blob: 097888e86e07447d7b0887b8c73cb427fdffbf6f [file] [log] [blame]
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process_util.h"
#include <fcntl.h>
#include <io.h>
#include <windows.h>
#include <userenv.h>
#include <psapi.h>
#include <ios>
#include "base/command_line.h"
#include "base/debug/stack_trace.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/scoped_ptr.h"
#include "base/win/scoped_handle.h"
#include "base/win/windows_version.h"
// userenv.dll is required for CreateEnvironmentBlock().
#pragma comment(lib, "userenv.lib")
namespace base {
namespace {
// System pagesize. This value remains constant on x86/64 architectures.
const int PAGESIZE_KB = 4;
// HeapSetInformation function pointer.
typedef BOOL (WINAPI* HeapSetFn)(HANDLE, HEAP_INFORMATION_CLASS, PVOID, SIZE_T);
// Previous unhandled filter. Will be called if not NULL when we intercept an
// exception. Only used in unit tests.
LPTOP_LEVEL_EXCEPTION_FILTER g_previous_filter = NULL;
// Prints the exception call stack.
// This is the unit tests exception filter.
long WINAPI StackDumpExceptionFilter(EXCEPTION_POINTERS* info) {
debug::StackTrace(info).PrintBacktrace();
if (g_previous_filter)
return g_previous_filter(info);
return EXCEPTION_CONTINUE_SEARCH;
}
// Connects back to a console if available.
void AttachToConsole() {
if (!AttachConsole(ATTACH_PARENT_PROCESS)) {
unsigned int result = GetLastError();
// Was probably already attached.
if (result == ERROR_ACCESS_DENIED)
return;
if (result == ERROR_INVALID_HANDLE || result == ERROR_INVALID_HANDLE) {
// TODO(maruel): Walk up the process chain if deemed necessary.
}
// Continue even if the function call fails.
AllocConsole();
}
// http://support.microsoft.com/kb/105305
int raw_out = _open_osfhandle(
reinterpret_cast<intptr_t>(GetStdHandle(STD_OUTPUT_HANDLE)), _O_TEXT);
*stdout = *_fdopen(raw_out, "w");
setvbuf(stdout, NULL, _IONBF, 0);
int raw_err = _open_osfhandle(
reinterpret_cast<intptr_t>(GetStdHandle(STD_ERROR_HANDLE)), _O_TEXT);
*stderr = *_fdopen(raw_err, "w");
setvbuf(stderr, NULL, _IONBF, 0);
int raw_in = _open_osfhandle(
reinterpret_cast<intptr_t>(GetStdHandle(STD_INPUT_HANDLE)), _O_TEXT);
*stdin = *_fdopen(raw_in, "r");
setvbuf(stdin, NULL, _IONBF, 0);
// Fix all cout, wcout, cin, wcin, cerr, wcerr, clog and wclog.
std::ios::sync_with_stdio();
}
} // namespace
ProcessId GetCurrentProcId() {
return ::GetCurrentProcessId();
}
ProcessHandle GetCurrentProcessHandle() {
return ::GetCurrentProcess();
}
bool OpenProcessHandle(ProcessId pid, ProcessHandle* handle) {
// We try to limit privileges granted to the handle. If you need this
// for test code, consider using OpenPrivilegedProcessHandle instead of
// adding more privileges here.
ProcessHandle result = OpenProcess(PROCESS_DUP_HANDLE | PROCESS_TERMINATE,
FALSE, pid);
if (result == INVALID_HANDLE_VALUE)
return false;
*handle = result;
return true;
}
bool OpenPrivilegedProcessHandle(ProcessId pid, ProcessHandle* handle) {
ProcessHandle result = OpenProcess(PROCESS_DUP_HANDLE |
PROCESS_TERMINATE |
PROCESS_QUERY_INFORMATION |
PROCESS_VM_READ |
SYNCHRONIZE,
FALSE, pid);
if (result == INVALID_HANDLE_VALUE)
return false;
*handle = result;
return true;
}
bool OpenProcessHandleWithAccess(ProcessId pid,
uint32 access_flags,
ProcessHandle* handle) {
ProcessHandle result = OpenProcess(access_flags, FALSE, pid);
if (result == INVALID_HANDLE_VALUE)
return false;
*handle = result;
return true;
}
void CloseProcessHandle(ProcessHandle process) {
CloseHandle(process);
}
ProcessId GetProcId(ProcessHandle process) {
// Get a handle to |process| that has PROCESS_QUERY_INFORMATION rights.
