChannelInfo, |
| pAacDecoderStaticChannelInfo, |
| pSamplingRateInfo, |
| samplesPerFrame, |
| flags); |
| break; |
| |
| case ConcealMethodInter: |
| /* Energy interpolation concealment based on 3GPP */ |
| appliedProcessing = |
| CConcealment_ApplyInter (hConcealmentInfo, |
| pAacDecoderChannelInfo, |
| pSamplingRateInfo, |
| samplesPerFrame, |
| 0, /* don't use tonal improvement */ |
| 0); |
| break; |
| |
| } |
| } |
| } |
| /* update history */ |
| hConcealmentInfo->prevFrameOk[0] = hConcealmentInfo->prevFrameOk[1]; |
| hConcealmentInfo->prevFrameOk[1] = frameOk; |
| |
| return appliedProcessing; |
| } |
| |
| /*! |
| \brief Apply concealment noise substitution |
| |
| In case of frame lost this function produces a noisy frame with respect to the |
| energies values of past frame. |
| |
| \return none |
| */ |
| static int |
| CConcealment_ApplyNoise (CConcealmentInfo *pConcealmentInfo, |
| CAacDecoderChannelInfo *pAacDecoderChannelInfo, |
| CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo, |
| const SamplingRateInfo *pSamplingRateInfo, |
| const int samplesPerFrame, |
| const UINT flags) |
| { |
| CConcealParams *pConcealCommonData = pConcealmentInfo->pConcealParams; |
| |
| FIXP_DBL *pSpectralCoefficient = SPEC_LONG(pAacDecoderChannelInfo->pSpectralCoefficient); |
| SHORT *pSpecScale = pAacDecoderChannelInfo->specScale; |
| CIcsInfo *pIcsInfo = &pAacDecoderChannelInfo->icsInfo; |
| |
| int appliedProcessing = 0; |
| |
| FDK_ASSERT((samplesPerFrame>=480) && (samplesPerFrame<=1024)); |
| FDK_ASSERT((samplesPerFrame&0x1F) == 0); |
| |
| switch (pConcealmentInfo->concealState) |
| { |
| case ConcealState_Ok: |
| /* Nothing to do here! */ |
| break; |
| |
| case ConcealState_Single: |
| case ConcealState_FadeOut: |
| { |
| /* restore frequency coefficients from buffer with a specific muting */ |
| FIXP_SGL fac; |
| int win, numWindows = 1; |
| int windowLen = samplesPerFrame; |
| int tFadeFrames, lastWindow = 0; |
| int win_idx_stride = 1; |
| |
| FDK_ASSERT(pConcealmentInfo != NULL); |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames >= 0); |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames < CONCEAL_MAX_NUM_FADE_FACTORS); |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames <= pConcealCommonData->numFadeOutFrames); |
| |
| /* get attenuation factor */ |
| tFadeFrames = pConcealmentInfo->cntFadeFrames; |
| fac = pConcealCommonData->fadeOutFactor[tFadeFrames]; |
| |
| /* set old window parameters */ |
| { |
| pIcsInfo->WindowShape = pConcealmentInfo->windowShape; |
| pIcsInfo->WindowSequence = pConcealmentInfo->windowSequence; |
| |
| if (pConcealmentInfo->windowSequence == 2) { |
| /* short block handling */ |
| numWindows = 8; |
| windowLen = samplesPerFrame >> 3; |
| lastWindow = numWindows - pConcealmentInfo->lastWinGrpLen; |
| } |
| } |
| |
| for (win = 0; win < numWindows; win++) { |
| FIXP_CNCL *pCncl = pConcealmentInfo->spectralCoefficient + (lastWindow * windowLen); |
| FIXP_DBL *pOut = pSpectralCoefficient + (win * windowLen); |
| int i; |
| |
| FDK_ASSERT((lastWindow * windowLen + windowLen) <= samplesPerFrame); |
| |
| /* restore frequency coefficients from buffer with a specific attenuation */ |
| for (i = 0; i < windowLen; i++) { |
| pOut[i] = fMult(pCncl[i], fac); |
| } |
| |
| /* apply random change of sign for spectral coefficients */ |
| CConcealment_ApplyRandomSign(pConcealmentInfo->iRandomPhase, |
| pOut, |
| windowLen ); |
| |
| /* Increment random phase index to avoid repetition artifacts. */ |
| pConcealmentInfo->iRandomPhase = (pConcealmentInfo->iRandomPhase + 1) & (AAC_NF_NO_RANDOM_VAL - 1); |
| |
| /* set old scale factors */ |
| pSpecScale[win*win_idx_stride] = pConcealmentInfo->specScale[win_idx_stride*lastWindow++]; |
| |
| if ( (lastWindow >= numWindows) |
| && (numWindows > 1) ) |
| { |
| /* end of sequence -> rewind */ |
| lastWindow = numWindows - pConcealmentInfo->lastWinGrpLen; |
| /* update the attenuation factor to get a faster fade-out */ |
| tFadeFrames += 1; |
