blob: 34c444cc9723389b4ff06d0c160b0a2990b6108a [file] [log] [blame]
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#define _CRT_SECURE_NO_WARNINGS
#include <limits>
#include "base/command_line.h"
#include "base/eintr_wrapper.h"
#include "base/file_path.h"
#include "base/logging.h"
#include "base/path_service.h"
#include "base/platform_thread.h"
#include "base/process_util.h"
#include "base/scoped_ptr.h"
#include "base/test/multiprocess_test.h"
#include "base/utf_string_conversions.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/multiprocess_func_list.h"
#if defined(OS_LINUX)
#include <errno.h>
#include <malloc.h>
#include <glib.h>
#endif
#if defined(OS_POSIX)
#include <dlfcn.h>
#include <fcntl.h>
#include <sys/resource.h>
#include <sys/socket.h>
#endif
#if defined(OS_WIN)
#include <windows.h>
#endif
#if defined(OS_MACOSX)
#include <malloc/malloc.h>
#include "base/process_util_unittest_mac.h"
#endif
namespace {
#if defined(OS_WIN)
const wchar_t* const kProcessName = L"base_unittests.exe";
#else
const wchar_t* const kProcessName = L"base_unittests";
#endif // defined(OS_WIN)
// Sleeps until file filename is created.
void WaitToDie(const char* filename) {
FILE *fp;
do {
PlatformThread::Sleep(10);
fp = fopen(filename, "r");
} while (!fp);
fclose(fp);
}
// Signals children they should die now.
void SignalChildren(const char* filename) {
FILE *fp = fopen(filename, "w");
fclose(fp);
}
} // namespace
class ProcessUtilTest : public base::MultiProcessTest {
#if defined(OS_POSIX)
public:
// Spawn a child process that counts how many file descriptors are open.
int CountOpenFDsInChild();
#endif
};
MULTIPROCESS_TEST_MAIN(SimpleChildProcess) {
return 0;
}
TEST_F(ProcessUtilTest, SpawnChild) {
base::ProcessHandle handle = this->SpawnChild("SimpleChildProcess", false);
ASSERT_NE(base::kNullProcessHandle, handle);
EXPECT_TRUE(base::WaitForSingleProcess(handle, 5000));
base::CloseProcessHandle(handle);
}
MULTIPROCESS_TEST_MAIN(SlowChildProcess) {
WaitToDie("SlowChildProcess.die");
return 0;
}
TEST_F(ProcessUtilTest, KillSlowChild) {
remove("SlowChildProcess.die");
base::ProcessHandle handle = this->SpawnChild("SlowChildProcess", false);
ASSERT_NE(base::kNullProcessHandle, handle);
SignalChildren("SlowChildProcess.die");
EXPECT_TRUE(base::WaitForSingleProcess(handle, 5000));
base::CloseProcessHandle(handle);
remove("SlowChildProcess.die");
}
TEST_F(ProcessUtilTest, DidProcessCrash) {
remove("SlowChildProcess.die");
base::ProcessHandle handle = this->SpawnChild("SlowChildProcess", false);
ASSERT_NE(base::kNullProcessHandle, handle);
bool child_exited = true;
EXPECT_FALSE(base::DidProcessCrash(&child_exited, handle));
EXPECT_FALSE(child_exited);
SignalChildren("SlowChildProcess.die");
EXPECT_TRUE(base::WaitForSingleProcess(handle, 5000));
EXPECT_FALSE(base::DidProcessCrash(&child_exited, handle));
base::CloseProcessHandle(handle);
remove("SlowChildProcess.die");
}
// Ensure that the priority of a process is restored correctly after
// backgrounding and restoring.
// Note: a platform may not be willing or able to lower the priority of
// a process. The calls to SetProcessBackground should be noops then.
TEST_F(ProcessUtilTest, SetProcessBackgrounded) {
base::ProcessHandle handle = this->SpawnChild("SimpleChildProcess", false);
base::Process process(handle);
int old_priority = process.GetPriority();
process.SetProcessBackgrounded(true);
process.SetProcessBackgrounded(false);
int new_priority = process.GetPriority();
EXPECT_EQ(old_priority, new_priority);
}
// TODO(estade): if possible, port these 2 tests.