HANDLE current_process = GetCurrentProcess();
HANDLE process_with_query_rights;
if (DuplicateHandle(current_process, process, current_process,
&process_with_query_rights, PROCESS_QUERY_INFORMATION,
false, 0)) {
DWORD id = GetProcessId(process_with_query_rights);
CloseHandle(process_with_query_rights);
return id;
}
// We're screwed.
NOTREACHED();
return 0;
}
bool GetProcessIntegrityLevel(ProcessHandle process, IntegrityLevel *level) {
if (!level)
return false;
if (win::GetVersion() < base::win::VERSION_VISTA)
return false;
HANDLE process_token;
if (!OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE,
&process_token))
return false;
win::ScopedHandle scoped_process_token(process_token);
DWORD token_info_length = 0;
if (GetTokenInformation(process_token, TokenIntegrityLevel, NULL, 0,
&token_info_length) ||
GetLastError() != ERROR_INSUFFICIENT_BUFFER)
return false;
scoped_array<char> token_label_bytes(new char[token_info_length]);
if (!token_label_bytes.get())
return false;
TOKEN_MANDATORY_LABEL* token_label =
reinterpret_cast<TOKEN_MANDATORY_LABEL*>(token_label_bytes.get());
if (!token_label)
return false;
if (!GetTokenInformation(process_token, TokenIntegrityLevel, token_label,
token_info_length, &token_info_length))
return false;
DWORD integrity_level = *GetSidSubAuthority(token_label->Label.Sid,
(DWORD)(UCHAR)(*GetSidSubAuthorityCount(token_label->Label.Sid)-1));
if (integrity_level < SECURITY_MANDATORY_MEDIUM_RID) {
*level = LOW_INTEGRITY;
} else if (integrity_level >= SECURITY_MANDATORY_MEDIUM_RID &&
integrity_level < SECURITY_MANDATORY_HIGH_RID) {
*level = MEDIUM_INTEGRITY;
} else if (integrity_level >= SECURITY_MANDATORY_HIGH_RID) {
*level = HIGH_INTEGRITY;
} else {
NOTREACHED();
return false;
}
return true;
}
bool LaunchAppImpl(const std::wstring& cmdline,
bool wait, bool start_hidden, bool inherit_handles,
ProcessHandle* process_handle) {
STARTUPINFO startup_info = {0};
startup_info.cb = sizeof(startup_info);
startup_info.dwFlags = STARTF_USESHOWWINDOW;
startup_info.wShowWindow = start_hidden ? SW_HIDE : SW_SHOW;
PROCESS_INFORMATION process_info;
if (!CreateProcess(NULL,
const_cast<wchar_t*>(cmdline.c_str()), NULL, NULL,
inherit_handles, 0, NULL, NULL,
&startup_info, &process_info))
return false;
// Handles must be closed or they will leak
CloseHandle(process_info.hThread);
if (wait)
WaitForSingleObject(process_info.hProcess, INFINITE);
// If the caller wants the process handle, we won't close it.
