| // Copyright (c) 2010 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <time.h> |
| |
| #include "base/threading/platform_thread.h" |
| #include "base/time.h" |
| #include "build/build_config.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| using base::Time; |
| using base::TimeDelta; |
| using base::TimeTicks; |
| |
| // Test conversions to/from time_t and exploding/unexploding. |
| TEST(Time, TimeT) { |
| // C library time and exploded time. |
| time_t now_t_1 = time(NULL); |
| struct tm tms; |
| #if defined(OS_WIN) |
| localtime_s(&tms, &now_t_1); |
| #elif defined(OS_POSIX) |
| localtime_r(&now_t_1, &tms); |
| #endif |
| |
| // Convert to ours. |
| Time our_time_1 = Time::FromTimeT(now_t_1); |
| Time::Exploded exploded; |
| our_time_1.LocalExplode(&exploded); |
| |
| // This will test both our exploding and our time_t -> Time conversion. |
| EXPECT_EQ(tms.tm_year + 1900, exploded.year); |
| EXPECT_EQ(tms.tm_mon + 1, exploded.month); |
| EXPECT_EQ(tms.tm_mday, exploded.day_of_month); |
| EXPECT_EQ(tms.tm_hour, exploded.hour); |
| EXPECT_EQ(tms.tm_min, exploded.minute); |
| EXPECT_EQ(tms.tm_sec, exploded.second); |
| |
| // Convert exploded back to the time struct. |
| Time our_time_2 = Time::FromLocalExploded(exploded); |
| EXPECT_TRUE(our_time_1 == our_time_2); |
| |
| time_t now_t_2 = our_time_2.ToTimeT(); |
| EXPECT_EQ(now_t_1, now_t_2); |
| |
| EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT()); |
| EXPECT_EQ(10.0, Time().FromTimeT(10).ToDoubleT()); |
| |
| // Conversions of 0 should stay 0. |
| EXPECT_EQ(0, Time().ToTimeT()); |
| EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue()); |
| } |
| |
| TEST(Time, FromExplodedWithMilliseconds) { |
| // Some platform implementations of FromExploded are liable to drop |
| // milliseconds if we aren't careful. |
| Time now = Time::NowFromSystemTime(); |
| Time::Exploded exploded1 = {0}; |
| now.UTCExplode(&exploded1); |
| exploded1.millisecond = 500; |
| Time time = Time::FromUTCExploded(exploded1); |
| Time::Exploded exploded2 = {0}; |
| time.UTCExplode(&exploded2); |
| EXPECT_EQ(exploded1.millisecond, exploded2.millisecond); |
| } |
| |
| TEST(Time, ZeroIsSymmetric) { |
| Time zero_time(Time::FromTimeT(0)); |
| EXPECT_EQ(0, zero_time.ToTimeT()); |
| |
| EXPECT_EQ(0.0, zero_time.ToDoubleT()); |
| } |
| |
| TEST(Time, LocalExplode) { |
| Time a = Time::Now(); |
| Time::Exploded exploded; |
| a.LocalExplode(&exploded); |
| |
| Time b = Time::FromLocalExploded(exploded); |
| |
| // The exploded structure doesn't have microseconds, and on Mac & Linux, the |
| // internal OS conversion uses seconds, which will cause truncation. So we |
| // can only make sure that the delta is within one second. |
| EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); |
| } |
| |
| TEST(Time, UTCExplode) { |
| Time a = Time::Now(); |
| Time::Exploded exploded; |
| a.UTCExplode(&exploded); |
| |
| Time b = Time::FromUTCExploded(exploded); |
| EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); |
| } |
| |
| TEST(Time, LocalMidnight) { |
| Time::Exploded exploded; |
| Time::Now().LocalMidnight().LocalExplode(&exploded); |
| EXPECT_EQ(0, exploded.hour); |
| EXPECT_EQ(0, exploded.minute); |
| EXPECT_EQ(0, exploded.second); |
| EXPECT_EQ(0, exploded.millisecond); |
| } |
| |
| TEST(TimeTicks, Deltas) { |
| for (int index = 0; index < 50; index++) { |
| TimeTicks ticks_start = TimeTicks::Now(); |
| base::PlatformThread::Sleep(10); |
| TimeTicks ticks_stop = TimeTicks::Now(); |
| TimeDelta delta = ticks_stop - ticks_start; |
| // Note: Although we asked for a 10ms sleep, if the |
| // time clock has a finer granularity than the Sleep() |
| // clock, it is quite possible to wakeup early. Here |
| // is how that works: |
| // Time(ms timer) Time(us timer) |
| // 5 5010 |
| // 6 6010 |
| // 7 7010 |
| // 8 8010 |
| // 9 9000 |
| // Elapsed 4ms 3990us |
| // |
| // Unfortunately, our InMilliseconds() function truncates |
| // rather than rounds. We should consider fixing this |
| // so that our averages come out better. |