| if (tFadeFrames < pConcealCommonData->numFadeOutFrames) { |
| fac = pConcealCommonData->fadeOutFactor[tFadeFrames]; |
| } else { |
| fac = (FIXP_SGL)0; |
| } |
| } |
| } |
| |
| /* store temp vars */ |
| pConcealmentInfo->cntFadeFrames = tFadeFrames; |
| appliedProcessing = 1; |
| } |
| break; |
| |
| case ConcealState_Mute: |
| { |
| /* set dummy window parameters */ |
| pIcsInfo->Valid = 0; /* Trigger the generation of a consitent IcsInfo */ |
| pIcsInfo->WindowShape = pConcealmentInfo->windowShape; /* Prevent an invalid WindowShape (required for F/T transform) */ |
| pIcsInfo->WindowSequence = CConcealment_GetWinSeq(pConcealmentInfo->windowSequence); |
| pConcealmentInfo->windowSequence = pIcsInfo->WindowSequence; /* Store for next frame (spectrum in concealment buffer can't be used at all) */ |
| |
| /* mute spectral data */ |
| FDKmemclear(pSpectralCoefficient, samplesPerFrame * sizeof(FIXP_DBL)); |
| |
| if ( !(flags & (AC_USAC|AC_RSVD50)) |
| && pConcealCommonData->comfortNoiseLevel >= 0 |
| && pConcealCommonData->comfortNoiseLevel <= 61 /* -90dB */) |
| { |
| /* insert comfort noise using PNS */ |
| CConcealment_fakePnsData ( |
| &pAacDecoderChannelInfo->data.aac.PnsData, |
| pIcsInfo, |
| pSamplingRateInfo, |
| pAacDecoderChannelInfo->pDynData->aSfbScale, |
| pAacDecoderChannelInfo->pDynData->aScaleFactor, |
| pConcealCommonData->comfortNoiseLevel |
| ); |
| |
| CPns_Apply ( |
| &pAacDecoderChannelInfo->data.aac.PnsData, |
| pIcsInfo, |
| pAacDecoderChannelInfo->pSpectralCoefficient, |
| pAacDecoderChannelInfo->specScale, |
| pAacDecoderChannelInfo->pDynData->aScaleFactor, |
| pSamplingRateInfo, |
| pAacDecoderChannelInfo->granuleLength, |
| 0 /* always apply to first channel */ |
| ); |
| } |
| appliedProcessing = 1; |
| } |
| break; |
| |
| case ConcealState_FadeIn: |
| { |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames >= 0); |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames < CONCEAL_MAX_NUM_FADE_FACTORS); |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames < pConcealCommonData->numFadeInFrames); |
| |
| /* attenuate signal to get a smooth fade-in */ |
| FIXP_DBL *RESTRICT pOut = &pSpectralCoefficient[samplesPerFrame-1]; |
| FIXP_SGL fac = pConcealCommonData->fadeInFactor[pConcealmentInfo->cntFadeFrames]; |
| int i; |
| |
| for (i = samplesPerFrame; i != 0; i--) { |
| *pOut = fMult(*pOut, fac); |
| pOut--; |
| } |
| appliedProcessing = 1; |
| } |
| break; |
| |
| default: |
| /* we shouldn't come here anyway */ |
| FDK_ASSERT(0); |
| break; |
| } |
| |
| return appliedProcessing; |
| } |
| |
| |
| /*! |
| \brief Apply concealment interpolation |
| |
| The function swaps the data from the current and the previous frame. If an |
| error has occured, frame interpolation is performed to restore the missing |
| frame. In case of multiple faulty frames, fade-in and fade-out is applied. |
| |
| \return none |
| */ |
| static int |
| CConcealment_ApplyInter ( |
| CConcealmentInfo *pConcealmentInfo, |
| CAacDecoderChannelInfo *pAacDecoderChannelInfo, |
| const SamplingRateInfo *pSamplingRateInfo, |
| const int samplesPerFrame, |
| const int improveTonal, |
| const int frameOk ) |
| { |
| CConcealParams *pConcealCommonData = pConcealmentInfo->pConcealParams; |
| |
| FIXP_DBL *pSpectralCoefficient = SPEC_LONG(pAacDecoderChannelInfo->pSpectralCoefficient); |
| CIcsInfo *pIcsInfo = &pAacDecoderChannelInfo->icsInfo; |
| SHORT *pSpecScale = pAacDecoderChannelInfo->specScale; |
| |
| |
| int sfbEnergyPrev[64]; |
| int sfbEnergyAct [64]; |
| |
| int i, appliedProcessing = 0; |
| |
| /* clear/init */ |
| FDKmemclear(sfbEnergyPrev, 64 * sizeof(int)); |
| FDKmemclear(sfbEnergyAct, 64 * sizeof(int)); |
| |
| |
| if (!frameOk) |
| { |
| /* Restore last frame from concealment buffer */ |
| pIcsInfo->WindowShape = pConcealmentInfo->windowShape; |
| pIcsInfo->WindowSequence = pConcealmentInfo->windowSequence; |
| |
| /* Restore spectral data */ |
| for (i = 0; i < samplesPerFrame; i++) { |
