blob: e21ac630abe1ad68fb698947e372ea0ac21c274b [file] [log] [blame]
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <vector>
#include "base/eintr_wrapper.h"
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/platform_thread.h"
#include "base/ref_counted.h"
#include "base/task.h"
#include "base/thread.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_WIN)
#include "base/message_pump_win.h"
#include "base/scoped_handle.h"
#endif
#if defined(OS_POSIX)
#include "base/message_pump_libevent.h"
#endif
using base::Thread;
using base::Time;
using base::TimeDelta;
// TODO(darin): Platform-specific MessageLoop tests should be grouped together
// to avoid chopping this file up with so many #ifdefs.
namespace {
class MessageLoopTest : public testing::Test {};
class Foo : public base::RefCounted<Foo> {
public:
Foo() : test_count_(0) {
}
void Test0() {
++test_count_;
}
void Test1ConstRef(const std::string& a) {
++test_count_;
result_.append(a);
}
void Test1Ptr(std::string* a) {
++test_count_;
result_.append(*a);
}
void Test1Int(int a) {
test_count_ += a;
}
void Test2Ptr(std::string* a, std::string* b) {
++test_count_;
result_.append(*a);
result_.append(*b);
}
void Test2Mixed(const std::string& a, std::string* b) {
++test_count_;
result_.append(a);
result_.append(*b);
}
int test_count() const { return test_count_; }
const std::string& result() const { return result_; }
private:
friend class base::RefCounted<Foo>;
~Foo() {}
int test_count_;
std::string result_;
};
class QuitMsgLoop : public base::RefCounted<QuitMsgLoop> {
public:
void QuitNow() {
MessageLoop::current()->Quit();
}
private:
friend class base::RefCounted<QuitMsgLoop>;
~QuitMsgLoop() {}
};
void RunTest_PostTask(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Add tests to message loop
scoped_refptr<Foo> foo = new Foo();
std::string a("a"), b("b"), c("c"), d("d");
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test0));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1ConstRef, a));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1Ptr, &b));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1Int, 100));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test2Ptr, &a, &c));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test2Mixed, a, &d));
// After all tests, post a message that will shut down the message loop
scoped_refptr<QuitMsgLoop> quit = new QuitMsgLoop();
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
quit.get(), &QuitMsgLoop::QuitNow));
// Now kick things off
MessageLoop::current()->Run();
EXPECT_EQ(foo->test_count(), 105);
EXPECT_EQ(foo->result(), "abacad");
}
void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Add tests to message loop
scoped_refptr<Foo> foo = new Foo();
std::string a("a"), b("b"), c("c"), d("d");
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test0));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1ConstRef, a));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1Ptr, &b));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1Int, 100));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test2Ptr, &a, &c));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test2Mixed, a, &d));
// After all tests, post a message that will shut down the message loop
scoped_refptr<QuitMsgLoop> quit = new QuitMsgLoop();
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
quit.get(), &QuitMsgLoop::QuitNow));
// Now kick things off with the SEH block active.
MessageLoop::current()->set_exception_restoration(true);
MessageLoop::current()->Run();
MessageLoop::current()->set_exception_restoration(false);
EXPECT_EQ(foo->test_count(), 105);
EXPECT_EQ(foo->result(), "abacad");
}
// This class runs slowly to simulate a large amount of work being done.
class SlowTask : public Task {
public:
SlowTask(int pause_ms, int* quit_counter)
: pause_ms_(pause_ms), quit_counter_(quit_counter) {
}
virtual void Run() {
PlatformThread::Sleep(pause_ms_);
if (--(*quit_counter_) == 0)
MessageLoop::current()->Quit();
}
private:
int pause_ms_;
int* quit_counter_;
};
// This class records the time when Run was called in a Time object, which is
// useful for building a variety of MessageLoop tests.
class RecordRunTimeTask : public SlowTask {
public:
RecordRunTimeTask(Time* run_time, int* quit_counter)
: SlowTask(10, quit_counter), run_time_(run_time) {
}
virtual void Run() {
*run_time_ = Time::Now();
// Cause our Run function to take some time to execute. As a result we can
// count on subsequent RecordRunTimeTask objects running at a future time,
// without worry about the resolution of our system clock being an issue.
SlowTask::Run();
}
private:
Time* run_time_;
};
void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that PostDelayedTask results in a delayed task.
const int kDelayMS = 100;
int num_tasks = 1;
Time run_time;
loop.PostDelayedTask(
FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), kDelayMS);
Time time_before_run = Time::Now();
loop.Run();
Time time_after_run = Time::Now();
EXPECT_EQ(0, num_tasks);
EXPECT_LT(kDelayMS, (time_after_run - time_before_run).InMilliseconds());
}
void RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that two tasks with different delays run in the right order.
int num_tasks = 2;
Time run_time1, run_time2;
loop.PostDelayedTask(
FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 200);
// If we get a large pause in execution (due to a context switch) here, this
// test could fail.
loop.PostDelayedTask(
FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
loop.Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time2 < run_time1);
}
void RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that two tasks with the same delay run in the order in which they
// were posted.
