blob: 008d3a42fba7c960a2a380161286407a51551952 [file] [log] [blame]
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <dlfcn.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/epoll.h>
#include <sys/prctl.h>
#include <sys/signal.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#if defined(CHROMIUM_SELINUX)
#include <selinux/selinux.h>
#include <selinux/context.h>
#endif
#include "base/basictypes.h"
#include "base/command_line.h"
#include "base/eintr_wrapper.h"
#include "base/file_path.h"
#include "base/global_descriptors_posix.h"
#include "base/hash_tables.h"
#include "base/linux_util.h"
#include "base/path_service.h"
#include "base/pickle.h"
#include "base/process_util.h"
#include "base/rand_util.h"
#include "base/scoped_ptr.h"
#include "base/sys_info.h"
#include "base/unix_domain_socket_posix.h"
#include "build/build_config.h"
#include "chrome/browser/zygote_host_linux.h"
#include "chrome/common/chrome_descriptors.h"
#include "chrome/common/chrome_switches.h"
#include "chrome/common/main_function_params.h"
#include "chrome/common/pepper_plugin_registry.h"
#include "chrome/common/process_watcher.h"
#include "chrome/common/sandbox_methods_linux.h"
#include "media/base/media.h"
#include "skia/ext/SkFontHost_fontconfig_control.h"
#include "seccompsandbox/sandbox.h"
#include "unicode/timezone.h"
#if defined(ARCH_CPU_X86_FAMILY) && !defined(CHROMIUM_SELINUX) && \
!defined(__clang__)
// The seccomp sandbox is enabled on all ia32 and x86-64 processor as long as
// we aren't using SELinux or clang.
#define SECCOMP_SANDBOX
#endif
// http://code.google.com/p/chromium/wiki/LinuxZygote
static const int kBrowserDescriptor = 3;
static const int kMagicSandboxIPCDescriptor = 5;
static const int kZygoteIdDescriptor = 7;
static bool g_suid_sandbox_active = false;
#if defined(SECCOMP_SANDBOX)
// |g_proc_fd| is used only by the seccomp sandbox.
static int g_proc_fd = -1;
#endif
#if defined(CHROMIUM_SELINUX)
static void SELinuxTransitionToTypeOrDie(const char* type) {
security_context_t security_context;
if (getcon(&security_context))
LOG(FATAL) << "Cannot get SELinux context";
context_t context = context_new(security_context);
context_type_set(context, type);
const int r = setcon(context_str(context));
context_free(context);
freecon(security_context);
if (r) {
LOG(FATAL) << "dynamic transition to type '" << type << "' failed. "
"(this binary has been built with SELinux support, but maybe "
"the policies haven't been loaded into the kernel?)";
}
}
#endif // CHROMIUM_SELINUX
// This is the object which implements the zygote. The ZygoteMain function,
// which is called from ChromeMain, simply constructs one of these objects and
// runs it.
class Zygote {
public:
explicit Zygote(int sandbox_flags)
: sandbox_flags_(sandbox_flags) {
}
bool ProcessRequests() {
// A SOCK_SEQPACKET socket is installed in fd 3. We get commands from the
// browser on it.
// A SOCK_DGRAM is installed in fd 5. This is the sandbox IPC channel.
// See http://code.google.com/p/chromium/wiki/LinuxSandboxIPC
// We need to accept SIGCHLD, even though our handler is a no-op because
// otherwise we cannot wait on children. (According to POSIX 2001.)
struct sigaction action;
memset(&action, 0, sizeof(action));
action.sa_handler = SIGCHLDHandler;
CHECK(sigaction(SIGCHLD, &action, NULL) == 0);
if (g_suid_sandbox_active) {
// Let the ZygoteHost know we are ready to go.
// The receiving code is in chrome/browser/zygote_host_linux.cc.
std::vector<int> empty;
bool r = base::SendMsg(kBrowserDescriptor, kZygoteMagic,
sizeof(kZygoteMagic), empty);
CHECK(r) << "Sending zygote magic failed";
}
for (;;) {
// This function call can return multiple times, once per fork().
if (HandleRequestFromBrowser(kBrowserDescriptor))
return true;
}
}
private:
// See comment below, where sigaction is called.
static void SIGCHLDHandler(int signal) { }
// ---------------------------------------------------------------------------
// Requests from the browser...
