| // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Scopers help you manage ownership of a pointer, helping you easily manage the |
| // a pointer within a scope, and automatically destroying the pointer at the |
| // end of a scope. There are two main classes you will use, which correspond |
| // to the operators new/delete and new[]/delete[]. |
| // |
| // Example usage (scoped_ptr): |
| // { |
| // scoped_ptr<Foo> foo(new Foo("wee")); |
| // } // foo goes out of scope, releasing the pointer with it. |
| // |
| // { |
| // scoped_ptr<Foo> foo; // No pointer managed. |
| // foo.reset(new Foo("wee")); // Now a pointer is managed. |
| // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. |
| // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. |
| // foo->Method(); // Foo::Method() called. |
| // foo.get()->Method(); // Foo::Method() called. |
| // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer |
| // // manages a pointer. |
| // foo.reset(new Foo("wee4")); // foo manages a pointer again. |
| // foo.reset(); // Foo("wee4") destroyed, foo no longer |
| // // manages a pointer. |
| // } // foo wasn't managing a pointer, so nothing was destroyed. |
| // |
| // Example usage (scoped_array): |
| // { |
| // scoped_array<Foo> foo(new Foo[100]); |
| // foo.get()->Method(); // Foo::Method on the 0th element. |
| // foo[10].Method(); // Foo::Method on the 10th element. |
| // } |
| |
| #ifndef BASE_MEMORY_SCOPED_PTR_H_ |
| #define BASE_MEMORY_SCOPED_PTR_H_ |
| #pragma once |
| |
| // This is an implementation designed to match the anticipated future TR2 |
| // implementation of the scoped_ptr class, and its closely-related brethren, |
| // scoped_array, scoped_ptr_malloc. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| #include <stdlib.h> |
| |
| #include "base/compiler_specific.h" |
| |
| // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
| // automatically deletes the pointer it holds (if any). |
| // That is, scoped_ptr<T> owns the T object that it points to. |
| // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. |
| // Also like T*, scoped_ptr<T> is thread-compatible, and once you |
| // dereference it, you get the threadsafety guarantees of T. |
| // |
| // The size of a scoped_ptr is small: |
| // sizeof(scoped_ptr<C>) == sizeof(C*) |
| template <class C> |
| class scoped_ptr { |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to initializing with NULL. |
| // There is no way to create an uninitialized scoped_ptr. |
| // The input parameter must be allocated with new. |
| explicit scoped_ptr(C* p = NULL) : ptr_(p) { } |
| |
| // Destructor. If there is a C object, delete it. |
| // We don't need to test ptr_ == NULL because C++ does that for us. |
| ~scoped_ptr() { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete ptr_; |
| } |
| |
| // Reset. Deletes the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (p != ptr_) { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete ptr_; |
| ptr_ = p; |
| } |
| } |
| |
| // Accessors to get the owned object. |
| // operator* and operator-> will assert() if there is no current object. |
| C& operator*() const { |
| assert(ptr_ != NULL); |
| return *ptr_; |
| } |
| C* operator->() const { |
| assert(ptr_ != NULL); |
| return ptr_; |
| } |
| C* get() const { return ptr_; } |
| |
| // Comparison operators. |
| // These return whether two scoped_ptr refer to the same object, not just to |
| // two different but equal objects. |
| bool operator==(C* p) const { return ptr_ == p; } |
| bool operator!=(C* p) const { return ptr_ != p; } |
| |
| // Swap two scoped pointers. |
| void swap(scoped_ptr& p2) { |
| C* tmp = ptr_; |
| ptr_ = p2.ptr_; |
| p2.ptr_ = tmp; |
| } |
| |
| // Release a pointer. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() WARN_UNUSED_RESULT { |
| C* retVal = ptr_; |
| ptr_ = NULL; |
| return retVal; |
| } |
| |
| private: |
| C* ptr_; |
| |
| // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't |
| // make sense, and if C2 == C, it still doesn't make sense because you should |
| // never have the same object owned by two different scoped_ptrs. |
| template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; |
| template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; |
| |
| // Disallow evil constructors |
| scoped_ptr(const scoped_ptr&); |
| void operator=(const scoped_ptr&); |
| }; |
| |
| // Free functions |
| template <class C> |
| void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { |
| p1.swap(p2); |
| } |
| |
| template <class C> |
| bool operator==(C* p1, const scoped_ptr<C>& p2) { |
| return p1 == p2.get(); |
| } |
| |
| template <class C> |
| bool operator!=(C* p1, const scoped_ptr<C>& p2) { |
| return p1 != p2.get(); |
| } |
| |
| // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate |
| // with new [] and the destructor deletes objects with delete []. |
| // |
| // As with scoped_ptr<C>, a scoped_array<C> either points to an object |
| // or is NULL. A scoped_array<C> owns the object that it points to. |
| // scoped_array<T> is thread-compatible, and once you index into it, |
| // the returned objects have only the threadsafety guarantees of T. |
| // |
| // Size: sizeof(scoped_array<C>) == sizeof(C*) |
| template <class C> |
| class scoped_array { |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to intializing with NULL. |
| // There is no way to create an uninitialized scoped_array. |