#if defined(OS_WIN)
TEST_F(ProcessUtilTest, EnableLFH) {
ASSERT_TRUE(base::EnableLowFragmentationHeap());
if (IsDebuggerPresent()) {
// Under these conditions, LFH can't be enabled. There's no point to test
// anything.
const char* no_debug_env = getenv("_NO_DEBUG_HEAP");
if (!no_debug_env || strcmp(no_debug_env, "1"))
return;
}
HANDLE heaps[1024] = { 0 };
unsigned number_heaps = GetProcessHeaps(1024, heaps);
EXPECT_GT(number_heaps, 0u);
for (unsigned i = 0; i < number_heaps; ++i) {
ULONG flag = 0;
SIZE_T length;
ASSERT_NE(0, HeapQueryInformation(heaps[i],
HeapCompatibilityInformation,
&flag,
sizeof(flag),
&length));
// If flag is 0, the heap is a standard heap that does not support
// look-asides. If flag is 1, the heap supports look-asides. If flag is 2,
// the heap is a low-fragmentation heap (LFH). Note that look-asides are not
// supported on the LFH.
// We don't have any documented way of querying the HEAP_NO_SERIALIZE flag.
EXPECT_LE(flag, 2u);
EXPECT_NE(flag, 1u);
}
}
TEST_F(ProcessUtilTest, CalcFreeMemory) {
scoped_ptr<base::ProcessMetrics> metrics(
base::ProcessMetrics::CreateProcessMetrics(::GetCurrentProcess()));
ASSERT_TRUE(NULL != metrics.get());
// Typical values here is ~1900 for total and ~1000 for largest. Obviously
// it depends in what other tests have done to this process.
base::FreeMBytes free_mem1 = {0};
EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem1));
EXPECT_LT(10u, free_mem1.total);
EXPECT_LT(10u, free_mem1.largest);
EXPECT_GT(2048u, free_mem1.total);
EXPECT_GT(2048u, free_mem1.largest);
EXPECT_GE(free_mem1.total, free_mem1.largest);
EXPECT_TRUE(NULL != free_mem1.largest_ptr);
// Allocate 20M and check again. It should have gone down.
const int kAllocMB = 20;
scoped_array<char> alloc(new char[kAllocMB * 1024 * 1024]);
size_t expected_total = free_mem1.total - kAllocMB;
size_t expected_largest = free_mem1.largest;
base::FreeMBytes free_mem2 = {0};
EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem2));
EXPECT_GE(free_mem2.total, free_mem2.largest);
EXPECT_GE(expected_total, free_mem2.total);
EXPECT_GE(expected_largest, free_mem2.largest);
EXPECT_TRUE(NULL != free_mem2.largest_ptr);
}
TEST_F(ProcessUtilTest, GetAppOutput) {
// Let's create a decently long message.
std::string message;
for (int i = 0; i < 1025; i++) { // 1025 so it does not end on a kilo-byte
// boundary.
message += "Hello!";
}
FilePath python_runtime;
ASSERT_TRUE(PathService::Get(base::DIR_SOURCE_ROOT, &python_runtime));
python_runtime = python_runtime.Append(FILE_PATH_LITERAL("third_party"))
.Append(FILE_PATH_LITERAL("python_26"))
.Append(FILE_PATH_LITERAL("python.exe"));
CommandLine cmd_line(python_runtime);
cmd_line.AppendArg("-c");
cmd_line.AppendArg("import sys; sys.stdout.write('" + message + "');");
std::string output;
ASSERT_TRUE(base::GetAppOutput(cmd_line, &output));
EXPECT_EQ(message, output);
// Let's make sure stderr is ignored.
CommandLine other_cmd_line(python_runtime);
other_cmd_line.AppendArg("-c");
other_cmd_line.AppendArg("import sys; sys.stderr.write('Hello!');");
output.clear();
ASSERT_TRUE(base::GetAppOutput(other_cmd_line, &output));
EXPECT_EQ("", output);
}
TEST_F(ProcessUtilTest, LaunchAsUser) {
base::UserTokenHandle token;
ASSERT_TRUE(OpenProcessToken(GetCurrentProcess(), TOKEN_ALL_ACCESS, &token));
std::wstring cmdline =
this->MakeCmdLine("SimpleChildProcess", false).command_line_string();
EXPECT_TRUE(base::LaunchAppAsUser(token, cmdline, false, NULL));
}
#endif // defined(OS_WIN)
#if defined(OS_POSIX)
namespace {
// Returns the maximum number of files that a process can have open.
