blob: 32343204fcecd53852a113dd061c8ca428059e4b [file] [log] [blame]
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file includes code SSLClientSocketNSS::DoVerifyCertComplete() derived
// from AuthCertificateCallback() in
// mozilla/security/manager/ssl/src/nsNSSCallbacks.cpp.
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Ian McGreer <mcgreer@netscape.com>
* Javier Delgadillo <javi@netscape.com>
* Kai Engert <kengert@redhat.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "net/socket/ssl_client_socket_nss.h"
#if defined(USE_SYSTEM_SSL)
#include <dlfcn.h>
#endif
#if defined(OS_MACOSX)
#include <Security/Security.h>
#endif
#include <certdb.h>
#include <hasht.h>
#include <keyhi.h>
#include <nspr.h>
#include <nss.h>
#include <pk11pub.h>
#include <secerr.h>
#include <sechash.h>
#include <ssl.h>
#include <sslerr.h>
#include <sslproto.h>
#include <limits>
#include "base/compiler_specific.h"
#include "base/metrics/histogram.h"
#include "base/logging.h"
#include "base/nss_util.h"
#include "base/singleton.h"
#include "base/string_number_conversions.h"
#include "base/string_util.h"
#include "base/stringprintf.h"
#include "base/thread_restrictions.h"
#include "base/values.h"
#include "net/base/address_list.h"
#include "net/base/cert_status_flags.h"
#include "net/base/cert_verifier.h"
#include "net/base/connection_type_histograms.h"
#include "net/base/dns_util.h"
#include "net/base/dnsrr_resolver.h"
#include "net/base/dnssec_chain_verifier.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/net_log.h"
#include "net/base/ssl_cert_request_info.h"
#include "net/base/ssl_connection_status_flags.h"
#include "net/base/ssl_info.h"
#include "net/base/sys_addrinfo.h"
#include "net/ocsp/nss_ocsp.h"
#include "net/socket/client_socket_handle.h"
#include "net/socket/dns_cert_provenance_check.h"
#include "net/socket/ssl_error_params.h"
#include "net/socket/ssl_host_info.h"
static const int kRecvBufferSize = 4096;
// kCorkTimeoutMs is the number of milliseconds for which we'll wait for a
// Write to an SSL socket which we're False Starting. Since corking stops the
// Finished message from being sent, the server sees an incomplete handshake
// and some will time out such sockets quite aggressively.
static const int kCorkTimeoutMs = 200;
namespace net {
// State machines are easier to debug if you log state transitions.
// Enable these if you want to see what's going on.
#if 1
#define EnterFunction(x)
#define LeaveFunction(x)
#define GotoState(s) next_handshake_state_ = s
#define LogData(s, len)
#else
#define EnterFunction(x)\
VLOG(1) << (void *)this << " " << __FUNCTION__ << " enter " << x\
<< "; next_handshake_state " << next_handshake_state_
#define LeaveFunction(x)\
VLOG(1) << (void *)this << " " << __FUNCTION__ << " leave " << x\
<< "; next_handshake_state " << next_handshake_state_
#define GotoState(s)\
do {\
VLOG(1) << (void *)this << " " << __FUNCTION__ << " jump to state " << s;\
next_handshake_state_ = s;\
} while (0)
#define LogData(s, len)\
VLOG(1) << (void *)this << " " << __FUNCTION__\
<< " data [" << std::string(s, len) << "]"
#endif
namespace {
class NSSSSLInitSingleton {
public:
NSSSSLInitSingleton() {
base::EnsureNSSInit();
NSS_SetDomesticPolicy();
#if defined(USE_SYSTEM_SSL)
// Use late binding to avoid scary but benign warning
// "Symbol `SSL_ImplementedCiphers' has different size in shared object,
// consider re-linking"
// TODO(wtc): Use the new SSL_GetImplementedCiphers and
// SSL_GetNumImplementedCiphers functions when we require NSS 3.12.6.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=496993.
const PRUint16* pSSL_ImplementedCiphers = static_cast<const PRUint16*>(
dlsym(RTLD_DEFAULT, "SSL_ImplementedCiphers"));
if (pSSL_ImplementedCiphers == NULL) {
NOTREACHED() << "Can't get list of supported ciphers";
return;
}
#else
#define pSSL_ImplementedCiphers SSL_ImplementedCiphers
#endif
// Explicitly enable exactly those ciphers with keys of at least 80 bits
for (int i = 0; i < SSL_NumImplementedCiphers; i++) {
SSLCipherSuiteInfo info;
if (SSL_GetCipherSuiteInfo(pSSL_ImplementedCiphers[i], &info,
sizeof(info)) == SECSuccess) {
SSL_CipherPrefSetDefault(pSSL_ImplementedCiphers[i],
(info.effectiveKeyBits >= 80));
}
}
// Enable SSL.