// Read and process a request from the browser. Returns true if we are in a
// new process and thus need to unwind back into ChromeMain.
bool HandleRequestFromBrowser(int fd) {
std::vector<int> fds;
static const unsigned kMaxMessageLength = 1024;
char buf[kMaxMessageLength];
const ssize_t len = base::RecvMsg(fd, buf, sizeof(buf), &fds);
if (len == 0 || (len == -1 && errno == ECONNRESET)) {
// EOF from the browser. We should die.
_exit(0);
return false;
}
if (len == -1) {
PLOG(ERROR) << "Error reading message from browser";
return false;
}
Pickle pickle(buf, len);
void* iter = NULL;
int kind;
if (pickle.ReadInt(&iter, &kind)) {
switch (kind) {
case ZygoteHost::kCmdFork:
// This function call can return multiple times, once per fork().
return HandleForkRequest(fd, pickle, iter, fds);
case ZygoteHost::kCmdReap:
if (!fds.empty())
break;
HandleReapRequest(fd, pickle, iter);
return false;
case ZygoteHost::kCmdDidProcessCrash:
if (!fds.empty())
break;
HandleDidProcessCrash(fd, pickle, iter);
return false;
case ZygoteHost::kCmdGetSandboxStatus:
HandleGetSandboxStatus(fd, pickle, iter);
return false;
default:
NOTREACHED();
break;
}
}
LOG(WARNING) << "Error parsing message from browser";
for (std::vector<int>::const_iterator
i = fds.begin(); i != fds.end(); ++i)
close(*i);
return false;
}
void HandleReapRequest(int fd, const Pickle& pickle, void* iter) {
base::ProcessId child;
base::ProcessId actual_child;
if (!pickle.ReadInt(&iter, &child)) {
LOG(WARNING) << "Error parsing reap request from browser";
return;
}
if (g_suid_sandbox_active) {
actual_child = real_pids_to_sandbox_pids[child];
if (!actual_child)
return;
real_pids_to_sandbox_pids.erase(child);
} else {
actual_child = child;
}
ProcessWatcher::EnsureProcessTerminated(actual_child);
}
void HandleDidProcessCrash(int fd, const Pickle& pickle, void* iter) {
base::ProcessHandle child;
if (!pickle.ReadInt(&iter, &child)) {
LOG(WARNING) << "Error parsing DidProcessCrash request from browser";
return;
}
bool child_exited;
bool did_crash;
if (g_suid_sandbox_active)
child = real_pids_to_sandbox_pids[child];
if (child)
did_crash = base::DidProcessCrash(&child_exited, child);
else
did_crash = child_exited = false;
Pickle write_pickle;
write_pickle.WriteBool(did_crash);
write_pickle.WriteBool(child_exited);
if (HANDLE_EINTR(write(fd, write_pickle.data(), write_pickle.size())) !=
write_pickle.size()) {
PLOG(ERROR) << "write";
}
}
// This is equivalent to fork(), except that, when using the SUID
// sandbox, it returns the real PID of the child process as it
// appears outside the sandbox, rather than returning the PID inside
// the sandbox.
int ForkWithRealPid() {
if (!g_suid_sandbox_active)
return fork();
int dummy_fd;
ino_t dummy_inode;
int pipe_fds[2] = { -1, -1 };
base::ProcessId pid = 0;
dummy_fd = socket(PF_UNIX, SOCK_DGRAM, 0);
if (dummy_fd < 0) {
LOG(ERROR) << "Failed to create dummy FD";
goto error;
}
if (!base::FileDescriptorGetInode(&dummy_inode, dummy_fd)) {
LOG(ERROR) << "Failed to get inode for dummy FD";
goto error;
}
if (pipe(pipe_fds) != 0) {
LOG(ERROR) << "Failed to create pipe";
goto error;
}
pid = fork();
if (pid < 0) {
goto error;
} else if (pid == 0) {
// In the child process.
close(pipe_fds[1]);
char buffer[1];
// Wait until the parent process has discovered our PID. We
// should not fork any child processes (which the seccomp
// sandbox does) until then, because that can interfere with the
// parent's discovery of our PID.