//
// NOTE: This is actually an approximate test since the API only takes a
// "delay" parameter, so we are not exactly simulating two tasks that get
// posted at the exact same time. It would be nice if the API allowed us to
// specify the desired run time.
const int kDelayMS = 100;
int num_tasks = 2;
Time run_time1, run_time2;
loop.PostDelayedTask(
FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), kDelayMS);
loop.PostDelayedTask(
FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), kDelayMS);
loop.Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time1 < run_time2);
}
void RunTest_PostDelayedTask_InPostOrder_2(
MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that a delayed task still runs after a normal tasks even if the
// normal tasks take a long time to run.
const int kPauseMS = 50;
int num_tasks = 2;
Time run_time;
loop.PostTask(
FROM_HERE, new SlowTask(kPauseMS, &num_tasks));
loop.PostDelayedTask(
FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 10);
Time time_before_run = Time::Now();
loop.Run();
Time time_after_run = Time::Now();
EXPECT_EQ(0, num_tasks);
EXPECT_LT(kPauseMS, (time_after_run - time_before_run).InMilliseconds());
}
void RunTest_PostDelayedTask_InPostOrder_3(
MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that a delayed task still runs after a pile of normal tasks. The key
// difference between this test and the previous one is that here we return
// the MessageLoop a lot so we give the MessageLoop plenty of opportunities
// to maybe run the delayed task. It should know not to do so until the
// delayed task's delay has passed.
int num_tasks = 11;
Time run_time1, run_time2;
// Clutter the ML with tasks.
for (int i = 1; i < num_tasks; ++i)
loop.PostTask(FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks));
loop.PostDelayedTask(
FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 1);
loop.Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time2 > run_time1);
}
void RunTest_PostDelayedTask_SharedTimer(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that the interval of the timer, used to run the next delayed task, is
// set to a value corresponding to when the next delayed task should run.
// By setting num_tasks to 1, we ensure that the first task to run causes the
// run loop to exit.
int num_tasks = 1;
Time run_time1, run_time2;
loop.PostDelayedTask(
FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 1000000);
loop.PostDelayedTask(
FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
Time start_time = Time::Now();
loop.Run();
EXPECT_EQ(0, num_tasks);
// Ensure that we ran in far less time than the slower timer.
TimeDelta total_time = Time::Now() - start_time;
EXPECT_GT(5000, total_time.InMilliseconds());
// In case both timers somehow run at nearly the same time, sleep a little
// and then run all pending to force them both to have run. This is just
// encouraging flakiness if there is any.
PlatformThread::Sleep(100);
loop.RunAllPending();
EXPECT_TRUE(run_time1.is_null());
EXPECT_FALSE(run_time2.is_null());
}
#if defined(OS_WIN)
class SubPumpTask : public Task {
public:
virtual void Run() {
MessageLoop::current()->SetNestableTasksAllowed(true);
MSG msg;
while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
MessageLoop::current()->Quit();
}
};
class SubPumpQuitTask : public Task {
public:
SubPumpQuitTask() {
}
virtual void Run() {
PostQuitMessage(0);
}
};
void RunTest_PostDelayedTask_SharedTimer_SubPump() {
MessageLoop loop(MessageLoop::TYPE_UI);
// Test that the interval of the timer, used to run the next delayed task, is
// set to a value corresponding to when the next delayed task should run.
// By setting num_tasks to 1, we ensure that the first task to run causes the
// run loop to exit.
int num_tasks = 1;
Time run_time;
loop.PostTask(FROM_HERE, new SubPumpTask());
// This very delayed task should never run.
loop.PostDelayedTask(
FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 1000000);
// This slightly delayed task should run from within SubPumpTask::Run().
loop.PostDelayedTask(
FROM_HERE, new SubPumpQuitTask(), 10);
Time start_time = Time::Now();
loop.Run();
EXPECT_EQ(1, num_tasks);
// Ensure that we ran in far less time than the slower timer.
TimeDelta total_time = Time::Now() - start_time;
EXPECT_GT(5000, total_time.InMilliseconds());
// In case both timers somehow run at nearly the same time, sleep a little
// and then run all pending to force them both to have run. This is just
// encouraging flakiness if there is any.