SSL_OptionSetDefault(SSL_SECURITY, PR_TRUE);
// All other SSL options are set per-session by SSLClientSocket.
}
~NSSSSLInitSingleton() {
// Have to clear the cache, or NSS_Shutdown fails with SEC_ERROR_BUSY.
SSL_ClearSessionCache();
}
};
// Initialize the NSS SSL library if it isn't already initialized. This must
// be called before any other NSS SSL functions. This function is
// thread-safe, and the NSS SSL library will only ever be initialized once.
// The NSS SSL library will be properly shut down on program exit.
void EnsureNSSSSLInit() {
// Initializing SSL causes us to do blocking IO.
// Temporarily allow it until we fix
// http://code.google.com/p/chromium/issues/detail?id=59847
base::ThreadRestrictions::ScopedAllowIO allow_io;
Singleton<NSSSSLInitSingleton>::get();
}
// The default error mapping function.
// Maps an NSPR error code to a network error code.
int MapNSPRError(PRErrorCode err) {
// TODO(port): fill this out as we learn what's important
switch (err) {
case PR_WOULD_BLOCK_ERROR:
return ERR_IO_PENDING;
case PR_ADDRESS_NOT_SUPPORTED_ERROR: // For connect.
case PR_NO_ACCESS_RIGHTS_ERROR:
return ERR_ACCESS_DENIED;
case PR_IO_TIMEOUT_ERROR:
return ERR_TIMED_OUT;
case PR_CONNECT_RESET_ERROR:
return ERR_CONNECTION_RESET;
case PR_CONNECT_ABORTED_ERROR:
return ERR_CONNECTION_ABORTED;
case PR_CONNECT_REFUSED_ERROR:
return ERR_CONNECTION_REFUSED;
case PR_HOST_UNREACHABLE_ERROR:
case PR_NETWORK_UNREACHABLE_ERROR:
return ERR_ADDRESS_UNREACHABLE;
case PR_ADDRESS_NOT_AVAILABLE_ERROR:
return ERR_ADDRESS_INVALID;
case PR_INVALID_ARGUMENT_ERROR:
return ERR_INVALID_ARGUMENT;
case PR_END_OF_FILE_ERROR:
return ERR_CONNECTION_CLOSED;
case PR_NOT_IMPLEMENTED_ERROR:
return ERR_NOT_IMPLEMENTED;
case SEC_ERROR_INVALID_ARGS:
return ERR_INVALID_ARGUMENT;
case SSL_ERROR_SSL_DISABLED:
return ERR_NO_SSL_VERSIONS_ENABLED;
case SSL_ERROR_NO_CYPHER_OVERLAP:
case SSL_ERROR_UNSUPPORTED_VERSION:
return ERR_SSL_VERSION_OR_CIPHER_MISMATCH;
case SSL_ERROR_HANDSHAKE_FAILURE_ALERT:
case SSL_ERROR_HANDSHAKE_UNEXPECTED_ALERT:
case SSL_ERROR_ILLEGAL_PARAMETER_ALERT:
return ERR_SSL_PROTOCOL_ERROR;
case SSL_ERROR_DECOMPRESSION_FAILURE_ALERT:
return ERR_SSL_DECOMPRESSION_FAILURE_ALERT;
case SSL_ERROR_BAD_MAC_ALERT:
return ERR_SSL_BAD_RECORD_MAC_ALERT;
case SSL_ERROR_UNSAFE_NEGOTIATION:
return ERR_SSL_UNSAFE_NEGOTIATION;
case SSL_ERROR_WEAK_SERVER_KEY:
return ERR_SSL_WEAK_SERVER_EPHEMERAL_DH_KEY;
default: {
if (IS_SSL_ERROR(err)) {
LOG(WARNING) << "Unknown SSL error " << err <<
" mapped to net::ERR_SSL_PROTOCOL_ERROR";
return ERR_SSL_PROTOCOL_ERROR;
}
LOG(WARNING) << "Unknown error " << err <<
" mapped to net::ERR_FAILED";
return ERR_FAILED;
}
}
}
// Context-sensitive error mapping functions.
int MapHandshakeError(PRErrorCode err) {
switch (err) {
// If the server closed on us, it is a protocol error.