if (HANDLE_EINTR(read(pipe_fds[0], buffer, 1)) != 1 ||
buffer[0] != 'x') {
LOG(FATAL) << "Failed to synchronise with parent zygote process";
}
close(pipe_fds[0]);
close(dummy_fd);
return 0;
} else {
// In the parent process.
close(dummy_fd);
dummy_fd = -1;
close(pipe_fds[0]);
pipe_fds[0] = -1;
uint8_t reply_buf[512];
Pickle request;
request.WriteInt(LinuxSandbox::METHOD_GET_CHILD_WITH_INODE);
request.WriteUInt64(dummy_inode);
const ssize_t r = base::SendRecvMsg(kMagicSandboxIPCDescriptor,
reply_buf, sizeof(reply_buf),
NULL, request);
if (r == -1) {
LOG(ERROR) << "Failed to get child process's real PID";
goto error;
}
base::ProcessId real_pid;
Pickle reply(reinterpret_cast<char*>(reply_buf), r);
void* iter2 = NULL;
if (!reply.ReadInt(&iter2, &real_pid))
goto error;
if (real_pid <= 0) {
// METHOD_GET_CHILD_WITH_INODE failed. Did the child die already?
LOG(ERROR) << "METHOD_GET_CHILD_WITH_INODE failed";
goto error;
}
real_pids_to_sandbox_pids[real_pid] = pid;
if (HANDLE_EINTR(write(pipe_fds[1], "x", 1)) != 1) {
LOG(ERROR) << "Failed to synchronise with child process";
goto error;
}
close(pipe_fds[1]);
return real_pid;
}
error:
if (pid > 0)
waitpid(pid, NULL, WNOHANG);
if (dummy_fd >= 0)
close(dummy_fd);
if (pipe_fds[0] >= 0)
close(pipe_fds[0]);
if (pipe_fds[1] >= 0)
close(pipe_fds[1]);
return -1;
}
// Handle a 'fork' request from the browser: this means that the browser
// wishes to start a new renderer.
bool HandleForkRequest(int fd, const Pickle& pickle, void* iter,
std::vector<int>& fds) {
std::vector<std::string> args;
int argc, numfds;
base::GlobalDescriptors::Mapping mapping;
base::ProcessId child;
if (!pickle.ReadInt(&iter, &argc))
goto error;
for (int i = 0; i < argc; ++i) {
std::string arg;
if (!pickle.ReadString(&iter, &arg))
goto error;
args.push_back(arg);
}
if (!pickle.ReadInt(&iter, &numfds))
goto error;
if (numfds != static_cast<int>(fds.size()))
goto error;
for (int i = 0; i < numfds; ++i) {
base::GlobalDescriptors::Key key;
if (!pickle.ReadUInt32(&iter, &key))
goto error;
mapping.push_back(std::make_pair(key, fds[i]));
}
mapping.push_back(std::make_pair(
static_cast<uint32_t>(kSandboxIPCChannel), kMagicSandboxIPCDescriptor));
child = ForkWithRealPid();
if (!child) {
#if defined(SECCOMP_SANDBOX)
// Try to open /proc/self/maps as the seccomp sandbox needs access to it
if (g_proc_fd >= 0) {
int proc_self_maps = openat(g_proc_fd, "self/maps", O_RDONLY);
if (proc_self_maps >= 0) {
SeccompSandboxSetProcSelfMaps(proc_self_maps);
}
close(g_proc_fd);
g_proc_fd = -1;
}
#endif
close(kBrowserDescriptor); // our socket from the browser
if (g_suid_sandbox_active)
close(kZygoteIdDescriptor); // another socket from the browser
Singleton<base::GlobalDescriptors>()->Reset(mapping);
#if defined(CHROMIUM_SELINUX)
SELinuxTransitionToTypeOrDie("chromium_renderer_t");
#endif
// Reset the process-wide command line to our new command line.
