| // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "crypto/hmac.h" |
| |
| #include <windows.h> |
| #include <wincrypt.h> |
| |
| #include <algorithm> |
| #include <vector> |
| |
| #include "base/logging.h" |
| #include "crypto/scoped_capi_types.h" |
| #include "crypto/third_party/nss/blapi.h" |
| #include "crypto/third_party/nss/sha256.h" |
| |
| namespace crypto { |
| |
| namespace { |
| |
| // Implementation of HMAC-SHA-256: |
| // |
| // SHA-256 is supported in Windows XP SP3 or later. We still need to support |
| // Windows XP SP2, so unfortunately we have to implement HMAC-SHA-256 here. |
| |
| enum { |
| SHA256_BLOCK_SIZE = 64 // Block size (in bytes) of the input to SHA-256. |
| }; |
| |
| // See FIPS 198: The Keyed-Hash Message Authentication Code (HMAC). |
| void ComputeHMACSHA256(const unsigned char* key, size_t key_len, |
| const unsigned char* text, size_t text_len, |
| unsigned char* output, size_t output_len) { |
| SHA256Context ctx; |
| |
| // Pre-process the key, if necessary. |
| unsigned char key0[SHA256_BLOCK_SIZE]; |
| if (key_len > SHA256_BLOCK_SIZE) { |
| SHA256_Begin(&ctx); |
| SHA256_Update(&ctx, key, key_len); |
| SHA256_End(&ctx, key0, NULL, SHA256_LENGTH); |
| memset(key0 + SHA256_LENGTH, 0, SHA256_BLOCK_SIZE - SHA256_LENGTH); |
| } else { |
| memcpy(key0, key, key_len); |
| memset(key0 + key_len, 0, SHA256_BLOCK_SIZE - key_len); |
| } |
| |
| unsigned char padded_key[SHA256_BLOCK_SIZE]; |
| unsigned char inner_hash[SHA256_LENGTH]; |
| |
| // XOR key0 with ipad. |
| for (int i = 0; i < SHA256_BLOCK_SIZE; ++i) |
| padded_key[i] = key0[i] ^ 0x36; |
| |
| // Compute the inner hash. |
| SHA256_Begin(&ctx); |
| SHA256_Update(&ctx, padded_key, SHA256_BLOCK_SIZE); |
| SHA256_Update(&ctx, text, text_len); |
| SHA256_End(&ctx, inner_hash, NULL, SHA256_LENGTH); |
| |
| // XOR key0 with opad. |
| for (int i = 0; i < SHA256_BLOCK_SIZE; ++i) |
| padded_key[i] = key0[i] ^ 0x5c; |
| |
| // Compute the outer hash. |
| SHA256_Begin(&ctx); |
| SHA256_Update(&ctx, padded_key, SHA256_BLOCK_SIZE); |
| SHA256_Update(&ctx, inner_hash, SHA256_LENGTH); |
| SHA256_End(&ctx, output, NULL, output_len); |
| } |
| |
| } // namespace |
| |
| struct HMACPlatformData { |
| ~HMACPlatformData() { |
| if (!raw_key_.empty()) { |
| SecureZeroMemory(&raw_key_[0], raw_key_.size()); |
| } |
| |
| // Destroy the key before releasing the provider. |
| key_.reset(); |
| } |
| |
| ScopedHCRYPTPROV provider_; |
| ScopedHCRYPTKEY key_; |
| |
| // For HMAC-SHA-256 only. |
| std::vector<unsigned char> raw_key_; |
| }; |
| |
| HMAC::HMAC(HashAlgorithm hash_alg) |
| : hash_alg_(hash_alg), plat_(new HMACPlatformData()) { |
| // Only SHA-1 and SHA-256 hash algorithms are supported now. |
| DCHECK(hash_alg_ == SHA1 || hash_alg_ == SHA256); |
| } |
| |
| bool HMAC::Init(const unsigned char* key, int key_length) { |
| if (plat_->provider_ || plat_->key_ || !plat_->raw_key_.empty()) { |