PlatformThread::Sleep(100);
loop.RunAllPending();
EXPECT_TRUE(run_time.is_null());
}
#endif // defined(OS_WIN)
class RecordDeletionTask : public Task {
public:
RecordDeletionTask(Task* post_on_delete, bool* was_deleted)
: post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
}
~RecordDeletionTask() {
*was_deleted_ = true;
if (post_on_delete_)
MessageLoop::current()->PostTask(FROM_HERE, post_on_delete_);
}
virtual void Run() {}
private:
Task* post_on_delete_;
bool* was_deleted_;
};
void RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type) {
bool a_was_deleted = false;
bool b_was_deleted = false;
{
MessageLoop loop(message_loop_type);
loop.PostTask(
FROM_HERE, new RecordDeletionTask(NULL, &a_was_deleted));
loop.PostDelayedTask(
FROM_HERE, new RecordDeletionTask(NULL, &b_was_deleted), 1000);
}
EXPECT_TRUE(a_was_deleted);
EXPECT_TRUE(b_was_deleted);
}
void RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type) {
bool a_was_deleted = false;
bool b_was_deleted = false;
bool c_was_deleted = false;
{
MessageLoop loop(message_loop_type);
RecordDeletionTask* a = new RecordDeletionTask(NULL, &a_was_deleted);
RecordDeletionTask* b = new RecordDeletionTask(a, &b_was_deleted);
RecordDeletionTask* c = new RecordDeletionTask(b, &c_was_deleted);
loop.PostTask(FROM_HERE, c);
}
EXPECT_TRUE(a_was_deleted);
EXPECT_TRUE(b_was_deleted);
EXPECT_TRUE(c_was_deleted);
}
class NestingTest : public Task {
public:
explicit NestingTest(int* depth) : depth_(depth) {
}
void Run() {
if (*depth_ > 0) {
*depth_ -= 1;
MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_));
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageLoop::current()->Run();
}
MessageLoop::current()->Quit();
}
private:
int* depth_;
};
#if defined(OS_WIN)
LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
ADD_FAILURE() << "bad exception handler";
::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
return EXCEPTION_EXECUTE_HANDLER;
}
// This task throws an SEH exception: initially write to an invalid address.
// If the right SEH filter is installed, it will fix the error.
class CrasherTask : public Task {
public:
// Ctor. If trash_SEH_handler is true, the task will override the unhandled
// exception handler with one sure to crash this test.
explicit CrasherTask(bool trash_SEH_handler)
: trash_SEH_handler_(trash_SEH_handler) {
}
void Run() {
PlatformThread::Sleep(1);
if (trash_SEH_handler_)
::SetUnhandledExceptionFilter(&BadExceptionHandler);
// Generate a SEH fault. We do it in asm to make sure we know how to undo
// the damage.
#if defined(_M_IX86)
__asm {
mov eax, dword ptr [CrasherTask::bad_array_]
mov byte ptr [eax], 66
}
#elif defined(_M_X64)
bad_array_[0] = 66;
#else
#error "needs architecture support"
#endif
MessageLoop::current()->Quit();
}
// Points the bad array to a valid memory location.
static void FixError() {
bad_array_ = &valid_store_;
}
private:
bool trash_SEH_handler_;
static volatile char* bad_array_;
static char valid_store_;
};
volatile char* CrasherTask::bad_array_ = 0;
char CrasherTask::valid_store_ = 0;
// This SEH filter fixes the problem and retries execution. Fixing requires
// that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried
// so we move the instruction pointer 5 bytes back.
LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) {
if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
return EXCEPTION_EXECUTE_HANDLER;
CrasherTask::FixError();
#if defined(_M_IX86)
ex_info->ContextRecord->Eip -= 5;
#elif defined(_M_X64)
ex_info->ContextRecord->Rip -= 5;
#endif
return EXCEPTION_CONTINUE_EXECUTION;
}
void RunTest_Crasher(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
if (::IsDebuggerPresent())
return;
LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false));
MessageLoop::current()->set_exception_restoration(true);
MessageLoop::current()->Run();
MessageLoop::current()->set_exception_restoration(false);
::SetUnhandledExceptionFilter(old_SEH_filter);
}
void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
if (::IsDebuggerPresent())
return;
LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true));
MessageLoop::current()->set_exception_restoration(true);
MessageLoop::current()->Run();
MessageLoop::current()->set_exception_restoration(false);
::SetUnhandledExceptionFilter(old_SEH_filter);
}
#endif // defined(OS_WIN)
void RunTest_Nesting(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
int depth = 100;
MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth));
MessageLoop::current()->Run();
EXPECT_EQ(depth, 0);
}
const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";
enum TaskType {
MESSAGEBOX,
ENDDIALOG,
RECURSIVE,
TIMEDMESSAGELOOP,
QUITMESSAGELOOP,
ORDERERD,
PUMPS,
SLEEP,
};
// Saves the order in which the tasks executed.