CommandLine::Reset();
CommandLine::Init(0, NULL);
CommandLine::ForCurrentProcess()->InitFromArgv(args);
CommandLine::SetProcTitle();
// The fork() request is handled further up the call stack.
return true;
} else if (child < 0) {
LOG(ERROR) << "Zygote could not fork: " << errno;
goto error;
}
for (std::vector<int>::const_iterator
i = fds.begin(); i != fds.end(); ++i)
close(*i);
if (HANDLE_EINTR(write(fd, &child, sizeof(child))) < 0)
PLOG(ERROR) << "write";
return false;
error:
LOG(ERROR) << "Error parsing fork request from browser";
for (std::vector<int>::const_iterator
i = fds.begin(); i != fds.end(); ++i)
close(*i);
return false;
}
bool HandleGetSandboxStatus(int fd, const Pickle& pickle, void* iter) {
if (HANDLE_EINTR(write(fd, &sandbox_flags_, sizeof(sandbox_flags_)) !=
sizeof(sandbox_flags_))) {
PLOG(ERROR) << "write";
}
return false;
}
// In the SUID sandbox, we try to use a new PID namespace. Thus the PIDs
// fork() returns are not the real PIDs, so we need to map the Real PIDS
// into the sandbox PID namespace.
typedef base::hash_map<base::ProcessHandle, base::ProcessHandle> ProcessMap;
ProcessMap real_pids_to_sandbox_pids;
const int sandbox_flags_;
};
// With SELinux we can carve out a precise sandbox, so we don't have to play
// with intercepting libc calls.
#if !defined(CHROMIUM_SELINUX)
static void ProxyLocaltimeCallToBrowser(time_t input, struct tm* output,
char* timezone_out,
size_t timezone_out_len) {
Pickle request;
request.WriteInt(LinuxSandbox::METHOD_LOCALTIME);
request.WriteString(
std::string(reinterpret_cast<char*>(&input), sizeof(input)));
uint8_t reply_buf[512];
const ssize_t r = base::SendRecvMsg(
kMagicSandboxIPCDescriptor, reply_buf, sizeof(reply_buf), NULL, request);
if (r == -1) {
memset(output, 0, sizeof(struct tm));
return;
}
Pickle reply(reinterpret_cast<char*>(reply_buf), r);
void* iter = NULL;
std::string result, timezone;
if (!reply.ReadString(&iter, &result) ||
!reply.ReadString(&iter, &timezone) ||
result.size() != sizeof(struct tm)) {
memset(output, 0, sizeof(struct tm));
return;
}
memcpy(output, result.data(), sizeof(struct tm));
if (timezone_out_len) {
const size_t copy_len = std::min(timezone_out_len - 1, timezone.size());
memcpy(timezone_out, timezone.data(), copy_len);
timezone_out[copy_len] = 0;
output->tm_zone = timezone_out;
} else {
output->tm_zone = NULL;
}
}
static bool g_am_zygote_or_renderer = false;
// Sandbox interception of libc calls.
//
// Because we are running in a sandbox certain libc calls will fail (localtime
// being the motivating example - it needs to read /etc/localtime). We need to
// intercept these calls and proxy them to the browser. However, these calls
// may come from us or from our libraries. In some cases we can't just change
// our code.
//
// It's for these cases that we have the following setup:
//
// We define global functions for those functions which we wish to override.
// Since we will be first in the dynamic resolution order, the dynamic linker
// will point callers to our versions of these functions. However, we have the
// same binary for both the browser and the renderers, which means that our
// overrides will apply in the browser too.
//
// The global |g_am_zygote_or_renderer| is true iff we are in a zygote or
// renderer process. It's set in ZygoteMain and inherited by the renderers when
// they fork. (This means that it'll be incorrect for global constructor
// functions and before ZygoteMain is called - beware).
//
// Our replacement functions can check this global and either proxy
// the call to the browser over the sandbox IPC
// (http://code.google.com/p/chromium/wiki/LinuxSandboxIPC) or they can use
// dlsym with RTLD_NEXT to resolve the symbol, ignoring any symbols in the
// current module.
//
// Other avenues:
//
// Our first attempt involved some assembly to patch the GOT of the current
// module. This worked, but was platform specific and doesn't catch the case
// where a library makes a call rather than current module.
//
// We also considered patching the function in place, but this would again by
// platform specific and the above technique seems to work well enough.
typedef struct tm* (*LocaltimeFunction)(const time_t* timep);
typedef struct tm* (*LocaltimeRFunction)(const time_t* timep,
struct tm* result);
static pthread_once_t g_libc_localtime_funcs_guard = PTHREAD_ONCE_INIT;
static LocaltimeFunction g_libc_localtime;
static LocaltimeRFunction g_libc_localtime_r;
static void InitLibcLocaltimeFunctions() {
g_libc_localtime = reinterpret_cast<LocaltimeFunction>(
dlsym(RTLD_NEXT, "localtime"));
g_libc_localtime_r = reinterpret_cast<LocaltimeRFunction>(
dlsym(RTLD_NEXT, "localtime_r"));
if (!g_libc_localtime || !g_libc_localtime_r) {
// http://code.google.com/p/chromium/issues/detail?id=16800
//
// Nvidia's libGL.so overrides dlsym for an unknown reason and replaces
// it with a version which doesn't work. In this case we'll get a NULL
// result. There's not a lot we can do at this point, so we just bodge it!