| pSpectralCoefficient[i] = FX_CNCL2FX_DBL(pConcealmentInfo->spectralCoefficient[i]); |
| } |
| |
| /* Restore scale factors */ |
| FDKmemcpy(pSpecScale, pConcealmentInfo->specScale, 8*sizeof(SHORT)); |
| } |
| |
| /* if previous frame was not ok */ |
| if (!pConcealmentInfo->prevFrameOk[1]) { |
| |
| /* if current frame (f_n) is ok and the last but one frame (f_(n-2)) |
| was ok, too, then interpolate both frames in order to generate |
| the current output frame (f_(n-1)). Otherwise, use the last stored |
| frame (f_(n-2) or f_(n-3) or ...). */ |
| if (frameOk && pConcealmentInfo->prevFrameOk[0]) |
| { |
| appliedProcessing = 1; |
| |
| |
| /* Interpolate both frames in order to generate the current output frame (f_(n-1)). */ |
| if (pIcsInfo->WindowSequence == EightShortSequence) { |
| /* f_(n-2) == EightShortSequence */ |
| /* short--??????--short, short--??????--long interpolation */ |
| /* short--short---short, short---long---long interpolation */ |
| |
| int wnd; |
| |
| if (pConcealmentInfo->windowSequence == EightShortSequence) { /* f_n == EightShortSequence */ |
| /* short--short---short interpolation */ |
| |
| int scaleFactorBandsTotal = pSamplingRateInfo->NumberOfScaleFactorBands_Short; |
| const SHORT *pSfbOffset = pSamplingRateInfo->ScaleFactorBands_Short; |
| pIcsInfo->WindowShape = 1; |
| pIcsInfo->WindowSequence = EightShortSequence; |
| |
| for (wnd = 0; wnd < 8; wnd++) |
| { |
| CConcealment_CalcBandEnergy( |
| &pSpectralCoefficient[wnd * (samplesPerFrame / 8)], /* spec_(n-2) */ |
| pSamplingRateInfo, |
| EightShortSequence, |
| CConcealment_NoExpand, |
| sfbEnergyPrev); |
| |
| CConcealment_CalcBandEnergy( |
| &pConcealmentInfo->spectralCoefficient[wnd * (samplesPerFrame / 8)], /* spec_n */ |
| pSamplingRateInfo, |
| EightShortSequence, |
| CConcealment_NoExpand, |
| sfbEnergyAct); |
| |
| CConcealment_InterpolateBuffer( |
| &pSpectralCoefficient[wnd * (samplesPerFrame / 8)], /* spec_(n-1) */ |
| &pSpecScale[wnd], |
| &pConcealmentInfo->specScale[wnd], |
| &pSpecScale[wnd], |
| sfbEnergyPrev, |
| sfbEnergyAct, |
| scaleFactorBandsTotal, |
| pSfbOffset); |
| |
| } |
| } else { /* f_n != EightShortSequence */ |
| /* short---long---long interpolation */ |
| |
| int scaleFactorBandsTotal = pSamplingRateInfo->NumberOfScaleFactorBands_Long; |
| const SHORT *pSfbOffset = pSamplingRateInfo->ScaleFactorBands_Long; |
| SHORT specScaleOut; |
| |
| CConcealment_CalcBandEnergy(&pSpectralCoefficient[samplesPerFrame - (samplesPerFrame / 8)], /* [wnd] spec_(n-2) */ |
| pSamplingRateInfo, |
| EightShortSequence, |
| CConcealment_Expand, |
| sfbEnergyAct); |
| |
| CConcealment_CalcBandEnergy(pConcealmentInfo->spectralCoefficient, /* spec_n */ |
| pSamplingRateInfo, |
| OnlyLongSequence, |
| CConcealment_NoExpand, |
| sfbEnergyPrev); |
| |
| pIcsInfo->WindowShape = 0; |
| pIcsInfo->WindowSequence = LongStopSequence; |
| |
| for (i = 0; i < samplesPerFrame ; i++) { |
| pSpectralCoefficient[i] = pConcealmentInfo->spectralCoefficient[i]; /* spec_n */ |
| } |
| |
| for (i = 0; i < 8; i++) { /* search for max(specScale) */ |
| if (pSpecScale[i] > pSpecScale[0]) { |
| pSpecScale[0] = pSpecScale[i]; |
| } |
| } |
| |
| CConcealment_InterpolateBuffer( |
| pSpectralCoefficient, /* spec_(n-1) */ |
| &pConcealmentInfo->specScale[0], |
| &pSpecScale[0], |
| &specScaleOut, |
| sfbEnergyPrev, |
| sfbEnergyAct, |
| scaleFactorBandsTotal, |
| pSfbOffset); |
| |
| pSpecScale[0] = specScaleOut; |
| } |
| } else { |
| /* long--??????--short, long--??????--long interpolation */ |
| /* long---long---short, long---long---long interpolation */ |
| |
| int scaleFactorBandsTotal = pSamplingRateInfo->NumberOfScaleFactorBands_Long; |
| const SHORT *pSfbOffset = pSamplingRateInfo->ScaleFactorBands_Long; |
| SHORT specScaleAct = pConcealmentInfo->specScale[0]; |
| |
| CConcealment_CalcBandEnergy(pSpectralCoefficient, /* spec_(n-2) */ |
| pSamplingRateInfo, |
| OnlyLongSequence, |
| CConcealment_NoExpand, |
| sfbEnergyPrev); |
| |
| if (pConcealmentInfo->windowSequence == EightShortSequence) { /* f_n == EightShortSequence */ |