struct TaskItem {
TaskItem(TaskType t, int c, bool s)
: type(t),
cookie(c),
start(s) {
}
TaskType type;
int cookie;
bool start;
bool operator == (const TaskItem& other) const {
return type == other.type && cookie == other.cookie && start == other.start;
}
};
typedef std::vector<TaskItem> TaskList;
std::ostream& operator <<(std::ostream& os, TaskType type) {
switch (type) {
case MESSAGEBOX: os << "MESSAGEBOX"; break;
case ENDDIALOG: os << "ENDDIALOG"; break;
case RECURSIVE: os << "RECURSIVE"; break;
case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
case ORDERERD: os << "ORDERERD"; break;
case PUMPS: os << "PUMPS"; break;
case SLEEP: os << "SLEEP"; break;
default:
NOTREACHED();
os << "Unknown TaskType";
break;
}
return os;
}
std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
if (item.start)
return os << item.type << " " << item.cookie << " starts";
else
return os << item.type << " " << item.cookie << " ends";
}
// Saves the order the tasks ran.
class OrderedTasks : public Task {
public:
OrderedTasks(TaskList* order, int cookie)
: order_(order),
type_(ORDERERD),
cookie_(cookie) {
}
OrderedTasks(TaskList* order, TaskType type, int cookie)
: order_(order),
type_(type),
cookie_(cookie) {
}
void RunStart() {
TaskItem item(type_, cookie_, true);
DLOG(INFO) << item;
order_->push_back(item);
}
void RunEnd() {
TaskItem item(type_, cookie_, false);
DLOG(INFO) << item;
order_->push_back(item);
}
virtual void Run() {
RunStart();
RunEnd();
}
protected:
TaskList* order() const {
return order_;
}
int cookie() const {
return cookie_;
}
private:
TaskList* order_;
TaskType type_;
int cookie_;
};
#if defined(OS_WIN)
// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
// common controls (like OpenFile) and StartDoc printing function can cause
// implicit message loops.
class MessageBoxTask : public OrderedTasks {
public:
MessageBoxTask(TaskList* order, int cookie, bool is_reentrant)
: OrderedTasks(order, MESSAGEBOX, cookie),
is_reentrant_(is_reentrant) {
}
virtual void Run() {
RunStart();
if (is_reentrant_)
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
RunEnd();
}
private:
bool is_reentrant_;
};
// Will end the MessageBox.
class EndDialogTask : public OrderedTasks {
public:
EndDialogTask(TaskList* order, int cookie)
: OrderedTasks(order, ENDDIALOG, cookie) {
}
virtual void Run() {
RunStart();
HWND window = GetActiveWindow();
if (window != NULL) {
EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
// Cheap way to signal that the window wasn't found if RunEnd() isn't
// called.
RunEnd();
}
}
};
#endif // defined(OS_WIN)
class RecursiveTask : public OrderedTasks {
public:
RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant)
: OrderedTasks(order, RECURSIVE, cookie),
depth_(depth),
is_reentrant_(is_reentrant) {
}
virtual void Run() {
RunStart();
if (depth_ > 0) {
if (is_reentrant_)
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageLoop::current()->PostTask(FROM_HERE,
new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_));
}
RunEnd();
}
private:
int depth_;
bool is_reentrant_;
};
class QuitTask : public OrderedTasks {
public:
QuitTask(TaskList* order, int cookie)
: OrderedTasks(order, QUITMESSAGELOOP, cookie) {
}
virtual void Run() {
RunStart();
MessageLoop::current()->Quit();
RunEnd();
}
};
class SleepTask : public OrderedTasks {
public:
SleepTask(TaskList* order, int cookie, int ms)
: OrderedTasks(order, SLEEP, cookie), ms_(ms) {
}
virtual void Run() {
RunStart();
PlatformThread::Sleep(ms_);
RunEnd();
}
private:
int ms_;
};
#if defined(OS_WIN)
class Recursive2Tasks : public Task {
public:
Recursive2Tasks(MessageLoop* target,
HANDLE event,
bool expect_window,
TaskList* order,
bool is_reentrant)
: target_(target),
event_(event),
expect_window_(expect_window),
order_(order),
is_reentrant_(is_reentrant) {
}
virtual void Run() {
target_->PostTask(FROM_HERE,
new RecursiveTask(2, order_, 1, is_reentrant_));
target_->PostTask(FROM_HERE,
new MessageBoxTask(order_, 2, is_reentrant_));
target_->PostTask(FROM_HERE,
new RecursiveTask(2, order_, 3, is_reentrant_));
// The trick here is that for recursive task processing, this task will be
// ran _inside_ the MessageBox message loop, dismissing the MessageBox
// without a chance.