| EXPECT_GE(delta.InMilliseconds(), 9); |
| EXPECT_GE(delta.InMicroseconds(), 9000); |
| EXPECT_EQ(delta.InSeconds(), 0); |
| } |
| } |
| |
| TEST(TimeTicks, HighResNow) { |
| #if defined(OS_WIN) |
| // HighResNow doesn't work on some systems. Since the product still works |
| // even if it doesn't work, it makes this entire test questionable. |
| if (!TimeTicks::IsHighResClockWorking()) |
| return; |
| #endif |
| |
| // Why do we loop here? |
| // We're trying to measure that intervals increment in a VERY small amount |
| // of time -- less than 15ms. Unfortunately, if we happen to have a |
| // context switch in the middle of our test, the context switch could easily |
| // exceed our limit. So, we iterate on this several times. As long as we're |
| // able to detect the fine-granularity timers at least once, then the test |
| // has succeeded. |
| |
| const int kTargetGranularityUs = 15000; // 15ms |
| |
| bool success = false; |
| int retries = 100; // Arbitrary. |
| TimeDelta delta; |
| while (!success && retries--) { |
| TimeTicks ticks_start = TimeTicks::HighResNow(); |
| // Loop until we can detect that the clock has changed. Non-HighRes timers |
| // will increment in chunks, e.g. 15ms. By spinning until we see a clock |
| // change, we detect the minimum time between measurements. |
| do { |
| delta = TimeTicks::HighResNow() - ticks_start; |
| } while (delta.InMilliseconds() == 0); |
| |
| if (delta.InMicroseconds() <= kTargetGranularityUs) |
| success = true; |
| } |
| |
| // In high resolution mode, we expect to see the clock increment |
| // in intervals less than 15ms. |
| EXPECT_TRUE(success); |
| } |
| |
| TEST(TimeDelta, FromAndIn) { |
| EXPECT_TRUE(TimeDelta::FromDays(2) == TimeDelta::FromHours(48)); |
| EXPECT_TRUE(TimeDelta::FromHours(3) == TimeDelta::FromMinutes(180)); |
| EXPECT_TRUE(TimeDelta::FromMinutes(2) == TimeDelta::FromSeconds(120)); |
| EXPECT_TRUE(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000)); |
| EXPECT_TRUE(TimeDelta::FromMilliseconds(2) == |
| TimeDelta::FromMicroseconds(2000)); |
| EXPECT_EQ(13, TimeDelta::FromDays(13).InDays()); |
| EXPECT_EQ(13, TimeDelta::FromHours(13).InHours()); |
| EXPECT_EQ(13, TimeDelta::FromMinutes(13).InMinutes()); |
| EXPECT_EQ(13, TimeDelta::FromSeconds(13).InSeconds()); |
| EXPECT_EQ(13.0, TimeDelta::FromSeconds(13).InSecondsF()); |
| EXPECT_EQ(13, TimeDelta::FromMilliseconds(13).InMilliseconds()); |
| EXPECT_EQ(13.0, TimeDelta::FromMilliseconds(13).InMillisecondsF()); |
| EXPECT_EQ(13, TimeDelta::FromMicroseconds(13).InMicroseconds()); |
| } |
| |
| #if defined(OS_POSIX) |
| TEST(TimeDelta, TimeSpecConversion) { |
| struct timespec result = TimeDelta::FromSeconds(0).ToTimeSpec(); |
| EXPECT_EQ(result.tv_sec, 0); |
| EXPECT_EQ(result.tv_nsec, 0); |
| |
| result = TimeDelta::FromSeconds(1).ToTimeSpec(); |
| EXPECT_EQ(result.tv_sec, 1); |
| EXPECT_EQ(result.tv_nsec, 0); |
| |
| result = TimeDelta::FromMicroseconds(1).ToTimeSpec(); |
| EXPECT_EQ(result.tv_sec, 0); |
| EXPECT_EQ(result.tv_nsec, 1000); |
| |
| result = TimeDelta::FromMicroseconds( |
| Time::kMicrosecondsPerSecond + 1).ToTimeSpec(); |
| EXPECT_EQ(result.tv_sec, 1); |
| EXPECT_EQ(result.tv_nsec, 1000); |
| } |
| #endif // OS_POSIX |
| |
| // Our internal time format is serialized in things like databases, so it's |
| // important that it's consistent across all our platforms. We use the 1601 |
| // Windows epoch as the internal format across all platforms. |
| TEST(TimeDelta, WindowsEpoch) { |
| Time::Exploded exploded; |
| exploded.year = 1970; |
| exploded.month = 1; |
| exploded.day_of_week = 0; // Should be unusued. |
| exploded.day_of_month = 1; |
| exploded.hour = 0; |
| exploded.minute = 0; |
| exploded.second = 0; |
| exploded.millisecond = 0; |
| Time t = Time::FromUTCExploded(exploded); |
| // Unix 1970 epoch. |
| EXPECT_EQ(GG_INT64_C(11644473600000000), t.ToInternalValue()); |
| |
| // We can't test 1601 epoch, since the system time functions on Linux |
| // only compute years starting from 1900. |
| } |