LOG(ERROR) << "Your system is broken: dlsym doesn't work! This has been "
"reported to be caused by Nvidia's libGL. You should expect"
" time related functions to misbehave. "
"http://code.google.com/p/chromium/issues/detail?id=16800";
}
if (!g_libc_localtime)
g_libc_localtime = gmtime;
if (!g_libc_localtime_r)
g_libc_localtime_r = gmtime_r;
}
struct tm* localtime(const time_t* timep) {
if (g_am_zygote_or_renderer) {
static struct tm time_struct;
static char timezone_string[64];
ProxyLocaltimeCallToBrowser(*timep, &time_struct, timezone_string,
sizeof(timezone_string));
return &time_struct;
} else {
CHECK_EQ(0, pthread_once(&g_libc_localtime_funcs_guard,
InitLibcLocaltimeFunctions));
return g_libc_localtime(timep);
}
}
struct tm* localtime_r(const time_t* timep, struct tm* result) {
if (g_am_zygote_or_renderer) {
ProxyLocaltimeCallToBrowser(*timep, result, NULL, 0);
return result;
} else {
CHECK_EQ(0, pthread_once(&g_libc_localtime_funcs_guard,
InitLibcLocaltimeFunctions));
return g_libc_localtime_r(timep, result);
}
}
#endif // !CHROMIUM_SELINUX
// This function triggers the static and lazy construction of objects that need
// to be created before imposing the sandbox.
static void PreSandboxInit() {
base::RandUint64();
base::SysInfo::MaxSharedMemorySize();
// To make wcstombs/mbstowcs work in a renderer, setlocale() has to be
// called before the sandbox is triggered. It's possible to avoid calling
// setlocale() by pulling out the conversion between FilePath and
// WebCore String out of the renderer and using string16 in place of
// FilePath for IPC.
const char* locale = setlocale(LC_ALL, "");
LOG_IF(WARNING, locale == NULL) << "setlocale failed.";
// ICU DateFormat class (used in base/time_format.cc) needs to get the
// Olson timezone ID by accessing the zoneinfo files on disk. After
// TimeZone::createDefault is called once here, the timezone ID is
// cached and there's no more need to access the file system.
scoped_ptr<icu::TimeZone> zone(icu::TimeZone::createDefault());
FilePath module_path;
if (PathService::Get(base::DIR_MODULE, &module_path))
media::InitializeMediaLibrary(module_path);
// Ensure access to the Pepper plugins before the sandbox is turned on.
PepperPluginRegistry::PreloadModules();
}
#if !defined(CHROMIUM_SELINUX)
static bool EnterSandbox() {
// The SUID sandbox sets this environment variable to a file descriptor
// over which we can signal that we have completed our startup and can be
// chrooted.
const char* const sandbox_fd_string = getenv("SBX_D");
if (sandbox_fd_string) {
// Use the SUID sandbox. This still allows the seccomp sandbox to
// be enabled by the process later.
g_suid_sandbox_active = true;
char* endptr;
const long fd_long = strtol(sandbox_fd_string, &endptr, 10);
if (!*sandbox_fd_string || *endptr || fd_long < 0 || fd_long > INT_MAX)
return false;
const int fd = fd_long;
PreSandboxInit();
static const char kMsgChrootMe = 'C';
static const char kMsgChrootSuccessful = 'O';
if (HANDLE_EINTR(write(fd, &kMsgChrootMe, 1)) != 1) {
LOG(ERROR) << "Failed to write to chroot pipe: " << errno;
return false;
}
// We need to reap the chroot helper process in any event:
wait(NULL);
char reply;
if (HANDLE_EINTR(read(fd, &reply, 1)) != 1) {
LOG(ERROR) << "Failed to read from chroot pipe: " << errno;
return false;
}
if (reply != kMsgChrootSuccessful) {
LOG(ERROR) << "Error code reply from chroot helper";
return false;
}
SkiaFontConfigUseIPCImplementation(kMagicSandboxIPCDescriptor);
// Previously, we required that the binary be non-readable. This causes the
// kernel to mark the process as non-dumpable at startup. The thinking was
// that, although we were putting the renderers into a PID namespace (with
// the SUID sandbox), they would nonetheless be in the /same/ PID
// namespace. So they could ptrace each other unless they were non-dumpable.
