| // Copyright (c) 2010 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <windows.h> |
| #include <mmsystem.h> |
| #include <process.h> |
| |
| #include "base/threading/platform_thread.h" |
| #include "base/time.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| using base::Time; |
| using base::TimeDelta; |
| using base::TimeTicks; |
| |
| namespace { |
| |
| class MockTimeTicks : public TimeTicks { |
| public: |
| static DWORD Ticker() { |
| return static_cast<int>(InterlockedIncrement(&ticker_)); |
| } |
| |
| static void InstallTicker() { |
| old_tick_function_ = SetMockTickFunction(&Ticker); |
| ticker_ = -5; |
| } |
| |
| static void UninstallTicker() { |
| SetMockTickFunction(old_tick_function_); |
| } |
| |
| private: |
| static volatile LONG ticker_; |
| static TickFunctionType old_tick_function_; |
| }; |
| |
| volatile LONG MockTimeTicks::ticker_; |
| MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_; |
| |
| HANDLE g_rollover_test_start; |
| |
| unsigned __stdcall RolloverTestThreadMain(void* param) { |
| int64 counter = reinterpret_cast<int64>(param); |
| DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE); |
| EXPECT_EQ(rv, WAIT_OBJECT_0); |
| |
| TimeTicks last = TimeTicks::Now(); |
| for (int index = 0; index < counter; index++) { |
| TimeTicks now = TimeTicks::Now(); |
| int64 milliseconds = (now - last).InMilliseconds(); |
| // This is a tight loop; we could have looped faster than our |
| // measurements, so the time might be 0 millis. |
| EXPECT_GE(milliseconds, 0); |
| EXPECT_LT(milliseconds, 250); |
| last = now; |
| } |
| return 0; |
| } |
| |
| } // namespace |
| |
| TEST(TimeTicks, WinRollover) { |
| // The internal counter rolls over at ~49days. We'll use a mock |
| // timer to test this case. |
| // Basic test algorithm: |
| // 1) Set clock to rollover - N |
| // 2) Create N threads |
| // 3) Start the threads |
| // 4) Each thread loops through TimeTicks() N times |
| // 5) Each thread verifies integrity of result. |
| |
| const int kThreads = 8; |
| // Use int64 so we can cast into a void* without a compiler warning. |
| const int64 kChecks = 10; |
| |
| // It takes a lot of iterations to reproduce the bug! |
| // (See bug 1081395) |
| for (int loop = 0; loop < 4096; loop++) { |
| // Setup |
| MockTimeTicks::InstallTicker(); |
| g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0); |
| HANDLE threads[kThreads]; |
| |
| for (int index = 0; index < kThreads; index++) { |
| void* argument = reinterpret_cast<void*>(kChecks); |
| unsigned thread_id; |
| threads[index] = reinterpret_cast<HANDLE>( |
| _beginthreadex(NULL, 0, RolloverTestThreadMain, argument, 0, |
| &thread_id)); |
| EXPECT_NE((HANDLE)NULL, threads[index]); |
| } |
| |
| // Start! |
| SetEvent(g_rollover_test_start); |
| |
| // Wait for threads to finish |
| for (int index = 0; index < kThreads; index++) { |
| DWORD rv = WaitForSingleObject(threads[index], INFINITE); |
| EXPECT_EQ(rv, WAIT_OBJECT_0); |
| } |
| |
| CloseHandle(g_rollover_test_start); |
| |
| // Teardown |
| MockTimeTicks::UninstallTicker(); |
| } |
| } |
| |
| TEST(TimeTicks, SubMillisecondTimers) { |
| // HighResNow doesn't work on some systems. Since the product still works |
| // even if it doesn't work, it makes this entire test questionable. |
| if (!TimeTicks::IsHighResClockWorking()) |
| return; |
| |
| const int kRetries = 1000; |
| bool saw_submillisecond_timer = false; |
| |
| // Run kRetries attempts to see a sub-millisecond timer. |
| for (int index = 0; index < 1000; index++) { |
| TimeTicks last_time = TimeTicks::HighResNow(); |
| TimeDelta delta; |
| // Spin until the clock has detected a change. |
| do { |
| delta = TimeTicks::HighResNow() - last_time; |
| } while (delta.InMicroseconds() == 0); |
| if (delta.InMicroseconds() < 1000) { |
| saw_submillisecond_timer = true; |
| break; |
| } |
| } |
| EXPECT_TRUE(saw_submillisecond_timer); |
| } |
| |