| // The input parameter must be allocated with new []. |
| explicit scoped_array(C* p = NULL) : array_(p) { } |
| |
| // Destructor. If there is a C object, delete it. |
| // We don't need to test ptr_ == NULL because C++ does that for us. |
| ~scoped_array() { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete[] array_; |
| } |
| |
| // Reset. Deletes the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (p != array_) { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete[] array_; |
| array_ = p; |
| } |
| } |
| |
| // Get one element of the current object. |
| // Will assert() if there is no current object, or index i is negative. |
| C& operator[](ptrdiff_t i) const { |
| assert(i >= 0); |
| assert(array_ != NULL); |
| return array_[i]; |
| } |
| |
| // Get a pointer to the zeroth element of the current object. |
| // If there is no current object, return NULL. |
| C* get() const { |
| return array_; |
| } |
| |
| // Comparison operators. |
| // These return whether two scoped_array refer to the same object, not just to |
| // two different but equal objects. |
| bool operator==(C* p) const { return array_ == p; } |
| bool operator!=(C* p) const { return array_ != p; } |
| |
| // Swap two scoped arrays. |
| void swap(scoped_array& p2) { |
| C* tmp = array_; |
| array_ = p2.array_; |
| p2.array_ = tmp; |
| } |
| |
| // Release an array. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() WARN_UNUSED_RESULT { |
| C* retVal = array_; |
| array_ = NULL; |
| return retVal; |
| } |
| |
| private: |
| C* array_; |
| |
| // Forbid comparison of different scoped_array types. |
| template <class C2> bool operator==(scoped_array<C2> const& p2) const; |
| template <class C2> bool operator!=(scoped_array<C2> const& p2) const; |
| |
| // Disallow evil constructors |
| scoped_array(const scoped_array&); |
| void operator=(const scoped_array&); |
| }; |
| |
| // Free functions |
| template <class C> |
| void swap(scoped_array<C>& p1, scoped_array<C>& p2) { |
| p1.swap(p2); |
| } |
| |
| template <class C> |
| bool operator==(C* p1, const scoped_array<C>& p2) { |
| return p1 == p2.get(); |
| } |
| |
| template <class C> |
| bool operator!=(C* p1, const scoped_array<C>& p2) { |
| return p1 != p2.get(); |
| } |
| |
| // This class wraps the c library function free() in a class that can be |
| // passed as a template argument to scoped_ptr_malloc below. |
| class ScopedPtrMallocFree { |
| public: |
| inline void operator()(void* x) const { |
| free(x); |
| } |
| }; |
| |
| // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a |
| // second template argument, the functor used to free the object. |
| |
| template<class C, class FreeProc = ScopedPtrMallocFree> |
| class scoped_ptr_malloc { |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to initializing with NULL. |
| // There is no way to create an uninitialized scoped_ptr. |
| // The input parameter must be allocated with an allocator that matches the |
| // Free functor. For the default Free functor, this is malloc, calloc, or |
| // realloc. |
| explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {} |
| |
| // Destructor. If there is a C object, call the Free functor. |
| ~scoped_ptr_malloc() { |
| free_(ptr_); |
| } |
| |
| // Reset. Calls the Free functor on the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (ptr_ != p) { |
| free_(ptr_); |
| ptr_ = p; |
| } |
| } |
| |
| // Get the current object. |
| // operator* and operator-> will cause an assert() failure if there is |
| // no current object. |
| C& operator*() const { |
| assert(ptr_ != NULL); |
| return *ptr_; |
| } |
| |
| C* operator->() const { |
| assert(ptr_ != NULL); |
| return ptr_; |
| } |
| |
| C* get() const { |
| return ptr_; |
| } |
| |
| // Comparison operators. |
| // These return whether a scoped_ptr_malloc and a plain pointer refer |
| // to the same object, not just to two different but equal objects. |
| // For compatibility with the boost-derived implementation, these |
| // take non-const arguments. |
| bool operator==(C* p) const { |
| return ptr_ == p; |
| } |
| |
| bool operator!=(C* p) const { |
| return ptr_ != p; |
| } |
| |
| // Swap two scoped pointers. |
| void swap(scoped_ptr_malloc & b) { |
| C* tmp = b.ptr_; |
| b.ptr_ = ptr_; |
| ptr_ = tmp; |
| } |
| |
| // Release a pointer. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() WARN_UNUSED_RESULT { |
| C* tmp = ptr_; |
| ptr_ = NULL; |
| return tmp; |
| } |
| |
| private: |
| C* ptr_; |
| |
| // no reason to use these: each scoped_ptr_malloc should have its own object |
| template <class C2, class GP> |
| bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; |
| template <class C2, class GP> |
| bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; |
| |
| static FreeProc const free_; |
| |
| // Disallow evil constructors |
| scoped_ptr_malloc(const scoped_ptr_malloc&); |
| void operator=(const scoped_ptr_malloc&); |
| }; |
| |
| template<class C, class FP> |
| FP const scoped_ptr_malloc<C, FP>::free_ = FP(); |
| |
| template<class C, class FP> inline |
| void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { |
| a.swap(b); |
| } |
| |
| template<class C, class FP> inline |
| bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { |
| return p == b.get(); |
| } |
| |
| template<class C, class FP> inline |
| bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { |
| return p != b.get(); |
| } |
| |
| #endif // BASE_MEMORY_SCOPED_PTR_H_ |