// Returns 0 on error.
int GetMaxFilesOpenInProcess() {
struct rlimit rlim;
if (getrlimit(RLIMIT_NOFILE, &rlim) != 0) {
return 0;
}
// rlim_t is a uint64 - clip to maxint. We do this since FD #s are ints
// which are all 32 bits on the supported platforms.
rlim_t max_int = static_cast<rlim_t>(std::numeric_limits<int32>::max());
if (rlim.rlim_cur > max_int) {
return max_int;
}
return rlim.rlim_cur;
}
const int kChildPipe = 20; // FD # for write end of pipe in child process.
} // namespace
MULTIPROCESS_TEST_MAIN(ProcessUtilsLeakFDChildProcess) {
// This child process counts the number of open FDs, it then writes that
// number out to a pipe connected to the parent.
int num_open_files = 0;
int write_pipe = kChildPipe;
int max_files = GetMaxFilesOpenInProcess();
for (int i = STDERR_FILENO + 1; i < max_files; i++) {
if (i != kChildPipe) {
int fd;
if ((fd = HANDLE_EINTR(dup(i))) != -1) {
close(fd);
num_open_files += 1;
}
}
}
int written = HANDLE_EINTR(write(write_pipe, &num_open_files,
sizeof(num_open_files)));
DCHECK_EQ(static_cast<size_t>(written), sizeof(num_open_files));
int ret = HANDLE_EINTR(close(write_pipe));
DPCHECK(ret == 0);
return 0;
}
int ProcessUtilTest::CountOpenFDsInChild() {
int fds[2];
if (pipe(fds) < 0)
NOTREACHED();
base::file_handle_mapping_vector fd_mapping_vec;
fd_mapping_vec.push_back(std::pair<int, int>(fds[1], kChildPipe));
base::ProcessHandle handle = this->SpawnChild(
"ProcessUtilsLeakFDChildProcess", fd_mapping_vec, false);
CHECK(handle);
int ret = HANDLE_EINTR(close(fds[1]));
DPCHECK(ret == 0);
// Read number of open files in client process from pipe;
int num_open_files = -1;
ssize_t bytes_read =
HANDLE_EINTR(read(fds[0], &num_open_files, sizeof(num_open_files)));
CHECK_EQ(bytes_read, static_cast<ssize_t>(sizeof(num_open_files)));
CHECK(base::WaitForSingleProcess(handle, 1000));
base::CloseProcessHandle(handle);
ret = HANDLE_EINTR(close(fds[0]));
DPCHECK(ret == 0);
return num_open_files;
}
TEST_F(ProcessUtilTest, FDRemapping) {
int fds_before = CountOpenFDsInChild();
// open some dummy fds to make sure they don't propagate over to the
// child process.
int dev_null = open("/dev/null", O_RDONLY);
int sockets[2];
socketpair(AF_UNIX, SOCK_STREAM, 0, sockets);
int fds_after = CountOpenFDsInChild();
ASSERT_EQ(fds_after, fds_before);
int ret;
ret = HANDLE_EINTR(close(sockets[0]));
DPCHECK(ret == 0);
ret = HANDLE_EINTR(close(sockets[1]));
DPCHECK(ret == 0);
ret = HANDLE_EINTR(close(dev_null));
DPCHECK(ret == 0);
}
namespace {
std::string TestLaunchApp(const base::environment_vector& env_changes) {
std::vector<std::string> args;
base::file_handle_mapping_vector fds_to_remap;
base::ProcessHandle handle;
args.push_back("bash");
args.push_back("-c");
args.push_back("echo $BASE_TEST");
int fds[2];
PCHECK(pipe(fds) == 0);
fds_to_remap.push_back(std::make_pair(fds[1], 1));
EXPECT_TRUE(base::LaunchApp(args, env_changes, fds_to_remap,
true /* wait for exit */, &handle));
PCHECK(close(fds[1]) == 0);
char buf[512];
const ssize_t n = HANDLE_EINTR(read(fds[0], buf, sizeof(buf)));
PCHECK(n > 0);
return std::string(buf, n);
}
const char kLargeString[] =
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789";
} // namespace
TEST_F(ProcessUtilTest, LaunchApp) {
base::environment_vector env_changes;
env_changes.push_back(std::make_pair(std::string("BASE_TEST"),
std::string("bar")));
EXPECT_EQ("bar\n", TestLaunchApp(env_changes));
env_changes.clear();
EXPECT_EQ(0, setenv("BASE_TEST", "testing", 1 /* override */));