if (process_handle) {
*process_handle = process_info.hProcess;
} else {
CloseHandle(process_info.hProcess);
}
return true;
}
bool LaunchApp(const std::wstring& cmdline,
bool wait, bool start_hidden, ProcessHandle* process_handle) {
return LaunchAppImpl(cmdline, wait, start_hidden, false, process_handle);
}
bool LaunchAppWithHandleInheritance(
const std::wstring& cmdline, bool wait, bool start_hidden,
ProcessHandle* process_handle) {
return LaunchAppImpl(cmdline, wait, start_hidden, true, process_handle);
}
bool LaunchAppAsUser(UserTokenHandle token, const std::wstring& cmdline,
bool start_hidden, ProcessHandle* process_handle) {
return LaunchAppAsUser(token, cmdline, start_hidden, process_handle,
false, false);
}
bool LaunchAppAsUser(UserTokenHandle token, const std::wstring& cmdline,
bool start_hidden, ProcessHandle* process_handle,
bool empty_desktop_name, bool inherit_handles) {
STARTUPINFO startup_info = {0};
startup_info.cb = sizeof(startup_info);
if (empty_desktop_name)
startup_info.lpDesktop = L"";
PROCESS_INFORMATION process_info;
if (start_hidden) {
startup_info.dwFlags = STARTF_USESHOWWINDOW;
startup_info.wShowWindow = SW_HIDE;
}
DWORD flags = CREATE_UNICODE_ENVIRONMENT;
void* enviroment_block = NULL;
if (!CreateEnvironmentBlock(&enviroment_block, token, FALSE))
return false;
BOOL launched =
CreateProcessAsUser(token, NULL, const_cast<wchar_t*>(cmdline.c_str()),
NULL, NULL, inherit_handles, flags, enviroment_block,
NULL, &startup_info, &process_info);
DestroyEnvironmentBlock(enviroment_block);
if (!launched)
return false;
CloseHandle(process_info.hThread);
if (process_handle) {
*process_handle = process_info.hProcess;
} else {
CloseHandle(process_info.hProcess);
}
return true;
}
bool LaunchApp(const CommandLine& cl,
bool wait, bool start_hidden, ProcessHandle* process_handle) {
return LaunchAppImpl(cl.command_line_string(), wait,
start_hidden, false, process_handle);
}
// Attempts to kill the process identified by the given process
// entry structure, giving it the specified exit code.
// Returns true if this is successful, false otherwise.
bool KillProcessById(ProcessId process_id, int exit_code, bool wait) {
HANDLE process = OpenProcess(PROCESS_TERMINATE | SYNCHRONIZE,
FALSE, // Don't inherit handle
process_id);
if (!process) {
DLOG(ERROR) << "Unable to open process " << process_id << " : "
<< GetLastError();
return false;
}
bool ret = KillProcess(process, exit_code, wait);
CloseHandle(process);
return ret;
}
bool GetAppOutput(const CommandLine& cl, std::string* output) {
HANDLE out_read = NULL;
HANDLE out_write = NULL;
SECURITY_ATTRIBUTES sa_attr;
// Set the bInheritHandle flag so pipe handles are inherited.
sa_attr.nLength = sizeof(SECURITY_ATTRIBUTES);
sa_attr.bInheritHandle = TRUE;
sa_attr.lpSecurityDescriptor = NULL;
// Create the pipe for the child process's STDOUT.
if (!CreatePipe(&out_read, &out_write, &sa_attr, 0)) {
NOTREACHED() << "Failed to create pipe";
return false;
}
// Ensure we don't leak the handles.
win::ScopedHandle scoped_out_read(out_read);
win::ScopedHandle scoped_out_write(out_write);
// Ensure the read handle to the pipe for STDOUT is not inherited.
if (!SetHandleInformation(out_read, HANDLE_FLAG_INHERIT, 0)) {
NOTREACHED() << "Failed to disabled pipe inheritance";
return false;
}
// Now create the child process
PROCESS_INFORMATION proc_info = { 0 };
STARTUPINFO start_info = { 0 };
start_info.cb = sizeof(STARTUPINFO);
start_info.hStdOutput = out_write;
// Keep the normal stdin and stderr.
start_info.hStdInput = GetStdHandle(STD_INPUT_HANDLE);
start_info.hStdError = GetStdHandle(STD_ERROR_HANDLE);
start_info.dwFlags |= STARTF_USESTDHANDLES;
// Create the child process.
if (!CreateProcess(NULL,
const_cast<wchar_t*>(cl.command_line_string().c_str()),
NULL, NULL,
TRUE, // Handles are inherited.
0, NULL, NULL, &start_info, &proc_info)) {
NOTREACHED() << "Failed to start process";
return false;
}
// We don't need the thread handle, close it now.
CloseHandle(proc_info.hThread);
// Close our writing end of pipe now. Otherwise later read would not be able
// to detect end of child's output.
scoped_out_write.Close();
// Read output from the child process's pipe for STDOUT
const int kBufferSize = 1024;
char buffer[kBufferSize];
for (;;) {
DWORD bytes_read = 0;
BOOL success = ReadFile(out_read, buffer, kBufferSize, &bytes_read, NULL);
if (!success || bytes_read == 0)
break;
output->append(buffer, bytes_read);
}
// Let's wait for the process to finish.