| /* long---long---short interpolation */ |
| |
| pIcsInfo->WindowShape = 1; |
| pIcsInfo->WindowSequence = LongStartSequence; |
| |
| for (i = 1; i < 8; i++) { /* search for max(specScale) */ |
| if (pConcealmentInfo->specScale[i] > specScaleAct) { |
| specScaleAct = pConcealmentInfo->specScale[i]; |
| } |
| } |
| |
| /* Expand first short spectrum */ |
| CConcealment_CalcBandEnergy(pConcealmentInfo->spectralCoefficient, /* spec_n */ |
| pSamplingRateInfo, |
| EightShortSequence, |
| CConcealment_Expand, /* !!! */ |
| sfbEnergyAct); |
| } else { |
| /* long---long---long interpolation */ |
| |
| pIcsInfo->WindowShape = 0; |
| pIcsInfo->WindowSequence = OnlyLongSequence; |
| |
| CConcealment_CalcBandEnergy(pConcealmentInfo->spectralCoefficient, /* spec_n */ |
| pSamplingRateInfo, |
| OnlyLongSequence, |
| CConcealment_NoExpand, |
| sfbEnergyAct); |
| } |
| |
| CConcealment_InterpolateBuffer( |
| pSpectralCoefficient, /* spec_(n-1) */ |
| &pSpecScale[0], |
| &specScaleAct, |
| &pSpecScale[0], |
| sfbEnergyPrev, |
| sfbEnergyAct, |
| scaleFactorBandsTotal, |
| pSfbOffset); |
| |
| } |
| } |
| |
| /* Noise substitution of sign of the output spectral coefficients */ |
| CConcealment_ApplyRandomSign (pConcealmentInfo->iRandomPhase, |
| pSpectralCoefficient, |
| samplesPerFrame); |
| /* Increment random phase index to avoid repetition artifacts. */ |
| pConcealmentInfo->iRandomPhase = (pConcealmentInfo->iRandomPhase + 1) & (AAC_NF_NO_RANDOM_VAL - 1); |
| } |
| |
| /* scale spectrum according to concealment state */ |
| switch (pConcealmentInfo->concealState) |
| { |
| case ConcealState_Single: |
| appliedProcessing = 1; |
| break; |
| |
| case ConcealState_FadeOut: |
| { |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames >= 0); |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames < CONCEAL_MAX_NUM_FADE_FACTORS); |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames < pConcealCommonData->numFadeOutFrames); |
| |
| /* restore frequency coefficients from buffer with a specific muting */ |
| FIXP_DBL *RESTRICT pOut = &pSpectralCoefficient[samplesPerFrame-1]; |
| FIXP_SGL fac = pConcealCommonData->fadeOutFactor[pConcealmentInfo->cntFadeFrames]; |
| |
| for (i = samplesPerFrame; i != 0; i--) { |
| *pOut = fMult(*pOut, fac); |
| pOut--; |
| } |
| appliedProcessing = 1; |
| } |
| break; |
| |
| case ConcealState_FadeIn: |
| { |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames >= 0); |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames < CONCEAL_MAX_NUM_FADE_FACTORS); |
| FDK_ASSERT(pConcealmentInfo->cntFadeFrames < pConcealCommonData->numFadeInFrames); |
| |
| /* attenuate signal to get a smooth fade-in */ |
| FIXP_DBL *RESTRICT pOut = &pSpectralCoefficient[samplesPerFrame-1]; |
| FIXP_SGL fac = pConcealCommonData->fadeInFactor[pConcealmentInfo->cntFadeFrames]; |
| |
| for (i = samplesPerFrame; i != 0; i--) { |
| *pOut = fMult(*pOut, fac); |
| pOut--; |
| } |
| appliedProcessing = 1; |
| } |
| break; |
| |
| case ConcealState_Mute: |
| { |
| int fac = pConcealCommonData->comfortNoiseLevel; |
| |
| /* set dummy window parameters */ |
| pIcsInfo->Valid = 0; /* Trigger the generation of a consitent IcsInfo */ |
| pIcsInfo->WindowShape = pConcealmentInfo->windowShape; /* Prevent an invalid WindowShape (required for F/T transform) */ |
| pIcsInfo->WindowSequence = CConcealment_GetWinSeq(pConcealmentInfo->windowSequence); |
| pConcealmentInfo->windowSequence = pIcsInfo->WindowSequence; /* Store for next frame (spectrum in concealment buffer can't be used at all) */ |
| |
| /* mute spectral data */ |
| FDKmemclear(pSpectralCoefficient, samplesPerFrame * sizeof(FIXP_DBL)); |
| |
| if (fac >= 0 && fac <= 61) { |
| /* insert comfort noise using PNS */ |
| CConcealment_fakePnsData ( |
| &pAacDecoderChannelInfo->data.aac.PnsData, |
| pIcsInfo, |
| pSamplingRateInfo, |
| pAacDecoderChannelInfo->specScale, |
| pAacDecoderChannelInfo->pDynData->aScaleFactor, |
| fac |
| ); |
| |
| CPns_Apply ( |
