| |
| /* ----------------------------------------------------------------------------------------------------------- |
| Software License for The Fraunhofer FDK AAC Codec Library for Android |
| |
| © Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. |
| All rights reserved. |
| |
| 1. INTRODUCTION |
| The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements |
| the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. |
| This FDK AAC Codec software is intended to be used on a wide variety of Android devices. |
| |
| AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual |
| audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by |
| independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part |
| of the MPEG specifications. |
| |
| Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) |
| may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners |
| individually for the purpose of encoding or decoding bit streams in products that are compliant with |
| the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license |
| these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec |
| software may already be covered under those patent licenses when it is used for those licensed purposes only. |
| |
| Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, |
| are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional |
| applications information and documentation. |
| |
| 2. COPYRIGHT LICENSE |
| |
| Redistribution and use in source and binary forms, with or without modification, are permitted without |
| payment of copyright license fees provided that you satisfy the following conditions: |
| |
| You must retain the complete text of this software license in redistributions of the FDK AAC Codec or |
| your modifications thereto in source code form. |
| |
| You must retain the complete text of this software license in the documentation and/or other materials |
| provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. |
| You must make available free of charge copies of the complete source code of the FDK AAC Codec and your |
| modifications thereto to recipients of copies in binary form. |
| |
| The name of Fraunhofer may not be used to endorse or promote products derived from this library without |
| prior written permission. |
| |
| You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec |
| software or your modifications thereto. |
| |
| Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software |
| and the date of any change. For modified versions of the FDK AAC Codec, the term |
| "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term |
| "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." |
| |
| 3. NO PATENT LICENSE |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, |
| ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with |
| respect to this software. |
| |
| You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized |
| by appropriate patent licenses. |
| |
| 4. DISCLAIMER |
| |
| This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors |
| "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties |
| of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
| CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, |
| including but not limited to procurement of substitute goods or services; loss of use, data, or profits, |
| or business interruption, however caused and on any theory of liability, whether in contract, strict |
| liability, or tort (including negligence), arising in any way out of the use of this software, even if |
| advised of the possibility of such damage. |
| |
| 5. CONTACT INFORMATION |
| |
| Fraunhofer Institute for Integrated Circuits IIS |
| Attention: Audio and Multimedia Departments - FDK AAC LL |
| Am Wolfsmantel 33 |
| 91058 Erlangen, Germany |
| |
| www.iis.fraunhofer.de/amm |
| amm-info@iis.fraunhofer.de |
| ----------------------------------------------------------------------------------------------------------- */ |
| |
| /*************************** Fraunhofer IIS FDK Tools ********************** |
| |
| Author(s): M. Gayer |
| Description: Fixed point specific mathematical functions |
| |
| ******************************************************************************/ |
| |
| #ifndef __fixpoint_math_H |
| #define __fixpoint_math_H |
| |
| |
| #include "common_fix.h" |
| |
| |
| #define LD_DATA_SCALING (64.0f) |
| #define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */ |
| |
| /** |
| * \brief deprecated. Use fLog2() instead. |
| */ |
| FIXP_DBL CalcLdData(FIXP_DBL op); |
| |
| void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number); |
| |
| FIXP_DBL CalcInvLdData(FIXP_DBL op); |
| |
| |
| void InitLdInt(); |
| FIXP_DBL CalcLdInt(INT i); |
| |
| extern const USHORT sqrt_tab[49]; |
| |
| inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x) |
| { |
| UINT y = (INT)x; |
| UCHAR is_zero=(y==0); |
| INT zeros=fixnormz_D(y) & 0x1e; |
| y<<=zeros; |
| UINT idx=(y>>26)-16; |
| USHORT frac=(y>>10)&0xffff; |
| USHORT nfrac=0xffff^frac; |
| UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1]; |
| t=t>>(zeros>>1); |
| return(is_zero ? 0 : t); |
| } |
| |
| inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e) |
| { |
| UINT y = (INT)x; |
| INT e; |
| |
| if (x == (FIXP_DBL)0) { |
| return x; |
| } |
| |
| /* Normalize */ |
| e=fixnormz_D(y); |
| y<<=e; |
| e = *x_e - e + 2; |
| |
| /* Correct odd exponent. */ |
| if (e & 1) { |
| y >>= 1; |
| e ++; |
| } |
| /* Get square root */ |
| UINT idx=(y>>26)-16; |
| USHORT frac=(y>>10)&0xffff; |
| USHORT nfrac=0xffff^frac; |
| UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1]; |
| |
| /* Write back exponent */ |
| *x_e = e >> 1; |
| return (FIXP_DBL)(LONG)(t>>1); |
| } |
| |
| |
| |
| FIXP_DBL sqrtFixp(FIXP_DBL op); |
| |
| void InitInvSqrtTab(); |
| |
| FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift); |
| |
| /***************************************************************************** |
| |
| functionname: invFixp |
| description: delivers 1/(op) |
| |
| *****************************************************************************/ |
| inline FIXP_DBL invFixp(FIXP_DBL op) |
| { |
| INT tmp_exp ; |
| FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ; |
| FDK_ASSERT((31-(2*tmp_exp+1))>=0) ; |
| return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ; |
| } |
| |
| |
| |
| #if defined(__mips__) && (__GNUC__==2) |
| |
| #define FUNCTION_schur_div |
| inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count) |
| { |
| INT result, tmp ; |
| __asm__ ("srl %1, %2, 15\n" |
| "div %3, %1\n" : "=lo" (result) |
| : "%d" (tmp), "d" (denum) , "d" (num) |
| : "hi" ) ; |
| return result<<16 ; |
| } |
| |
| /*###########################################################################################*/ |
| #elif defined(__mips__) && (__GNUC__==3) |
| |
| #define FUNCTION_schur_div |
| inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count) |
| { |
| INT result, tmp; |
| |
| __asm__ ("srl %[tmp], %[denum], 15\n" |
| "div %[result], %[num], %[tmp]\n" |
| : [tmp] "+r" (tmp), [result]"=r"(result) |
| : [denum]"r"(denum), [num]"r"(num) |
| : "hi", "lo"); |
| return result << (DFRACT_BITS-16); |
| } |
| |
| /*###########################################################################################*/ |
| #elif defined(SIMULATE_MIPS_DIV) |
| |
| #define FUNCTION_schur_div |
| inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) |
| { |
| FDK_ASSERT (count<=DFRACT_BITS-1); |
| FDK_ASSERT (num>=(FIXP_DBL)0); |
| FDK_ASSERT (denum>(FIXP_DBL)0); |
| FDK_ASSERT (num <= denum); |
| |
| INT tmp = denum >> (count-1); |
| INT result = 0; |
| |
| while (num > tmp) |
| { |
| num -= tmp; |
| result++; |
| } |
| |
| return result << (DFRACT_BITS-count); |
| } |
| |
| /*###########################################################################################*/ |
| #endif /* target architecture selector */ |
| |
| #if !defined(FUNCTION_schur_div) |
| /** |
| * \brief Divide two FIXP_DBL values with given precision. |
| * \param num dividend |
| * \param denum divisor |
| * \param count amount of significant bits of the result (starting to the MSB) |
| * \return num/divisor |
| */ |
| FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count); |
| #endif |
| |
| |
| |
| FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, |
| const FIXP_SGL op2); |
| |
| /** |
| * \brief multiply two values with normalization, thus max precision. |
| * Author: Robert Weidner |
| * |
| * \param f1 first factor |
| * \param f2 secod factor |
| * \param result_e pointer to an INT where the exponent of the result is stored into |
| * \return mantissa of the product f1*f2 |
| */ |
| FIXP_DBL fMultNorm( |
| FIXP_DBL f1, |
| FIXP_DBL f2, |
| INT *result_e |
| ); |
| |
| inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2) |
| { |
| FIXP_DBL m; |
| INT e; |
| |
| m = fMultNorm(f1, f2, &e); |
| |
| m = scaleValueSaturate(m, e); |
| |
| return m; |
| } |
| |
| /** |
| * \brief Divide 2 FIXP_DBL values with normalization of input values. |
| * \param num numerator |
| * \param denum denomintator |
| * \return num/denum with exponent = 0 |
| */ |
| FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e); |
| |
| /** |
| * \brief Divide 2 FIXP_DBL values with normalization of input values. |
| * \param num numerator |
| * \param denum denomintator |
| * \param result_e pointer to an INT where the exponent of the result is stored into |
| * \return num/denum with exponent = *result_e |
| */ |
| FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom); |
| |
| /** |
| * \brief Divide 2 FIXP_DBL values with normalization of input values. |
| * \param num numerator |
| * \param denum denomintator |
| * \return num/denum with exponent = 0 |
| */ |
| FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e); |
| |
| /** |
| * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead. |
| * \param arg mantissa of the argument |
| * \param arg_e exponent of the argument |
| * \param result_e pointer to an INT to store the exponent of the result |