// For non-recursive task processing, this will be executed _after_ the
// MessageBox will have been dismissed by the code below, where
// expect_window_ is true.
target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4));
target_->PostTask(FROM_HERE, new QuitTask(order_, 5));
// Enforce that every tasks are sent before starting to run the main thread
// message loop.
ASSERT_TRUE(SetEvent(event_));
// Poll for the MessageBox. Don't do this at home! At the speed we do it,
// you will never realize one MessageBox was shown.
for (; expect_window_;) {
HWND window = FindWindow(L"#32770", kMessageBoxTitle);
if (window) {
// Dismiss it.
for (;;) {
HWND button = FindWindowEx(window, NULL, L"Button", NULL);
if (button != NULL) {
EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
break;
}
}
break;
}
}
}
private:
MessageLoop* target_;
HANDLE event_;
TaskList* order_;
bool expect_window_;
bool is_reentrant_;
};
#endif // defined(OS_WIN)
void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
TaskList order;
MessageLoop::current()->PostTask(FROM_HERE,
new RecursiveTask(2, &order, 1, false));
MessageLoop::current()->PostTask(FROM_HERE,
new RecursiveTask(2, &order, 2, false));
MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(14U, order.size());
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
}
void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
MessageLoop::current()->PostTask(FROM_HERE,
new RecursiveTask(2, &order, 1, true));
MessageLoop::current()->PostTask(FROM_HERE,
new RecursiveTask(2, &order, 2, true));
MessageLoop::current()->PostTask(FROM_HERE,
new QuitTask(&order, 3));
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(14U, order.size());
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
}
#if defined(OS_WIN)
// TODO(darin): These tests need to be ported since they test critical
// message loop functionality.
// A side effect of this test is the generation a beep. Sorry.
void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
Thread worker("RecursiveDenial2_worker");
Thread::Options options;
options.message_loop_type = message_loop_type;
ASSERT_EQ(true, worker.StartWithOptions(options));
TaskList order;
ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
worker.message_loop()->PostTask(FROM_HERE,
new Recursive2Tasks(MessageLoop::current(),
event,
true,
&order,
false));
// Let the other thread execute.
WaitForSingleObject(event, INFINITE);
MessageLoop::current()->Run();
ASSERT_EQ(order.size(), 17);
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false));
EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false));
// When EndDialogTask is processed, the window is already dismissed, hence no
// "end" entry.
EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true));
EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false));
EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false));
}
// A side effect of this test is the generation a beep. Sorry. This test also
// needs to process windows messages on the current thread.
void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
Thread worker("RecursiveSupport2_worker");
Thread::Options options;
options.message_loop_type = message_loop_type;
ASSERT_EQ(true, worker.StartWithOptions(options));
TaskList order;
ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
worker.message_loop()->PostTask(FROM_HERE,
new Recursive2Tasks(MessageLoop::current(),
event,
false,
&order,
true));
// Let the other thread execute.
WaitForSingleObject(event, INFINITE);
MessageLoop::current()->Run();
ASSERT_EQ(order.size(), 18);
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
// Note that this executes in the MessageBox modal loop.
EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true));
EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false));
EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false));
/* The order can subtly change here. The reason is that when RecursiveTask(1)
is called in the main thread, if it is faster than getting to the
PostTask(FROM_HERE, QuitTask) execution, the order of task execution can
change. We don't care anyway that the order isn't correct.
EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
*/
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false));
}
#endif // defined(OS_WIN)
class TaskThatPumps : public OrderedTasks {
public:
TaskThatPumps(TaskList* order, int cookie)
: OrderedTasks(order, PUMPS, cookie) {
}
virtual void Run() {
RunStart();
bool old_state = MessageLoop::current()->NestableTasksAllowed();
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageLoop::current()->RunAllPending();
MessageLoop::current()->SetNestableTasksAllowed(old_state);
RunEnd();
}
};
// Tests that non nestable tasks run in FIFO if there are no nested loops.
void RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
Task* task = new OrderedTasks(&order, 1);
MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2));
MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(6U, order.size());
EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true));
EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false));
EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true));
EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false));
EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
}
// Tests that non nestable tasks don't run when there's code in the call stack.