EXPECT_EQ("testing\n", TestLaunchApp(env_changes));
env_changes.push_back(std::make_pair(std::string("BASE_TEST"),
std::string("")));
EXPECT_EQ("\n", TestLaunchApp(env_changes));
env_changes[0].second = "foo";
EXPECT_EQ("foo\n", TestLaunchApp(env_changes));
env_changes.clear();
EXPECT_EQ(0, setenv("BASE_TEST", kLargeString, 1 /* override */));
EXPECT_EQ(std::string(kLargeString) + "\n", TestLaunchApp(env_changes));
env_changes.push_back(std::make_pair(std::string("BASE_TEST"),
std::string("wibble")));
EXPECT_EQ("wibble\n", TestLaunchApp(env_changes));
}
TEST_F(ProcessUtilTest, AlterEnvironment) {
const char* const empty[] = { NULL };
const char* const a2[] = { "A=2", NULL };
base::environment_vector changes;
char** e;
e = base::AlterEnvironment(changes, empty);
EXPECT_TRUE(e[0] == NULL);
delete[] e;
changes.push_back(std::make_pair(std::string("A"), std::string("1")));
e = base::AlterEnvironment(changes, empty);
EXPECT_EQ(std::string("A=1"), e[0]);
EXPECT_TRUE(e[1] == NULL);
delete[] e;
changes.clear();
changes.push_back(std::make_pair(std::string("A"), std::string("")));
e = base::AlterEnvironment(changes, empty);
EXPECT_TRUE(e[0] == NULL);
delete[] e;
changes.clear();
e = base::AlterEnvironment(changes, a2);
EXPECT_EQ(std::string("A=2"), e[0]);
EXPECT_TRUE(e[1] == NULL);
delete[] e;
changes.clear();
changes.push_back(std::make_pair(std::string("A"), std::string("1")));
e = base::AlterEnvironment(changes, a2);
EXPECT_EQ(std::string("A=1"), e[0]);
EXPECT_TRUE(e[1] == NULL);
delete[] e;
changes.clear();
changes.push_back(std::make_pair(std::string("A"), std::string("")));
e = base::AlterEnvironment(changes, a2);
EXPECT_TRUE(e[0] == NULL);
delete[] e;
}
TEST_F(ProcessUtilTest, GetAppOutput) {
std::string output;
EXPECT_TRUE(base::GetAppOutput(CommandLine(FilePath("true")), &output));
EXPECT_STREQ("", output.c_str());
EXPECT_FALSE(base::GetAppOutput(CommandLine(FilePath("false")), &output));
std::vector<std::string> argv;
argv.push_back("/bin/echo");
argv.push_back("-n");
argv.push_back("foobar42");
EXPECT_TRUE(base::GetAppOutput(CommandLine(argv), &output));
EXPECT_STREQ("foobar42", output.c_str());
}
TEST_F(ProcessUtilTest, GetAppOutputRestricted) {
// Unfortunately, since we can't rely on the path, we need to know where
// everything is. So let's use /bin/sh, which is on every POSIX system, and
// its built-ins.
std::vector<std::string> argv;
argv.push_back("/bin/sh"); // argv[0]
argv.push_back("-c"); // argv[1]
// On success, should set |output|. We use |/bin/sh -c 'exit 0'| instead of
// |true| since the location of the latter may be |/bin| or |/usr/bin| (and we
// need absolute paths).
argv.push_back("exit 0"); // argv[2]; equivalent to "true"
std::string output = "abc";
EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 100));
EXPECT_STREQ("", output.c_str());
argv[2] = "exit 1"; // equivalent to "false"
output = "before";
EXPECT_FALSE(base::GetAppOutputRestricted(CommandLine(argv),
&output, 100));
EXPECT_STREQ("", output.c_str());
// Amount of output exactly equal to space allowed.
argv[2] = "echo 123456789"; // (the sh built-in doesn't take "-n")
output.clear();
EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 10));
EXPECT_STREQ("123456789\n", output.c_str());
// Amount of output greater than space allowed.
output.clear();
EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 5));
EXPECT_STREQ("12345", output.c_str());
// Amount of output less than space allowed.