//
// If the binary was readable, then there would be a window between process
// startup and the point where we set the non-dumpable flag in which a
// compromised renderer could ptrace attach.
//
// However, now that we have a zygote model, only the (trusted) zygote
// exists at this point and we can set the non-dumpable flag which is
// inherited by all our renderer children.
//
// Note: a non-dumpable process can't be debugged. To debug sandbox-related
// issues, one can specify --allow-sandbox-debugging to let the process be
// dumpable.
const CommandLine& command_line = *CommandLine::ForCurrentProcess();
if (!command_line.HasSwitch(switches::kAllowSandboxDebugging)) {
prctl(PR_SET_DUMPABLE, 0, 0, 0, 0);
if (prctl(PR_GET_DUMPABLE, 0, 0, 0, 0)) {
LOG(ERROR) << "Failed to set non-dumpable flag";
return false;
}
}
} else if (switches::SeccompSandboxEnabled()) {
PreSandboxInit();
SkiaFontConfigUseIPCImplementation(kMagicSandboxIPCDescriptor);
} else {
SkiaFontConfigUseDirectImplementation();
}
return true;
}
#else // CHROMIUM_SELINUX
static bool EnterSandbox() {
PreSandboxInit();
SkiaFontConfigUseIPCImplementation(kMagicSandboxIPCDescriptor);
return true;
}
#endif // CHROMIUM_SELINUX
bool ZygoteMain(const MainFunctionParams& params) {
#if !defined(CHROMIUM_SELINUX)
g_am_zygote_or_renderer = true;
#endif
#if defined(SECCOMP_SANDBOX)
// The seccomp sandbox needs access to files in /proc, which might be denied
// after one of the other sandboxes have been started. So, obtain a suitable
// file handle in advance.
if (switches::SeccompSandboxEnabled()) {
g_proc_fd = open("/proc", O_DIRECTORY | O_RDONLY);
if (g_proc_fd < 0) {
LOG(ERROR) << "WARNING! Cannot access \"/proc\". Disabling seccomp "
"sandboxing.";
}
}
#endif // SECCOMP_SANDBOX
// Turn on the SELinux or SUID sandbox
if (!EnterSandbox()) {
LOG(FATAL) << "Failed to enter sandbox. Fail safe abort. (errno: "
<< errno << ")";
return false;
}
int sandbox_flags = 0;
if (getenv("SBX_D"))
sandbox_flags |= ZygoteHost::kSandboxSUID;
if (getenv("SBX_PID_NS"))
sandbox_flags |= ZygoteHost::kSandboxPIDNS;
if (getenv("SBX_NET_NS"))
sandbox_flags |= ZygoteHost::kSandboxNetNS;
#if defined(SECCOMP_SANDBOX)
// The seccomp sandbox will be turned on when the renderers start. But we can
// already check if sufficient support is available so that we only need to
// print one error message for the entire browser session.
if (g_proc_fd >= 0 && switches::SeccompSandboxEnabled()) {
if (!SupportsSeccompSandbox(g_proc_fd)) {
// There are a good number of users who cannot use the seccomp sandbox
// (e.g. because their distribution does not enable seccomp mode by
// default). While we would prefer to deny execution in this case, it
// seems more realistic to continue in degraded mode.
LOG(ERROR) << "WARNING! This machine lacks support needed for the "
"Seccomp sandbox. Running renderers with Seccomp "
"sandboxing disabled.";
} else {
VLOG(1) << "Enabling experimental Seccomp sandbox.";
sandbox_flags |= ZygoteHost::kSandboxSeccomp;
}
}
#endif // SECCOMP_SANDBOX
Zygote zygote(sandbox_flags);
// This function call can return multiple times, once per fork().
return zygote.ProcessRequests();
}