| &pAacDecoderChannelInfo->data.aac.PnsData, |
| pIcsInfo, |
| pAacDecoderChannelInfo->pSpectralCoefficient, |
| pAacDecoderChannelInfo->specScale, |
| pAacDecoderChannelInfo->pDynData->aScaleFactor, |
| pSamplingRateInfo, |
| pAacDecoderChannelInfo->granuleLength, |
| 0 /* always apply to first channel */ |
| ); |
| } |
| appliedProcessing = 1; |
| } |
| break; |
| |
| default: |
| /* nothing to do here */ |
| break; |
| } |
| |
| return appliedProcessing; |
| } |
| |
| |
| /*! |
| \brief Calculate the spectral energy |
| |
| The function calculates band-wise the spectral energy. This is used for |
| frame interpolation. |
| |
| \return none |
| */ |
| static void |
| CConcealment_CalcBandEnergy ( |
| FIXP_DBL *spectrum, |
| const SamplingRateInfo *pSamplingRateInfo, |
| const int blockType, |
| CConcealmentExpandType expandType, |
| int *sfbEnergy ) |
| { |
| const SHORT *pSfbOffset; |
| int line, sfb, scaleFactorBandsTotal = 0; |
| |
| /* In the following calculations, enAccu is initialized with LSB-value in order to avoid zero energy-level */ |
| |
| line = 0; |
| |
| switch(blockType) { |
| |
| case OnlyLongSequence: |
| case LongStartSequence: |
| case LongStopSequence: |
| |
| if (expandType == CConcealment_NoExpand) { |
| /* standard long calculation */ |
| scaleFactorBandsTotal = pSamplingRateInfo->NumberOfScaleFactorBands_Long; |
| pSfbOffset = pSamplingRateInfo->ScaleFactorBands_Long; |
| |
| for (sfb = 0; sfb < scaleFactorBandsTotal; sfb++) { |
| FIXP_DBL enAccu = (FIXP_DBL)(LONG)1; |
| int sfbScale = (sizeof(LONG)<<3) - CntLeadingZeros(pSfbOffset[sfb+1] - pSfbOffset[sfb]) - 1; |
| /* scaling depends on sfb width. */ |
| for ( ; line < pSfbOffset[sfb+1]; line++) { |
| enAccu += fPow2Div2(*(spectrum + line)) >> sfbScale; |
| } |
| *(sfbEnergy + sfb) = CntLeadingZeros(enAccu) - 1; |
| } |
| } |
| else { |
| /* compress long to short */ |
| scaleFactorBandsTotal = pSamplingRateInfo->NumberOfScaleFactorBands_Short; |
| pSfbOffset = pSamplingRateInfo->ScaleFactorBands_Short; |
| |
| for (sfb = 0; sfb < scaleFactorBandsTotal; sfb++) { |
| FIXP_DBL enAccu = (FIXP_DBL)(LONG)1; |
| int sfbScale = (sizeof(LONG)<<3) - CntLeadingZeros(pSfbOffset[sfb+1] - pSfbOffset[sfb]) - 1; |
| /* scaling depends on sfb width. */ |
| for (; line < pSfbOffset[sfb+1] << 3; line++) { |
| enAccu += (enAccu + (fPow2Div2(*(spectrum + line)) >> sfbScale)) >> 3; |
| } |
| *(sfbEnergy + sfb) = CntLeadingZeros(enAccu) - 1; |
| } |
| } |
| break; |
| |
| case EightShortSequence: |
| |
| if (expandType == CConcealment_NoExpand) { |
| /* standard short calculation */ |
| scaleFactorBandsTotal = pSamplingRateInfo->NumberOfScaleFactorBands_Short; |
| pSfbOffset = pSamplingRateInfo->ScaleFactorBands_Short; |
| |
| for (sfb = 0; sfb < scaleFactorBandsTotal; sfb++) { |
| FIXP_DBL enAccu = (FIXP_DBL)(LONG)1; |
| int sfbScale = (sizeof(LONG)<<3) - CntLeadingZeros(pSfbOffset[sfb+1] - pSfbOffset[sfb]) - 1; |
| /* scaling depends on sfb width. */ |
| for ( ; line < pSfbOffset[sfb+1]; line++) { |
| enAccu += fPow2Div2(*(spectrum + line)) >> sfbScale; |
| } |
| *(sfbEnergy + sfb) = CntLeadingZeros(enAccu) - 1; |
| } |
| } |
| else { |
| /* expand short to long spectrum */ |
| scaleFactorBandsTotal = pSamplingRateInfo->NumberOfScaleFactorBands_Long; |
| pSfbOffset = pSamplingRateInfo->ScaleFactorBands_Long; |
| |
| for (sfb = 0; sfb < scaleFactorBandsTotal; sfb++) { |
| FIXP_DBL enAccu = (FIXP_DBL)(LONG)1; |
| int sfbScale = (sizeof(LONG)<<3) - CntLeadingZeros(pSfbOffset[sfb+1] - pSfbOffset[sfb]) - 1; |
| /* scaling depends on sfb width. */ |
| for ( ; line < pSfbOffset[sfb+1]; line++) { |
| enAccu += fPow2Div2(*(spectrum + (line >> 3))) >> sfbScale; |
| } |
| *(sfbEnergy + sfb) = CntLeadingZeros(enAccu) - 1; |
| } |
| } |
| break; |
| } |
| } |
| |
| |
| /*! |
| \brief Interpolate buffer |
| |
| The function creates the interpolated spectral data according to the |
| energy of the last good frame and the current (good) frame. |
| |
| \return none |
| */ |
| static void |
| CConcealment_InterpolateBuffer ( |