WaitForSingleObject(proc_info.hProcess, INFINITE);
CloseHandle(proc_info.hProcess);
return true;
}
bool KillProcess(ProcessHandle process, int exit_code, bool wait) {
bool result = (TerminateProcess(process, exit_code) != FALSE);
if (result && wait) {
// The process may not end immediately due to pending I/O
if (WAIT_OBJECT_0 != WaitForSingleObject(process, 60 * 1000))
DLOG(ERROR) << "Error waiting for process exit: " << GetLastError();
} else if (!result) {
DLOG(ERROR) << "Unable to terminate process: " << GetLastError();
}
return result;
}
bool DidProcessCrash(bool* child_exited, ProcessHandle handle) {
DWORD exitcode = 0;
if (!::GetExitCodeProcess(handle, &exitcode)) {
NOTREACHED();
// Assume the child has exited.
if (child_exited)
*child_exited = true;
return false;
}
if (exitcode == STILL_ACTIVE) {
DWORD wait_result = WaitForSingleObject(handle, 0);
if (wait_result == WAIT_TIMEOUT) {
if (child_exited)
*child_exited = false;
return false;
}
DCHECK_EQ(WAIT_OBJECT_0, wait_result);
// Strange, the process used 0x103 (STILL_ACTIVE) as exit code.
NOTREACHED();
return false;
}
// We're sure the child has exited.
if (child_exited)
*child_exited = true;
// Warning, this is not generic code; it heavily depends on the way
// the rest of the code kills a process.
if (exitcode == PROCESS_END_NORMAL_TERMINATION ||
exitcode == PROCESS_END_KILLED_BY_USER ||
exitcode == PROCESS_END_PROCESS_WAS_HUNG ||
exitcode == 0xC0000354 || // STATUS_DEBUGGER_INACTIVE.
exitcode == 0xC000013A || // Control-C/end session.
exitcode == 0x40010004) { // Debugger terminated process/end session.
return false;
}
// All other exit codes indicate crashes.
return true;
}
bool WaitForExitCode(ProcessHandle handle, int* exit_code) {
bool success = WaitForExitCodeWithTimeout(handle, exit_code, INFINITE);
if (!success)
CloseProcessHandle(handle);
return success;
}
bool WaitForExitCodeWithTimeout(ProcessHandle handle, int* exit_code,
int64 timeout_milliseconds) {
if (::WaitForSingleObject(handle, timeout_milliseconds) != WAIT_OBJECT_0)
return false;
DWORD temp_code; // Don't clobber out-parameters in case of failure.
if (!::GetExitCodeProcess(handle, &temp_code))
return false;
// Only close the handle on success, to give the caller a chance to forcefully
// terminate the process if he wants to.
CloseProcessHandle(handle);
*exit_code = temp_code;
return true;
}
ProcessIterator::ProcessIterator(const ProcessFilter* filter)
: started_iteration_(false),
filter_(filter) {
snapshot_ = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
}
ProcessIterator::~ProcessIterator() {
CloseHandle(snapshot_);
}
bool ProcessIterator::CheckForNextProcess() {
InitProcessEntry(&entry_);
if (!started_iteration_) {
started_iteration_ = true;
return !!Process32First(snapshot_, &entry_);
}
return !!Process32Next(snapshot_, &entry_);
}
void ProcessIterator::InitProcessEntry(ProcessEntry* entry) {
memset(entry, 0, sizeof(*entry));
entry->dwSize = sizeof(*entry);
}
bool NamedProcessIterator::IncludeEntry() {
// Case insensitive.