output.clear();
EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 15));
EXPECT_STREQ("123456789\n", output.c_str());
// Zero space allowed.
output = "abc";
EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 0));
EXPECT_STREQ("", output.c_str());
}
TEST_F(ProcessUtilTest, GetAppOutputRestrictedNoZombies) {
std::vector<std::string> argv;
argv.push_back("/bin/sh"); // argv[0]
argv.push_back("-c"); // argv[1]
argv.push_back("echo 123456789012345678901234567890"); // argv[2]
// Run |GetAppOutputRestricted()| 300 (> default per-user processes on Mac OS
// 10.5) times with an output buffer big enough to capture all output.
for (int i = 0; i < 300; i++) {
std::string output;
EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 100));
EXPECT_STREQ("123456789012345678901234567890\n", output.c_str());
}
// Ditto, but with an output buffer too small to capture all output.
for (int i = 0; i < 300; i++) {
std::string output;
EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 10));
EXPECT_STREQ("1234567890", output.c_str());
}
}
#if defined(OS_LINUX)
TEST_F(ProcessUtilTest, GetParentProcessId) {
base::ProcessId ppid = base::GetParentProcessId(base::GetCurrentProcId());
EXPECT_EQ(ppid, getppid());
}
TEST_F(ProcessUtilTest, ParseProcStatCPU) {
// /proc/self/stat for a process running "top".
const char kTopStat[] = "960 (top) S 16230 960 16230 34818 960 "
"4202496 471 0 0 0 "
"12 16 0 0 " // <- These are the goods.
"20 0 1 0 121946157 15077376 314 18446744073709551615 4194304 "
"4246868 140733983044336 18446744073709551615 140244213071219 "
"0 0 0 138047495 0 0 0 17 1 0 0 0 0 0";
EXPECT_EQ(12 + 16, base::ParseProcStatCPU(kTopStat));
// cat /proc/self/stat on a random other machine I have.
const char kSelfStat[] = "5364 (cat) R 5354 5364 5354 34819 5364 "
"0 142 0 0 0 "
"0 0 0 0 " // <- No CPU, apparently.
"16 0 1 0 1676099790 2957312 114 4294967295 134512640 134528148 "
"3221224832 3221224344 3086339742 0 0 0 0 0 0 0 17 0 0 0";
EXPECT_EQ(0, base::ParseProcStatCPU(kSelfStat));
}
#endif
#endif // defined(OS_POSIX)
// TODO(vandebo) make this work on Windows too.
#if !defined(OS_WIN)
#if defined(USE_TCMALLOC)
extern "C" {
int tc_set_new_mode(int mode);
}
#endif // defined(USE_TCMALLOC)
class OutOfMemoryDeathTest : public testing::Test {
public:
OutOfMemoryDeathTest()
: value_(NULL),
// Make test size as large as possible minus a few pages so
// that alignment or other rounding doesn't make it wrap.
test_size_(std::numeric_limits<std::size_t>::max() - 12 * 1024),
signed_test_size_(std::numeric_limits<ssize_t>::max()) {
}
virtual void SetUp() {
#if defined(USE_TCMALLOC)
tc_set_new_mode(1);
}
virtual void TearDown() {
tc_set_new_mode(0);
#endif // defined(USE_TCMALLOC)
}
void SetUpInDeathAssert() {
// Must call EnableTerminationOnOutOfMemory() because that is called from
// chrome's main function and therefore hasn't been called yet.
// Since this call may result in another thread being created and death
// tests shouldn't be started in a multithread environment, this call
// should be done inside of the ASSERT_DEATH.
base::EnableTerminationOnOutOfMemory();
}
void* value_;
size_t test_size_;
ssize_t signed_test_size_;
};
TEST_F(OutOfMemoryDeathTest, New) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = operator new(test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, NewArray) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = new char[test_size_];
}, "");
}
TEST_F(OutOfMemoryDeathTest, Malloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc(test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, Realloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = realloc(NULL, test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, Calloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = calloc(1024, test_size_ / 1024L);
}, "");
}
TEST_F(OutOfMemoryDeathTest, Valloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = valloc(test_size_);
}, "");
}
#if defined(OS_LINUX)
TEST_F(OutOfMemoryDeathTest, Pvalloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = pvalloc(test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, Memalign) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = memalign(4, test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, ViaSharedLibraries) {
// g_try_malloc is documented to return NULL on failure. (g_malloc is the
// 'safe' default that crashes if allocation fails). However, since we have
// hopefully overridden malloc, even g_try_malloc should fail. This tests
// that the run-time symbol resolution is overriding malloc for shared
// libraries as well as for our code.