| FIXP_DBL *spectrum, |
| SHORT *pSpecScalePrv, |
| SHORT *pSpecScaleAct, |
| SHORT *pSpecScaleOut, |
| int *enPrv, |
| int *enAct, |
| int sfbCnt, |
| const SHORT *pSfbOffset ) |
| { |
| int sfb, line = 0; |
| int fac_shift; |
| int fac_mod; |
| FIXP_DBL accu; |
| |
| for (sfb = 0; sfb < sfbCnt; sfb++) { |
| |
| fac_shift = enPrv[sfb] - enAct[sfb] + ((*pSpecScaleAct - *pSpecScalePrv) << 1); |
| fac_mod = fac_shift & 3; |
| fac_shift = (fac_shift >> 2) + 1; |
| fac_shift += *pSpecScalePrv - fixMax(*pSpecScalePrv, *pSpecScaleAct); |
| |
| for (; line < pSfbOffset[sfb+1]; line++) { |
| accu = fMult(*(spectrum+line), facMod4Table[fac_mod]); |
| if (fac_shift < 0) { |
| accu >>= -fac_shift; |
| } else { |
| accu <<= fac_shift; |
| } |
| *(spectrum+line) = accu; |
| } |
| } |
| *pSpecScaleOut = fixMax(*pSpecScalePrv, *pSpecScaleAct); |
| } |
| |
| |
| |
| |
| static INT findEquiFadeFrame ( |
| CConcealParams *pConcealCommonData, |
| INT actFadeIndex, |
| int direction ) |
| { |
| FIXP_SGL *pFactor; |
| FIXP_SGL referenceVal; |
| FIXP_SGL minDiff = (FIXP_SGL)MAXVAL_SGL; |
| |
| INT numFrames = 0; |
| INT nextFadeIndex = 0; |
| |
| int i; |
| |
| /* init depending on direction */ |
| if (direction == 0) { /* FADE-OUT => FADE-IN */ |
| numFrames = pConcealCommonData->numFadeInFrames; |
| referenceVal = pConcealCommonData->fadeOutFactor[actFadeIndex] >> 1; |
| pFactor = pConcealCommonData->fadeInFactor; |
| } |
| else { /* FADE-IN => FADE-OUT */ |
| numFrames = pConcealCommonData->numFadeOutFrames; |
| referenceVal = pConcealCommonData->fadeInFactor[actFadeIndex] >> 1; |
| pFactor = pConcealCommonData->fadeOutFactor; |
| } |
| |
| /* search for minimum difference */ |
| for (i = 0; i < numFrames; i++) { |
| FIXP_SGL diff = fixp_abs((pFactor[i]>>1) - referenceVal); |
| if (diff < minDiff) { |
| minDiff = diff; |
| nextFadeIndex = i; |
| } |
| } |
| |
| /* check and adjust depending on direction */ |
| if (direction == 0) { /* FADE-OUT => FADE-IN */ |
| if (((pFactor[nextFadeIndex]>>1) <= referenceVal) && (nextFadeIndex > 0)) { |
| nextFadeIndex -= 1; |
| } |
| } |
| else { /* FADE-IN => FADE-OUT */ |
| if (((pFactor[nextFadeIndex]>>1) >= referenceVal) && (nextFadeIndex < numFrames-1)) { |
| nextFadeIndex += 1; |
| } |
| } |
| |
| return (nextFadeIndex); |
| } |
| |
| |
| /*! |
| \brief Update the concealment state |
| |
| The function updates the state of the concealment state-machine. The |
| states are: mute, fade-in, fade-out, interpolate and frame-ok. |
| |
| \return none |
| */ |
| static void |
| CConcealment_UpdateState ( |
| CConcealmentInfo *pConcealmentInfo, |
| int frameOk ) |
| { |
| CConcealParams *pConcealCommonData = pConcealmentInfo->pConcealParams; |
| |
| switch (pConcealCommonData->method) |
| { |
| case ConcealMethodNoise: |
| { |
| if (pConcealmentInfo->concealState != ConcealState_Ok) { |
| /* count the valid frames during concealment process */ |
| if (frameOk) { |
| pConcealmentInfo->cntValidFrames += 1; |
| } else { |
| pConcealmentInfo->cntValidFrames = 0; |
| } |
| } |
| |
| /* -- STATE MACHINE for Noise Substitution -- */ |
| switch (pConcealmentInfo->concealState) |
| { |
| case ConcealState_Ok: |
| if (!frameOk) { |
| /* change to state SINGLE-FRAME-LOSS */ |
| pConcealmentInfo->concealState = ConcealState_Single; |
| pConcealmentInfo->cntFadeFrames = 0; |
| pConcealmentInfo->cntValidFrames = 0; |
| } |
| break; |
| |
| case ConcealState_Single: /* Just a pre-stage before fade-out begins. Stay here only one frame! */ |
| pConcealmentInfo->cntFadeFrames += 1; |
| if (frameOk) { |
| if (pConcealmentInfo->cntValidFrames > pConcealCommonData->numMuteReleaseFrames) { |
| /* change to state FADE-IN */ |
| pConcealmentInfo->concealState = ConcealState_FadeIn; |
| pConcealmentInfo->cntFadeFrames = findEquiFadeFrame( pConcealCommonData, |
| pConcealmentInfo->cntFadeFrames-1, |
| 0 /* FadeOut -> FadeIn */); |
| } else { |
| /* change to state OK */ |
| pConcealmentInfo->concealState = ConcealState_Ok; |
| } |
| } else { |