return _wcsicmp(executable_name_.c_str(), entry().exe_file()) == 0 &&
ProcessIterator::IncludeEntry();
}
bool WaitForProcessesToExit(const std::wstring& executable_name,
int64 wait_milliseconds,
const ProcessFilter* filter) {
const ProcessEntry* entry;
bool result = true;
DWORD start_time = GetTickCount();
NamedProcessIterator iter(executable_name, filter);
while (entry = iter.NextProcessEntry()) {
DWORD remaining_wait =
std::max<int64>(0, wait_milliseconds - (GetTickCount() - start_time));
HANDLE process = OpenProcess(SYNCHRONIZE,
FALSE,
entry->th32ProcessID);
DWORD wait_result = WaitForSingleObject(process, remaining_wait);
CloseHandle(process);
result = result && (wait_result == WAIT_OBJECT_0);
}
return result;
}
bool WaitForSingleProcess(ProcessHandle handle, int64 wait_milliseconds) {
bool retval = WaitForSingleObject(handle, wait_milliseconds) == WAIT_OBJECT_0;
return retval;
}
bool CrashAwareSleep(ProcessHandle handle, int64 wait_milliseconds) {
bool retval = WaitForSingleObject(handle, wait_milliseconds) == WAIT_TIMEOUT;
return retval;
}
bool CleanupProcesses(const std::wstring& executable_name,
int64 wait_milliseconds,
int exit_code,
const ProcessFilter* filter) {
bool exited_cleanly = WaitForProcessesToExit(executable_name,
wait_milliseconds,
filter);
if (!exited_cleanly)
KillProcesses(executable_name, exit_code, filter);
return exited_cleanly;
}
///////////////////////////////////////////////////////////////////////////////
// ProcesMetrics
ProcessMetrics::ProcessMetrics(ProcessHandle process) : process_(process),
last_time_(0),
last_system_time_(0) {
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
processor_count_ = system_info.dwNumberOfProcessors;
}
// static
ProcessMetrics* ProcessMetrics::CreateProcessMetrics(ProcessHandle process) {
return new ProcessMetrics(process);
}
ProcessMetrics::~ProcessMetrics() { }
size_t ProcessMetrics::GetPagefileUsage() const {
PROCESS_MEMORY_COUNTERS pmc;
if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) {
return pmc.PagefileUsage;
}
return 0;
}
// Returns the peak space allocated for the pagefile, in bytes.
size_t ProcessMetrics::GetPeakPagefileUsage() const {
PROCESS_MEMORY_COUNTERS pmc;
if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) {
return pmc.PeakPagefileUsage;
}
return 0;
}
// Returns the current working set size, in bytes.
size_t ProcessMetrics::GetWorkingSetSize() const {
PROCESS_MEMORY_COUNTERS pmc;
if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) {
return pmc.WorkingSetSize;
}
return 0;
}
// Returns the peak working set size, in bytes.
size_t ProcessMetrics::GetPeakWorkingSetSize() const {
PROCESS_MEMORY_COUNTERS pmc;
if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) {
return pmc.PeakWorkingSetSize;
}
return 0;
}
bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes,
size_t* shared_bytes) {
// PROCESS_MEMORY_COUNTERS_EX is not supported until XP SP2.
// GetProcessMemoryInfo() will simply fail on prior OS. So the requested
// information is simply not available. Hence, we will return 0 on unsupported
// OSes. Unlike most Win32 API, we don't need to initialize the "cb" member.
PROCESS_MEMORY_COUNTERS_EX pmcx;
if (private_bytes &&
GetProcessMemoryInfo(process_,
reinterpret_cast<PROCESS_MEMORY_COUNTERS*>(&pmcx),
sizeof(pmcx))) {
*private_bytes = pmcx.PrivateUsage;
}
if (shared_bytes) {
WorkingSetKBytes ws_usage;
if (!GetWorkingSetKBytes(&ws_usage))
return false;
*shared_bytes = ws_usage.shared * 1024;
}
return true;
}
void ProcessMetrics::GetCommittedKBytes(CommittedKBytes* usage) const {
MEMORY_BASIC_INFORMATION mbi = {0};
size_t committed_private = 0;
size_t committed_mapped = 0;
size_t committed_image = 0;
void* base_address = NULL;
while (VirtualQueryEx(process_, base_address, &mbi, sizeof(mbi)) ==
sizeof(mbi)) {
if (mbi.State == MEM_COMMIT) {
if (mbi.Type == MEM_PRIVATE) {
committed_private += mbi.RegionSize;
} else if (mbi.Type == MEM_MAPPED) {
committed_mapped += mbi.RegionSize;
} else if (mbi.Type == MEM_IMAGE) {
committed_image += mbi.RegionSize;
} else {
NOTREACHED();
}
}
void* new_base = (static_cast<BYTE*>(mbi.BaseAddress)) + mbi.RegionSize;
// Avoid infinite loop by weird MEMORY_BASIC_INFORMATION.