// Some TLS-intolerant servers do this when we request TLS.
case PR_END_OF_FILE_ERROR:
// The handshake may fail because some signature (for example, the
// signature in the ServerKeyExchange message for an ephemeral
// Diffie-Hellman cipher suite) is invalid.
case SEC_ERROR_BAD_SIGNATURE:
return ERR_SSL_PROTOCOL_ERROR;
default:
return MapNSPRError(err);
}
}
// Extra parameters to attach to the NetLog when we receive an error in response
// to a call to an NSS function. Used instead of SSLErrorParams with
// events of type TYPE_SSL_NSS_ERROR. Automatically looks up last PR error.
class SSLFailedNSSFunctionParams : public NetLog::EventParameters {
public:
// |param| is ignored if it has a length of 0.
SSLFailedNSSFunctionParams(const std::string& function,
const std::string& param)
: function_(function), param_(param), ssl_lib_error_(PR_GetError()) {
}
virtual Value* ToValue() const {
DictionaryValue* dict = new DictionaryValue();
dict->SetString("function", function_);
if (!param_.empty())
dict->SetString("param", param_);
dict->SetInteger("ssl_lib_error", ssl_lib_error_);
return dict;
}
private:
const std::string function_;
const std::string param_;
const PRErrorCode ssl_lib_error_;
};
void LogFailedNSSFunction(const BoundNetLog& net_log,
const char* function,
const char* param) {
net_log.AddEvent(
NetLog::TYPE_SSL_NSS_ERROR,
make_scoped_refptr(new SSLFailedNSSFunctionParams(function, param)));
}
#if defined(OS_WIN)
// This callback is intended to be used with CertFindChainInStore. In addition
// to filtering by extended/enhanced key usage, we do not show expired
// certificates and require digital signature usage in the key usage
// extension.
//
// This matches our behavior on Mac OS X and that of NSS. It also matches the
// default behavior of IE8. See http://support.microsoft.com/kb/890326 and
// http://blogs.msdn.com/b/askie/archive/2009/06/09/my-expired-client-certificates-no-longer-display-when-connecting-to-my-web-server-using-ie8.aspx
BOOL WINAPI ClientCertFindCallback(PCCERT_CONTEXT cert_context,
void* find_arg) {
VLOG(1) << "Calling ClientCertFindCallback from _nss";
// Verify the certificate's KU is good.
BYTE key_usage;
if (CertGetIntendedKeyUsage(X509_ASN_ENCODING, cert_context->pCertInfo,
&key_usage, 1)) {
if (!(key_usage & CERT_DIGITAL_SIGNATURE_KEY_USAGE))
return FALSE;
} else {
DWORD err = GetLastError();
// If |err| is non-zero, it's an actual error. Otherwise the extension
// just isn't present, and we treat it as if everything was allowed.
if (err) {
DLOG(ERROR) << "CertGetIntendedKeyUsage failed: " << err;
return FALSE;
}
}
// Verify the current time is within the certificate's validity period.
if (CertVerifyTimeValidity(NULL, cert_context->pCertInfo) != 0)
return FALSE;
return TRUE;
}
#endif
// PeerCertificateChain is a helper object which extracts the certificate
// chain, as given by the server, from an NSS socket and performs the needed
// resource management. The first element of the chain is the leaf certificate
// and the other elements are in the order given by the server.