| if (pConcealmentInfo->cntFadeFrames >= pConcealCommonData->numFadeOutFrames) { |
| /* change to state MUTE */ |
| pConcealmentInfo->concealState = ConcealState_Mute; |
| } else { |
| /* change to state FADE-OUT */ |
| pConcealmentInfo->concealState = ConcealState_FadeOut; |
| } |
| } |
| break; |
| |
| case ConcealState_FadeOut: |
| pConcealmentInfo->cntFadeFrames += 1; /* used to address the fade-out factors */ |
| if (pConcealmentInfo->cntValidFrames > pConcealCommonData->numMuteReleaseFrames) { |
| /* change to state FADE-IN */ |
| pConcealmentInfo->concealState = ConcealState_FadeIn; |
| pConcealmentInfo->cntFadeFrames = findEquiFadeFrame( pConcealCommonData, |
| pConcealmentInfo->cntFadeFrames-1, |
| 0 /* FadeOut -> FadeIn */); |
| } else { |
| if (pConcealmentInfo->cntFadeFrames >= pConcealCommonData->numFadeOutFrames) { |
| /* change to state MUTE */ |
| pConcealmentInfo->concealState = ConcealState_Mute; |
| } |
| } |
| break; |
| |
| case ConcealState_Mute: |
| if (pConcealmentInfo->cntValidFrames > pConcealCommonData->numMuteReleaseFrames) { |
| /* change to state FADE-IN */ |
| pConcealmentInfo->concealState = ConcealState_FadeIn; |
| pConcealmentInfo->cntFadeFrames = pConcealCommonData->numFadeInFrames - 1; |
| } |
| break; |
| |
| case ConcealState_FadeIn: |
| pConcealmentInfo->cntFadeFrames -= 1; /* used to address the fade-in factors */ |
| if (frameOk) { |
| if (pConcealmentInfo->cntFadeFrames < 0) { |
| /* change to state OK */ |
| pConcealmentInfo->concealState = ConcealState_Ok; |
| } |
| } else { |
| /* change to state FADE-OUT */ |
| pConcealmentInfo->concealState = ConcealState_FadeOut; |
| pConcealmentInfo->cntFadeFrames = findEquiFadeFrame( pConcealCommonData, |
| pConcealmentInfo->cntFadeFrames+1, |
| 1 /* FadeIn -> FadeOut */); |
| } |
| break; |
| |
| default: |
| FDK_ASSERT(0); |
| break; |
| } |
| } |
| break; |
| |
| case ConcealMethodInter: |
| case ConcealMethodTonal: |
| { |
| if (pConcealmentInfo->concealState != ConcealState_Ok) { |
| /* count the valid frames during concealment process */ |
| if ( pConcealmentInfo->prevFrameOk[1] || |
| (pConcealmentInfo->prevFrameOk[0] && !pConcealmentInfo->prevFrameOk[1] && frameOk) ) { |
| /* The frame is OK even if it can be estimated by the energy interpolation algorithm */ |
| pConcealmentInfo->cntValidFrames += 1; |
| } else { |
| pConcealmentInfo->cntValidFrames = 0; |
| } |
| } |
| |
| /* -- STATE MACHINE for energy interpolation -- */ |
| switch (pConcealmentInfo->concealState) |
| { |
| case ConcealState_Ok: |
| if (!(pConcealmentInfo->prevFrameOk[1] || |
| (pConcealmentInfo->prevFrameOk[0] && !pConcealmentInfo->prevFrameOk[1] && frameOk))) { |
| /* Fade out only if the energy interpolation algorithm can not be applied! */ |
| pConcealmentInfo->concealState = ConcealState_FadeOut; |
| pConcealmentInfo->cntFadeFrames = 0; |
| pConcealmentInfo->cntValidFrames = 0; |
| } |
| break; |
| |
| case ConcealState_Single: |
| pConcealmentInfo->concealState = ConcealState_Ok; |
| break; |
| |
| case ConcealState_FadeOut: |
| pConcealmentInfo->cntFadeFrames += 1; |
| |
| if (pConcealmentInfo->cntValidFrames > pConcealCommonData->numMuteReleaseFrames) { |
| /* change to state FADE-IN */ |
| pConcealmentInfo->concealState = ConcealState_FadeIn; |
| pConcealmentInfo->cntFadeFrames = findEquiFadeFrame( pConcealCommonData, |
| pConcealmentInfo->cntFadeFrames-1, |
| 0 /* FadeOut -> FadeIn */); |
| } else { |
| if (pConcealmentInfo->cntFadeFrames >= pConcealCommonData->numFadeOutFrames) { |
| /* change to state MUTE */ |
| pConcealmentInfo->concealState = ConcealState_Mute; |
| } |
| } |
| break; |
| |
| case ConcealState_Mute: |
| if (pConcealmentInfo->cntValidFrames > pConcealCommonData->numMuteReleaseFrames) { |
| /* change to state FADE-IN */ |
| pConcealmentInfo->concealState = ConcealState_FadeIn; |
| pConcealmentInfo->cntFadeFrames = pConcealCommonData->numFadeInFrames - 1; |
| } |
| break; |
| |
| case ConcealState_FadeIn: |