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = g_try_malloc(test_size_);
}, "");
}
#endif // OS_LINUX
#if defined(OS_POSIX)
TEST_F(OutOfMemoryDeathTest, Posix_memalign) {
typedef int (*memalign_t)(void **, size_t, size_t);
#if defined(OS_MACOSX)
// posix_memalign only exists on >= 10.6. Use dlsym to grab it at runtime
// because it may not be present in the SDK used for compilation.
memalign_t memalign =
reinterpret_cast<memalign_t>(dlsym(RTLD_DEFAULT, "posix_memalign"));
#else
memalign_t memalign = posix_memalign;
#endif // OS_*
if (memalign) {
// Grab the return value of posix_memalign to silence a compiler warning
// about unused return values. We don't actually care about the return
// value, since we're asserting death.
ASSERT_DEATH({
SetUpInDeathAssert();
EXPECT_EQ(ENOMEM, memalign(&value_, 8, test_size_));
}, "");
}
}
#endif // OS_POSIX
#if defined(OS_MACOSX)
// Purgeable zone tests (if it exists)
TEST_F(OutOfMemoryDeathTest, MallocPurgeable) {
malloc_zone_t* zone = base::GetPurgeableZone();
if (zone)
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc_zone_malloc(zone, test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, ReallocPurgeable) {
malloc_zone_t* zone = base::GetPurgeableZone();
if (zone)
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc_zone_realloc(zone, NULL, test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, CallocPurgeable) {
malloc_zone_t* zone = base::GetPurgeableZone();
if (zone)
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc_zone_calloc(zone, 1024, test_size_ / 1024L);
}, "");
}
TEST_F(OutOfMemoryDeathTest, VallocPurgeable) {
malloc_zone_t* zone = base::GetPurgeableZone();
if (zone)
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc_zone_valloc(zone, test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, PosixMemalignPurgeable) {
malloc_zone_t* zone = base::GetPurgeableZone();
typedef void* (*zone_memalign_t)(malloc_zone_t*, size_t, size_t);
// malloc_zone_memalign only exists on >= 10.6. Use dlsym to grab it at
// runtime because it may not be present in the SDK used for compilation.
zone_memalign_t zone_memalign =
reinterpret_cast<zone_memalign_t>(
dlsym(RTLD_DEFAULT, "malloc_zone_memalign"));
if (zone && zone_memalign) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = zone_memalign(zone, 8, test_size_);
}, "");
}
}
// Since these allocation functions take a signed size, it's possible that
// calling them just once won't be enough to exhaust memory. In the 32-bit
// environment, it's likely that these allocation attempts will fail because
// not enough contiguous address space is availble. In the 64-bit environment,
// it's likely that they'll fail because they would require a preposterous
// amount of (virtual) memory.
TEST_F(OutOfMemoryDeathTest, CFAllocatorSystemDefault) {
ASSERT_DEATH({
SetUpInDeathAssert();
while ((value_ =
base::AllocateViaCFAllocatorSystemDefault(signed_test_size_))) {}
}, "");
}
TEST_F(OutOfMemoryDeathTest, CFAllocatorMalloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
while ((value_ =
base::AllocateViaCFAllocatorMalloc(signed_test_size_))) {}
}, "");
}
TEST_F(OutOfMemoryDeathTest, CFAllocatorMallocZone) {
ASSERT_DEATH({
SetUpInDeathAssert();
while ((value_ =
base::AllocateViaCFAllocatorMallocZone(signed_test_size_))) {}
}, "");
}
#if !defined(ARCH_CPU_64_BITS)
// See process_util_unittest_mac.mm for an explanation of why this test isn't
// run in the 64-bit environment.
TEST_F(OutOfMemoryDeathTest, PsychoticallyBigObjCObject) {
ASSERT_DEATH({
SetUpInDeathAssert();
while ((value_ = base::AllocatePsychoticallyBigObjCObject())) {}
}, "");
}
#endif // !ARCH_CPU_64_BITS
#endif // OS_MACOSX
#endif // !defined(OS_WIN)