void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type,
bool use_delayed) {
MessageLoop loop(message_loop_type);
TaskList order;
MessageLoop::current()->PostTask(FROM_HERE,
new TaskThatPumps(&order, 1));
Task* task = new OrderedTasks(&order, 2);
if (use_delayed) {
MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE, task, 1);
} else {
MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
}
MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3));
MessageLoop::current()->PostTask(FROM_HERE, new SleepTask(&order, 4, 50));
MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 5));
Task* non_nestable_quit = new QuitTask(&order, 6);
if (use_delayed) {
MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE,
non_nestable_quit,
2);
} else {
MessageLoop::current()->PostNonNestableTask(FROM_HERE, non_nestable_quit);
}
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(12U, order.size());
EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true));
EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true));
EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false));
EXPECT_EQ(order[ 3], TaskItem(SLEEP, 4, true));
EXPECT_EQ(order[ 4], TaskItem(SLEEP, 4, false));
EXPECT_EQ(order[ 5], TaskItem(ORDERERD, 5, true));
EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 5, false));
EXPECT_EQ(order[ 7], TaskItem(PUMPS, 1, false));
EXPECT_EQ(order[ 8], TaskItem(ORDERERD, 2, true));
EXPECT_EQ(order[ 9], TaskItem(ORDERERD, 2, false));
EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 6, true));
EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 6, false));
}
#if defined(OS_WIN)
class DispatcherImpl : public MessageLoopForUI::Dispatcher {
public:
DispatcherImpl() : dispatch_count_(0) {}
virtual bool Dispatch(const MSG& msg) {
::TranslateMessage(&msg);
::DispatchMessage(&msg);
// Do not count WM_TIMER since it is not what we post and it will cause
// flakiness.
if (msg.message != WM_TIMER)
++dispatch_count_;
// We treat WM_LBUTTONUP as the last message.
return msg.message != WM_LBUTTONUP;
}
int dispatch_count_;
};
void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
class MyTask : public Task {
public:
virtual void Run() {
PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
}
};
Task* task = new MyTask();
MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
DispatcherImpl dispatcher;
MessageLoopForUI::current()->Run(&dispatcher);
ASSERT_EQ(2, dispatcher.dispatch_count_);
}
LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
if (code == base::MessagePumpForUI::kMessageFilterCode) {
MSG* msg = reinterpret_cast<MSG*>(lparam);
if (msg->message == WM_LBUTTONDOWN)
return TRUE;
}
return FALSE;
}
void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
class MyTask : public Task {
public:
virtual void Run() {
PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
}
};
Task* task = new MyTask();
MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
MsgFilterProc,
NULL,
GetCurrentThreadId());
DispatcherImpl dispatcher;
MessageLoopForUI::current()->Run(&dispatcher);
ASSERT_EQ(1, dispatcher.dispatch_count_);
UnhookWindowsHookEx(msg_hook);
}
class TestIOHandler : public MessageLoopForIO::IOHandler {
public:
TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
DWORD bytes_transfered, DWORD error);
void Init();
void WaitForIO();
OVERLAPPED* context() { return &context_.overlapped; }
DWORD size() { return sizeof(buffer_); }
private:
char buffer_[48];
MessageLoopForIO::IOContext context_;
HANDLE signal_;
ScopedHandle file_;
bool wait_;
};
TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
: signal_(signal), wait_(wait) {
memset(buffer_, 0, sizeof(buffer_));
memset(&context_, 0, sizeof(context_));
context_.handler = this;
file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
FILE_FLAG_OVERLAPPED, NULL));
EXPECT_TRUE(file_.IsValid());
}
void TestIOHandler::Init() {
MessageLoopForIO::current()->RegisterIOHandler(file_, this);
DWORD read;
EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
if (wait_)
WaitForIO();
}
void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
DWORD bytes_transfered, DWORD error) {
ASSERT_TRUE(context == &context_);
ASSERT_TRUE(SetEvent(signal_));
}
void TestIOHandler::WaitForIO() {
EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
}
class IOHandlerTask : public Task {
public:
explicit IOHandlerTask(TestIOHandler* handler) : handler_(handler) {}
virtual void Run() {
handler_->Init();
}
private:
TestIOHandler* handler_;
};
void RunTest_IOHandler() {
ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
ASSERT_TRUE(callback_called.IsValid());
const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
ScopedHandle server(CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1,
0, 0, 0, NULL));
ASSERT_TRUE(server.IsValid());
Thread thread("IOHandler test");
Thread::Options options;
options.message_loop_type = MessageLoop::TYPE_IO;
ASSERT_TRUE(thread.StartWithOptions(options));
MessageLoop* thread_loop = thread.message_loop();
ASSERT_TRUE(NULL != thread_loop);
TestIOHandler handler(kPipeName, callback_called, false);
IOHandlerTask* task = new IOHandlerTask(&handler);
thread_loop->PostTask(FROM_HERE, task);
Sleep(100); // Make sure the thread runs and sleeps for lack of work.