| pConcealmentInfo->cntFadeFrames -= 1; /* used to address the fade-in factors */ |
| |
| if (frameOk || pConcealmentInfo->prevFrameOk[1]) { |
| if (pConcealmentInfo->cntFadeFrames < 0) { |
| /* change to state OK */ |
| pConcealmentInfo->concealState = ConcealState_Ok; |
| } |
| } else { |
| /* change to state FADE-OUT */ |
| pConcealmentInfo->concealState = ConcealState_FadeOut; |
| pConcealmentInfo->cntFadeFrames = findEquiFadeFrame( pConcealCommonData, |
| pConcealmentInfo->cntFadeFrames+1, |
| 1 /* FadeIn -> FadeOut */); |
| } |
| break; |
| } /* End switch(pConcealmentInfo->concealState) */ |
| } |
| break; |
| |
| default: |
| /* Don't need a state machine for other concealment methods. */ |
| break; |
| } |
| |
| } |
| |
| |
| /*! |
| \brief Randomizes the sign of the spectral data |
| |
| The function toggles the sign of the spectral data randomly. This is |
| useful to ensure the quality of the concealed frames. |
| |
| \return none |
| */ |
| static |
| void CConcealment_ApplyRandomSign (int randomPhase, |
| FIXP_DBL *spec, |
| int samplesPerFrame |
| ) |
| { |
| int i; |
| USHORT packedSign=0; |
| |
| /* random table 512x16bit has been reduced to 512 packed sign bits = 32x16 bit */ |
| |
| /* read current packed sign word */ |
| packedSign = randomSign[randomPhase>>4]; |
| packedSign >>= (randomPhase&0xf); |
| |
| for (i = 0; i < samplesPerFrame ; i++) { |
| if ((randomPhase & 0xf) == 0) { |
| packedSign = randomSign[randomPhase>>4]; |
| } |
| |
| if (packedSign & 0x1) { |
| spec[i] = -spec[i]; |
| } |
| packedSign >>= 1; |
| |
| randomPhase = (randomPhase + 1) & (AAC_NF_NO_RANDOM_VAL - 1); |
| } |
| } |
| |
| |
| /*! |
| \brief Get fadeing factor for current concealment state. |
| |
| The function returns the factor used for fading that belongs to the current internal state. |
| |
| \return Fade factor |
| */ |
| FIXP_DBL |
| CConcealment_GetFadeFactor ( |
| CConcealmentInfo *hConcealmentInfo, |
| const int fPreviousFactor |
| ) |
| { |
| FIXP_DBL fac = (FIXP_DBL)0; |
| |
| CConcealParams *pConcealCommonData = hConcealmentInfo->pConcealParams; |
| |
| if (hConcealmentInfo->pConcealParams->method > ConcealMethodMute) { |
| switch (hConcealmentInfo->concealState) { |
| default: |
| case ConcealState_Mute: |
| /* Nothing to do here */ |
| break; |
| case ConcealState_Ok: |
| fac = (FIXP_DBL)MAXVAL_DBL; |
| break; |
| case ConcealState_Single: |
| case ConcealState_FadeOut: |
| { |
| int idx = hConcealmentInfo->cntFadeFrames - ((fPreviousFactor != 0) ? 1 : 0); |
| fac = (idx < 0) ? (FIXP_DBL)MAXVAL_DBL : FX_SGL2FX_DBL(pConcealCommonData->fadeOutFactor[idx]); |
| } |
| break; |
| case ConcealState_FadeIn: |
| { |
| int idx = hConcealmentInfo->cntFadeFrames + ((fPreviousFactor != 0) ? 1 : 0); |
| fac = (idx >= hConcealmentInfo->pConcealParams->numFadeInFrames) ? (FIXP_DBL)0 : FX_SGL2FX_DBL(pConcealCommonData->fadeInFactor[idx]); |
| } |
| break; |
| } |
| } |
| |
| return (fac); |
| } |
| |
| |
| /*! |
| \brief Get fadeing factor for current concealment state. |
| |
| The function returns the state (ok or not) of the previous frame. |
| If called before the function CConcealment_Apply() set the fBeforeApply |
| flag to get the correct value. |
| |
| \return Frame OK flag of previous frame. |
| */ |
| int |
| CConcealment_GetLastFrameOk ( |
| CConcealmentInfo *hConcealmentInfo, |
| const int fBeforeApply |
| ) |
| { |
| int prevFrameOk = 1; |
| |
| if (hConcealmentInfo != NULL) { |
| prevFrameOk = hConcealmentInfo->prevFrameOk[fBeforeApply & 0x1]; |
| } |
| |
| return prevFrameOk; |
| } |
| |
| /*! |
| \brief Get the number of delay frames introduced by concealment technique. |
| |
| \return Number of delay frames. |
| */ |
| UINT |
| CConcealment_GetDelay ( |
| CConcealParams *pConcealCommonData |
| ) |
| { |
| UINT frameDelay = 0; |
| |
| if (pConcealCommonData != NULL) { |
| switch (pConcealCommonData->method) { |
| case ConcealMethodTonal: |
| case ConcealMethodInter: |
| frameDelay = 1; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return frameDelay; |
| } |
| |