// If we query 64bit processes in a 32bit process, VirtualQueryEx()
// returns such data.
if (new_base <= base_address) {
usage->image = 0;
usage->mapped = 0;
usage->priv = 0;
return;
}
base_address = new_base;
}
usage->image = committed_image / 1024;
usage->mapped = committed_mapped / 1024;
usage->priv = committed_private / 1024;
}
bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const {
size_t ws_private = 0;
size_t ws_shareable = 0;
size_t ws_shared = 0;
DCHECK(ws_usage);
memset(ws_usage, 0, sizeof(*ws_usage));
DWORD number_of_entries = 4096; // Just a guess.
PSAPI_WORKING_SET_INFORMATION* buffer = NULL;
int retries = 5;
for (;;) {
DWORD buffer_size = sizeof(PSAPI_WORKING_SET_INFORMATION) +
(number_of_entries * sizeof(PSAPI_WORKING_SET_BLOCK));
// if we can't expand the buffer, don't leak the previous
// contents or pass a NULL pointer to QueryWorkingSet
PSAPI_WORKING_SET_INFORMATION* new_buffer =
reinterpret_cast<PSAPI_WORKING_SET_INFORMATION*>(
realloc(buffer, buffer_size));
if (!new_buffer) {
free(buffer);
return false;
}
buffer = new_buffer;
// Call the function once to get number of items
if (QueryWorkingSet(process_, buffer, buffer_size))
break; // Success
if (GetLastError() != ERROR_BAD_LENGTH) {
free(buffer);
return false;
}
number_of_entries = static_cast<DWORD>(buffer->NumberOfEntries);
// Maybe some entries are being added right now. Increase the buffer to
// take that into account.
number_of_entries = static_cast<DWORD>(number_of_entries * 1.25);
if (--retries == 0) {
free(buffer); // If we're looping, eventually fail.
return false;
}
}
// On windows 2000 the function returns 1 even when the buffer is too small.
// The number of entries that we are going to parse is the minimum between the
// size we allocated and the real number of entries.
number_of_entries =
std::min(number_of_entries, static_cast<DWORD>(buffer->NumberOfEntries));
for (unsigned int i = 0; i < number_of_entries; i++) {
if (buffer->WorkingSetInfo[i].Shared) {
ws_shareable++;
if (buffer->WorkingSetInfo[i].ShareCount > 1)
ws_shared++;
} else {
ws_private++;
}
}
ws_usage->priv = ws_private * PAGESIZE_KB;
ws_usage->shareable = ws_shareable * PAGESIZE_KB;
ws_usage->shared = ws_shared * PAGESIZE_KB;
free(buffer);
return true;
}
static uint64 FileTimeToUTC(const FILETIME& ftime) {
LARGE_INTEGER li;
li.LowPart = ftime.dwLowDateTime;
li.HighPart = ftime.dwHighDateTime;
return li.QuadPart;
}
double ProcessMetrics::GetCPUUsage() {
FILETIME now;
FILETIME creation_time;
FILETIME exit_time;
FILETIME kernel_time;
FILETIME user_time;
GetSystemTimeAsFileTime(&now);
if (!GetProcessTimes(process_, &creation_time, &exit_time,
&kernel_time, &user_time)) {
// We don't assert here because in some cases (such as in the Task Manager)
// we may call this function on a process that has just exited but we have
// not yet received the notification.
return 0;
}
int64 system_time = (FileTimeToUTC(kernel_time) + FileTimeToUTC(user_time)) /
processor_count_;
int64 time = FileTimeToUTC(now);
if ((last_system_time_ == 0) || (last_time_ == 0)) {
// First call, just set the last values.
last_system_time_ = system_time;
last_time_ = time;
return 0;
}
int64 system_time_delta = system_time - last_system_time_;
int64 time_delta = time - last_time_;
DCHECK(time_delta != 0);
if (time_delta == 0)
return 0;
// We add time_delta / 2 so the result is rounded.