const char buffer[] = "Hello there!";
DWORD written;
EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));
DWORD result = WaitForSingleObject(callback_called, 1000);
EXPECT_EQ(WAIT_OBJECT_0, result);
thread.Stop();
}
void RunTest_WaitForIO() {
ScopedHandle callback1_called(CreateEvent(NULL, TRUE, FALSE, NULL));
ScopedHandle callback2_called(CreateEvent(NULL, TRUE, FALSE, NULL));
ASSERT_TRUE(callback1_called.IsValid());
ASSERT_TRUE(callback2_called.IsValid());
const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
ScopedHandle server1(CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1,
0, 0, 0, NULL));
ScopedHandle server2(CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1,
0, 0, 0, NULL));
ASSERT_TRUE(server1.IsValid());
ASSERT_TRUE(server2.IsValid());
Thread thread("IOHandler test");
Thread::Options options;
options.message_loop_type = MessageLoop::TYPE_IO;
ASSERT_TRUE(thread.StartWithOptions(options));
MessageLoop* thread_loop = thread.message_loop();
ASSERT_TRUE(NULL != thread_loop);
TestIOHandler handler1(kPipeName1, callback1_called, false);
TestIOHandler handler2(kPipeName2, callback2_called, true);
IOHandlerTask* task1 = new IOHandlerTask(&handler1);
IOHandlerTask* task2 = new IOHandlerTask(&handler2);
thread_loop->PostTask(FROM_HERE, task1);
Sleep(100); // Make sure the thread runs and sleeps for lack of work.
thread_loop->PostTask(FROM_HERE, task2);
Sleep(100);
// At this time handler1 is waiting to be called, and the thread is waiting
// on the Init method of handler2, filtering only handler2 callbacks.
const char buffer[] = "Hello there!";
DWORD written;
EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
Sleep(200);
EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
"handler1 has not been called";
EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));
HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
EXPECT_EQ(WAIT_OBJECT_0, result);
thread.Stop();
}
#endif // defined(OS_WIN)
} // namespace
//-----------------------------------------------------------------------------
// Each test is run against each type of MessageLoop. That way we are sure
// that message loops work properly in all configurations. Of course, in some
// cases, a unit test may only be for a particular type of loop.
TEST(MessageLoopTest, PostTask) {
RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
RunTest_PostTask(MessageLoop::TYPE_UI);
RunTest_PostTask(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostTask_SEH) {
RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_Basic) {
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_SharedTimer) {
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT);
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI);
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO);
}
#if defined(OS_WIN)
TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
RunTest_PostDelayedTask_SharedTimer_SubPump();
}
#endif
// TODO(darin): MessageLoop does not support deleting all tasks in the
// destructor.
// Fails, http://crbug.com/50272.
TEST(MessageLoopTest, FAILS_EnsureTaskDeletion) {
RunTest_EnsureTaskDeletion(MessageLoop::TYPE_DEFAULT);
RunTest_EnsureTaskDeletion(MessageLoop::TYPE_UI);
RunTest_EnsureTaskDeletion(MessageLoop::TYPE_IO);
}
// TODO(darin): MessageLoop does not support deleting all tasks in the
// destructor.
// Fails, http://crbug.com/50272.
TEST(MessageLoopTest, FAILS_EnsureTaskDeletion_Chain) {
RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_DEFAULT);
RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_UI);
RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_IO);
}
#if defined(OS_WIN)
TEST(MessageLoopTest, Crasher) {
RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
RunTest_Crasher(MessageLoop::TYPE_UI);
RunTest_Crasher(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, CrasherNasty) {
RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
RunTest_CrasherNasty(MessageLoop::TYPE_UI);
RunTest_CrasherNasty(MessageLoop::TYPE_IO);
}
#endif // defined(OS_WIN)
TEST(MessageLoopTest, Nesting) {
RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
RunTest_Nesting(MessageLoop::TYPE_UI);
RunTest_Nesting(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RecursiveDenial1) {
RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RecursiveSupport1) {
RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
}
#if defined(OS_WIN)
// This test occasionally hangs http://crbug.com/44567
TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RecursiveSupport2) {
// This test requires a UI loop
RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
}
#endif // defined(OS_WIN)
TEST(MessageLoopTest, NonNestableWithNoNesting) {
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, NonNestableInNestedLoop) {
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false);
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false);
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false);