| TEST(TimeTicks, TimeGetTimeCaps) { |
| // Test some basic assumptions that we expect about how timeGetDevCaps works. |
| |
| TIMECAPS caps; |
| MMRESULT status = timeGetDevCaps(&caps, sizeof(caps)); |
| EXPECT_EQ(TIMERR_NOERROR, status); |
| if (status != TIMERR_NOERROR) { |
| printf("Could not get timeGetDevCaps\n"); |
| return; |
| } |
| |
| EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1); |
| EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1); |
| EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1); |
| EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1); |
| printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin, |
| caps.wPeriodMax); |
| } |
| |
| TEST(TimeTicks, QueryPerformanceFrequency) { |
| // Test some basic assumptions that we expect about QPC. |
| |
| LARGE_INTEGER frequency; |
| BOOL rv = QueryPerformanceFrequency(&frequency); |
| EXPECT_EQ(TRUE, rv); |
| EXPECT_GT(frequency.QuadPart, 1000000); // Expect at least 1MHz |
| printf("QueryPerformanceFrequency is %5.2fMHz\n", |
| frequency.QuadPart / 1000000.0); |
| } |
| |
| TEST(TimeTicks, TimerPerformance) { |
| // Verify that various timer mechanisms can always complete quickly. |
| // Note: This is a somewhat arbitrary test. |
| const int kLoops = 10000; |
| // Due to the fact that these run on bbots, which are horribly slow, |
| // we can't really make any guarantees about minimum runtime. |
| // Really, we want these to finish in ~10ms, and that is generous. |
| const int kMaxTime = 35; // Maximum acceptible milliseconds for test. |
| |
| typedef TimeTicks (*TestFunc)(); |
| struct TestCase { |
| TestFunc func; |
| char *description; |
| }; |
| // Cheating a bit here: assumes sizeof(TimeTicks) == sizeof(Time) |
| // in order to create a single test case list. |
| COMPILE_ASSERT(sizeof(TimeTicks) == sizeof(Time), |
| test_only_works_with_same_sizes); |
| TestCase cases[] = { |
| { reinterpret_cast<TestFunc>(Time::Now), "Time::Now" }, |
| { TimeTicks::Now, "TimeTicks::Now" }, |
| { TimeTicks::HighResNow, "TimeTicks::HighResNow" }, |
| { NULL, "" } |
| }; |
| |
| int test_case = 0; |
| while (cases[test_case].func) { |
| TimeTicks start = TimeTicks::HighResNow(); |
| for (int index = 0; index < kLoops; index++) |
| cases[test_case].func(); |
| TimeTicks stop = TimeTicks::HighResNow(); |
| // Turning off the check for acceptible delays. Without this check, |
| // the test really doesn't do much other than measure. But the |
| // measurements are still useful for testing timers on various platforms. |
| // The reason to remove the check is because the tests run on many |
| // buildbots, some of which are VMs. These machines can run horribly |
| // slow, and there is really no value for checking against a max timer. |
| //EXPECT_LT((stop - start).InMilliseconds(), kMaxTime); |
| printf("%s: %1.2fus per call\n", cases[test_case].description, |
| (stop - start).InMillisecondsF() * 1000 / kLoops); |
| test_case++; |
| } |
| } |
| |
| TEST(TimeTicks, Drift) { |
| const int kIterations = 100; |
| int64 total_drift = 0; |
| |
| for (int i = 0; i < kIterations; ++i) { |
| int64 drift_microseconds = TimeTicks::GetQPCDriftMicroseconds(); |
| |
| // Make sure the drift never exceeds our limit. |
| EXPECT_LT(drift_microseconds, 50000); |
| |
| // Sleep for a few milliseconds (note that it means 1000 microseconds). |
| // If we check the drift too frequently, it's going to increase |
| // monotonically, making our measurement less realistic. |
| base::PlatformThread::Sleep((i % 2 == 0) ? 1 : 2); |
| |
| total_drift += drift_microseconds; |
| } |
| |
| // Sanity check. We expect some time drift to occur, especially across |
| // the number of iterations we do. However, if the QPC is disabled, this |
| // is not measuring anything (drift is zero in that case). |
| EXPECT_LT(0, total_drift); |
| |
| printf("average time drift in microseconds: %lld\n", |
| total_drift / kIterations); |
| } |