int cpu = static_cast<int>((system_time_delta * 100 + time_delta / 2) /
time_delta);
last_system_time_ = system_time;
last_time_ = time;
return cpu;
}
bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
return GetProcessIoCounters(process_, io_counters) != FALSE;
}
bool ProcessMetrics::CalculateFreeMemory(FreeMBytes* free) const {
const SIZE_T kTopAddress = 0x7F000000;
const SIZE_T kMegabyte = 1024 * 1024;
SIZE_T accumulated = 0;
MEMORY_BASIC_INFORMATION largest = {0};
UINT_PTR scan = 0;
while (scan < kTopAddress) {
MEMORY_BASIC_INFORMATION info;
if (!::VirtualQueryEx(process_, reinterpret_cast<void*>(scan),
&info, sizeof(info)))
return false;
if (info.State == MEM_FREE) {
accumulated += info.RegionSize;
UINT_PTR end = scan + info.RegionSize;
if (info.RegionSize > largest.RegionSize)
largest = info;
}
scan += info.RegionSize;
}
free->largest = largest.RegionSize / kMegabyte;
free->largest_ptr = largest.BaseAddress;
free->total = accumulated / kMegabyte;
return true;
}
bool EnableLowFragmentationHeap() {
HMODULE kernel32 = GetModuleHandle(L"kernel32.dll");
HeapSetFn heap_set = reinterpret_cast<HeapSetFn>(GetProcAddress(
kernel32,
"HeapSetInformation"));
// On Windows 2000, the function is not exported. This is not a reason to
// fail.
if (!heap_set)
return true;
unsigned number_heaps = GetProcessHeaps(0, NULL);
if (!number_heaps)
return false;
// Gives us some extra space in the array in case a thread is creating heaps
// at the same time we're querying them.
static const int MARGIN = 8;
scoped_array<HANDLE> heaps(new HANDLE[number_heaps + MARGIN]);
number_heaps = GetProcessHeaps(number_heaps + MARGIN, heaps.get());
if (!number_heaps)
return false;
for (unsigned i = 0; i < number_heaps; ++i) {
ULONG lfh_flag = 2;
// Don't bother with the result code. It may fails on heaps that have the
// HEAP_NO_SERIALIZE flag. This is expected and not a problem at all.
heap_set(heaps[i],
HeapCompatibilityInformation,
&lfh_flag,
sizeof(lfh_flag));
}
return true;
}
void EnableTerminationOnHeapCorruption() {
// Ignore the result code. Supported on XP SP3 and Vista.
HeapSetInformation(NULL, HeapEnableTerminationOnCorruption, NULL, 0);
}
bool EnableInProcessStackDumping() {
// Add stack dumping support on exception on windows. Similar to OS_POSIX
// signal() handling in process_util_posix.cc.
g_previous_filter = SetUnhandledExceptionFilter(&StackDumpExceptionFilter);
AttachToConsole();
return true;
}
void RaiseProcessToHighPriority() {
SetPriorityClass(GetCurrentProcess(), HIGH_PRIORITY_CLASS);
}
// GetPerformanceInfo is not available on WIN2K. So we'll
// load it on-the-fly.
const wchar_t kPsapiDllName[] = L"psapi.dll";
typedef BOOL (WINAPI *GetPerformanceInfoFunction) (
PPERFORMANCE_INFORMATION pPerformanceInformation,
DWORD cb);
// Beware of races if called concurrently from multiple threads.
static BOOL InternalGetPerformanceInfo(
PPERFORMANCE_INFORMATION pPerformanceInformation, DWORD cb) {
static GetPerformanceInfoFunction GetPerformanceInfo_func = NULL;
if (!GetPerformanceInfo_func) {
HMODULE psapi_dll = ::GetModuleHandle(kPsapiDllName);
if (psapi_dll)
GetPerformanceInfo_func = reinterpret_cast<GetPerformanceInfoFunction>(
GetProcAddress(psapi_dll, "GetPerformanceInfo"));
if (!GetPerformanceInfo_func) {
// The function could be loaded!
memset(pPerformanceInformation, 0, cb);
return FALSE;
}
}
return GetPerformanceInfo_func(pPerformanceInformation, cb);
}
size_t GetSystemCommitCharge() {
// Get the System Page Size.
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
PERFORMANCE_INFORMATION info;
if (!InternalGetPerformanceInfo(&info, sizeof(info))) {
LOG(ERROR) << "Failed to fetch internal performance info.";
return 0;
}
return (info.CommitTotal * system_info.dwPageSize) / 1024;
}
} // namespace base