| // Init must not be called more than once on the same HMAC object. |
| NOTREACHED(); |
| return false; |
| } |
| |
| if (hash_alg_ == SHA256) { |
| if (key_length < SHA256_LENGTH / 2) |
| return false; // Key is too short. |
| plat_->raw_key_.assign(key, key + key_length); |
| return true; |
| } |
| |
| if (!CryptAcquireContext(plat_->provider_.receive(), NULL, NULL, |
| PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { |
| NOTREACHED(); |
| return false; |
| } |
| |
| // This code doesn't work on Win2k because PLAINTEXTKEYBLOB and |
| // CRYPT_IPSEC_HMAC_KEY are not supported on Windows 2000. PLAINTEXTKEYBLOB |
| // allows the import of an unencrypted key. For Win2k support, a cubmbersome |
| // exponent-of-one key procedure must be used: |
| // http://support.microsoft.com/kb/228786/en-us |
| // CRYPT_IPSEC_HMAC_KEY allows keys longer than 16 bytes. |
| |
| struct KeyBlob { |
| BLOBHEADER header; |
| DWORD key_size; |
| BYTE key_data[1]; |
| }; |
| size_t key_blob_size = std::max(offsetof(KeyBlob, key_data) + key_length, |
| sizeof(KeyBlob)); |
| std::vector<BYTE> key_blob_storage = std::vector<BYTE>(key_blob_size); |
| KeyBlob* key_blob = reinterpret_cast<KeyBlob*>(&key_blob_storage[0]); |
| key_blob->header.bType = PLAINTEXTKEYBLOB; |
| key_blob->header.bVersion = CUR_BLOB_VERSION; |
| key_blob->header.reserved = 0; |
| key_blob->header.aiKeyAlg = CALG_RC2; |
| key_blob->key_size = key_length; |
| memcpy(key_blob->key_data, key, key_length); |
| |
| if (!CryptImportKey(plat_->provider_, &key_blob_storage[0], |
| key_blob_storage.size(), 0, CRYPT_IPSEC_HMAC_KEY, |
| plat_->key_.receive())) { |
| NOTREACHED(); |
| return false; |
| } |
| |
| // Destroy the copy of the key. |
| SecureZeroMemory(key_blob->key_data, key_length); |
| |
| return true; |
| } |
| |
| HMAC::~HMAC() { |
| } |
| |
| bool HMAC::Sign(const std::string& data, |
| unsigned char* digest, |
| int digest_length) { |
| if (hash_alg_ == SHA256) { |
| if (plat_->raw_key_.empty()) |
| return false; |
| ComputeHMACSHA256(&plat_->raw_key_[0], plat_->raw_key_.size(), |
| reinterpret_cast<const unsigned char*>(data.data()), |
| data.size(), digest, digest_length); |
| return true; |
| } |
| |
| if (!plat_->provider_ || !plat_->key_) |
| return false; |
| |
| if (hash_alg_ != SHA1) { |
| NOTREACHED(); |
| return false; |
| } |
| |
| ScopedHCRYPTHASH hash; |
| if (!CryptCreateHash(plat_->provider_, CALG_HMAC, plat_->key_, 0, |
| hash.receive())) |
| return false; |
| |
| HMAC_INFO hmac_info; |
| memset(&hmac_info, 0, sizeof(hmac_info)); |
| hmac_info.HashAlgid = CALG_SHA1; |
| if (!CryptSetHashParam(hash, HP_HMAC_INFO, |
| reinterpret_cast<BYTE*>(&hmac_info), 0)) |
| return false; |
| |
| if (!CryptHashData(hash, reinterpret_cast<const BYTE*>(data.data()), |
| static_cast<DWORD>(data.size()), 0)) |
| return false; |
| |
| DWORD sha1_size = digest_length; |
| return !!CryptGetHashParam(hash, HP_HASHVAL, digest, &sha1_size, 0); |
| } |
| |
| } // namespace crypto |