| * \return the mantissa of the result. |
| * \param |
| */ |
| FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e); |
| |
| /** |
| * \brief return 2 ^ (exp * 2^exp_e) |
| * \param exp_m mantissa of the exponent to 2.0f |
| * \param exp_e exponent of the exponent to 2.0f |
| * \param result_e pointer to a INT where the exponent of the result will be stored into |
| * \return mantissa of the result |
| */ |
| FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e); |
| |
| /** |
| * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero. |
| * \param exp_m mantissa of the exponent to 2.0f |
| * \param exp_e exponent of the exponent to 2.0f |
| * \return mantissa of the result |
| */ |
| FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e); |
| |
| /** |
| * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves |
| * the need to compute log2() of constant values (when x is a constant). |
| * \param ldx_m mantissa of log2() of x. |
| * \param ldx_e exponent of log2() of x. |
| * \param exp_m mantissa of the exponent to 2.0f |
| * \param exp_e exponent of the exponent to 2.0f |
| * \param result_e pointer to a INT where the exponent of the result will be stored into |
| * \return mantissa of the result |
| */ |
| FIXP_DBL fLdPow( |
| FIXP_DBL baseLd_m, |
| INT baseLd_e, |
| FIXP_DBL exp_m, INT exp_e, |
| INT *result_e |
| ); |
| |
| /** |
| * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves |
| * the need to compute log2() of constant values (when x is a constant). This version |
| * does not return an exponent, which is implicitly 0. |
| * \param ldx_m mantissa of log2() of x. |
| * \param ldx_e exponent of log2() of x. |
| * \param exp_m mantissa of the exponent to 2.0f |
| * \param exp_e exponent of the exponent to 2.0f |
| * \return mantissa of the result |
| */ |
| FIXP_DBL fLdPow( |
| FIXP_DBL baseLd_m, INT baseLd_e, |
| FIXP_DBL exp_m, INT exp_e |
| ); |
| |
| /** |
| * \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible. |
| * \param base_m mantissa of the base. |
| * \param base_e exponent of the base. |
| * \param exp_m mantissa of power to be calculated of the base. |
| * \param exp_e exponent of power to be calculated of the base. |
| * \param result_e pointer to a INT where the exponent of the result will be stored into. |
| * \return mantissa of the result. |
| */ |
| FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e); |
| |
| /** |
| * \brief return (base * 2^base_e) ^ N |
| * \param base mantissa of the base |
| * \param base_e exponent of the base |
| * \param power to be calculated of the base |
| * \param result_e pointer to a INT where the exponent of the result will be stored into |
| * \return mantissa of the result |
| */ |
| FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e); |
| |
| /** |
| * \brief calculate logarithm of base 2 of x_m * 2^(x_e) |
| * \param x_m mantissa of the input value. |
| * \param x_e exponent of the input value. |
| * \param pointer to an INT where the exponent of the result is returned into. |
| * \return mantissa of the result. |
| */ |
| FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e); |
| |
| /** |
| * \brief calculate logarithm of base 2 of x_m * 2^(x_e) |
| * \param x_m mantissa of the input value. |
| * \param x_e exponent of the input value. |
| * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT. |
| */ |
| FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e); |
| |
| /** |
| * \brief Add with saturation of the result. |
| * \param a first summand |
| * \param b second summand |
| * \return saturated sum of a and b. |
| */ |
| inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b) |
| { |
| LONG sum; |
| |
| sum = (LONG)(SHORT)a + (LONG)(SHORT)b; |
| sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL); |
| return (FIXP_SGL)(SHORT)sum; |
| } |
| |
| /** |
| * \brief Add with saturation of the result. |
| * \param a first summand |
| * \param b second summand |
| * \return saturated sum of a and b. |
| */ |
| inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b) |
| { |
| LONG sum; |
| |
| sum = (LONG)(a>>1) + (LONG)(b>>1); |
| sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1)); |
| return (FIXP_DBL)(LONG)(sum<<1); |
| } |
| |
| //#define TEST_ROUNDING |
| |
| |
| |
| |
| /***************************************************************************** |
| |
| array for 1/n, n=1..50 |
| |
| ****************************************************************************/ |
| |
| extern const FIXP_DBL invCount[50]; |
| |
| LNK_SECTION_INITCODE |
| inline void InitInvInt(void) {} |
| |
| |
| /** |
| * \brief Calculate the value of 1/i where i is a integer value. It supports |
| * input values from 1 upto 50. |
| * \param intValue Integer input value. |
| * \param FIXP_DBL representation of 1/intValue |
| */ |
| inline FIXP_DBL GetInvInt(int intValue) |
| { |
| FDK_ASSERT((intValue > 0) && (intValue < 50)); |
| FDK_ASSERT(intValue<50); |
| return invCount[intValue]; |
| } |
| |
| |
| #endif |
| |