}
TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) {
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true);
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true);
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true);
}
class DummyTask : public Task {
public:
explicit DummyTask(int num_tasks) : num_tasks_(num_tasks) {}
virtual void Run() {
if (num_tasks_ > 1) {
MessageLoop::current()->PostTask(
FROM_HERE,
new DummyTask(num_tasks_ - 1));
} else {
MessageLoop::current()->Quit();
}
}
private:
const int num_tasks_;
};
class DummyTaskObserver : public MessageLoop::TaskObserver {
public:
explicit DummyTaskObserver(int num_tasks)
: num_tasks_started_(0),
num_tasks_processed_(0),
num_tasks_(num_tasks) {}
virtual ~DummyTaskObserver() {}
virtual void WillProcessTask(base::TimeTicks /* birth_time */) {
num_tasks_started_++;
EXPECT_LE(num_tasks_started_, num_tasks_);
EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
}
virtual void DidProcessTask() {
num_tasks_processed_++;
EXPECT_LE(num_tasks_started_, num_tasks_);
EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
}
int num_tasks_started() const { return num_tasks_started_; }
int num_tasks_processed() const { return num_tasks_processed_; }
private:
int num_tasks_started_;
int num_tasks_processed_;
const int num_tasks_;
DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
};
TEST(MessageLoopTest, TaskObserver) {
const int kNumTasks = 6;
DummyTaskObserver observer(kNumTasks);
MessageLoop loop;
loop.AddTaskObserver(&observer);
loop.PostTask(FROM_HERE, new DummyTask(kNumTasks));
loop.Run();
loop.RemoveTaskObserver(&observer);
EXPECT_EQ(kNumTasks, observer.num_tasks_started());
EXPECT_EQ(kNumTasks, observer.num_tasks_processed());
}
#if defined(OS_WIN)
TEST(MessageLoopTest, Dispatcher) {
// This test requires a UI loop
RunTest_Dispatcher(MessageLoop::TYPE_UI);
}
TEST(MessageLoopTest, DispatcherWithMessageHook) {
// This test requires a UI loop
RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
}
TEST(MessageLoopTest, IOHandler) {
RunTest_IOHandler();
}
TEST(MessageLoopTest, WaitForIO) {
RunTest_WaitForIO();
}
TEST(MessageLoopTest, HighResolutionTimer) {
MessageLoop loop;
const int kFastTimerMs = 5;
const int kSlowTimerMs = 100;
EXPECT_EQ(false, loop.high_resolution_timers_enabled());
// Post a fast task to enable the high resolution timers.
loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kFastTimerMs);
loop.Run();
EXPECT_EQ(true, loop.high_resolution_timers_enabled());
// Post a slow task and verify high resolution timers
// are still enabled.
loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
loop.Run();
EXPECT_EQ(true, loop.high_resolution_timers_enabled());
// Wait for a while so that high-resolution mode elapses.
Sleep(MessageLoop::kHighResolutionTimerModeLeaseTimeMs);
// Post a slow task to disable the high resolution timers.
loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
loop.Run();
EXPECT_EQ(false, loop.high_resolution_timers_enabled());
}
#endif // defined(OS_WIN)
#if defined(OS_POSIX)
namespace {
class QuitDelegate : public base::MessagePumpLibevent::Watcher {
public:
virtual void OnFileCanWriteWithoutBlocking(int fd) {
MessageLoop::current()->Quit();
}
virtual void OnFileCanReadWithoutBlocking(int fd) {
MessageLoop::current()->Quit();
}
};
TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
// Simulate a MessageLoop that dies before an FileDescriptorWatcher.
// This could happen when people use the Singleton pattern or atexit.
// Create a file descriptor. Doesn't need to be readable or writable,
// as we don't need to actually get any notifications.
// pipe() is just the easiest way to do it.
int pipefds[2];
int err = pipe(pipefds);
ASSERT_EQ(0, err);
int fd = pipefds[1];
{
// Arrange for controller to live longer than message loop.
base::MessagePumpLibevent::FileDescriptorWatcher controller;
{
MessageLoopForIO message_loop;
QuitDelegate delegate;
message_loop.WatchFileDescriptor(fd,
true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
// and don't run the message loop, just destroy it.
}
}
if (HANDLE_EINTR(close(pipefds[0])) < 0)
PLOG(ERROR) << "close";
if (HANDLE_EINTR(close(pipefds[1])) < 0)
PLOG(ERROR) << "close";
}
TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
// Verify that it's ok to call StopWatchingFileDescriptor().
// (Errors only showed up in valgrind.)
int pipefds[2];
int err = pipe(pipefds);
ASSERT_EQ(0, err);
int fd = pipefds[1];
{
// Arrange for message loop to live longer than controller.
MessageLoopForIO message_loop;
{
base::MessagePumpLibevent::FileDescriptorWatcher controller;
QuitDelegate delegate;
message_loop.WatchFileDescriptor(fd,
true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
controller.StopWatchingFileDescriptor();
}
}
if (HANDLE_EINTR(close(pipefds[0])) < 0)
PLOG(ERROR) << "close";
if (HANDLE_EINTR(close(pipefds[1])) < 0)
PLOG(ERROR) << "close";
}
} // namespace
#endif // defined(OS_POSIX)