class PeerCertificateChain {
public:
explicit PeerCertificateChain(PRFileDesc* nss_fd)
: num_certs_(0),
certs_(NULL) {
SECStatus rv = SSL_PeerCertificateChain(nss_fd, NULL, &num_certs_);
DCHECK_EQ(rv, SECSuccess);
certs_ = new CERTCertificate*[num_certs_];
const unsigned expected_num_certs = num_certs_;
rv = SSL_PeerCertificateChain(nss_fd, certs_, &num_certs_);
DCHECK_EQ(rv, SECSuccess);
DCHECK_EQ(num_certs_, expected_num_certs);
}
~PeerCertificateChain() {
for (unsigned i = 0; i < num_certs_; i++)
CERT_DestroyCertificate(certs_[i]);
delete[] certs_;
}
unsigned size() const { return num_certs_; }
CERTCertificate* operator[](unsigned i) {
DCHECK_LT(i, num_certs_);
return certs_[i];
}
std::vector<base::StringPiece> AsStringPieceVector() const {
std::vector<base::StringPiece> v(size());
for (unsigned i = 0; i < size(); i++) {
v[i] = base::StringPiece(
reinterpret_cast<const char*>(certs_[i]->derCert.data),
certs_[i]->derCert.len);
}
return v;
}
private:
unsigned num_certs_;
CERTCertificate** certs_;
};
} // namespace
SSLClientSocketNSS::SSLClientSocketNSS(ClientSocketHandle* transport_socket,
const HostPortPair& host_and_port,
const SSLConfig& ssl_config,
SSLHostInfo* ssl_host_info,
DnsRRResolver* dnsrr_resolver)
: ALLOW_THIS_IN_INITIALIZER_LIST(buffer_send_callback_(
this, &SSLClientSocketNSS::BufferSendComplete)),
ALLOW_THIS_IN_INITIALIZER_LIST(buffer_recv_callback_(
this, &SSLClientSocketNSS::BufferRecvComplete)),
transport_send_busy_(false),
transport_recv_busy_(false),
corked_(false),
ALLOW_THIS_IN_INITIALIZER_LIST(handshake_io_callback_(
this, &SSLClientSocketNSS::OnHandshakeIOComplete)),
transport_(transport_socket),
host_and_port_(host_and_port),
ssl_config_(ssl_config),
user_connect_callback_(NULL),
user_read_callback_(NULL),
user_write_callback_(NULL),
user_read_buf_len_(0),
user_write_buf_len_(0),
server_cert_nss_(NULL),
server_cert_verify_result_(NULL),
ssl_connection_status_(0),
client_auth_cert_needed_(false),
handshake_callback_called_(false),
completed_handshake_(false),
pseudo_connected_(false),
eset_mitm_detected_(false),
predicted_cert_chain_correct_(false),
peername_initialized_(false),
dnssec_provider_(NULL),
next_handshake_state_(STATE_NONE),
nss_fd_(NULL),
nss_bufs_(NULL),
net_log_(transport_socket->socket()->NetLog()),
predicted_npn_status_(kNextProtoUnsupported),
predicted_npn_proto_used_(false),
ssl_host_info_(ssl_host_info),
dnsrr_resolver_(dnsrr_resolver) {
EnterFunction("");
}
SSLClientSocketNSS::~SSLClientSocketNSS() {
EnterFunction("");
Disconnect();
LeaveFunction("");
}
int SSLClientSocketNSS::Init() {
EnterFunction("");
// Initialize the NSS SSL library in a threadsafe way. This also
// initializes the NSS base library.
EnsureNSSSSLInit();
if (!NSS_IsInitialized())
return ERR_UNEXPECTED;
#if !defined(OS_MACOSX) && !defined(OS_WIN)
// We must call EnsureOCSPInit() here, on the IO thread, to get the IO loop
// by MessageLoopForIO::current().
// X509Certificate::Verify() runs on a worker thread of CertVerifier.
EnsureOCSPInit();
#endif
LeaveFunction("");
return OK;
}
// SaveSnapStartInfo extracts the information needed to perform a Snap Start
// with this server in the future (if any) and tells |ssl_host_info_| to
// preserve it.
void SSLClientSocketNSS::SaveSnapStartInfo() {
if (!ssl_host_info_.get())
return;
SECStatus rv;
SSLSnapStartResult snap_start_type;
rv = SSL_GetSnapStartResult(nss_fd_, &snap_start_type);
if (rv != SECSuccess) {
NOTREACHED();
return;
}
net_log_.AddEvent(NetLog::TYPE_SSL_SNAP_START,
new NetLogIntegerParameter("type", snap_start_type));
LOG(ERROR) << "Snap Start: " << snap_start_type << " "
<< host_and_port_.ToString();
if (snap_start_type == SSL_SNAP_START_FULL ||
snap_start_type == SSL_SNAP_START_RESUME) {
// If we did a successful Snap Start then our information was correct and
// there's no point saving it again.
return;
}
const unsigned char* hello_data;
unsigned hello_data_len;
rv = SSL_GetPredictedServerHelloData(nss_fd_, &hello_data, &hello_data_len);
if (rv != SECSuccess) {
NOTREACHED();
return;
}
if (hello_data_len > std::numeric_limits<uint16>::max())
return;
SSLHostInfo::State* state = ssl_host_info_->mutable_state();
state->server_hello =
std::string(reinterpret_cast<const char *>(hello_data), hello_data_len);
if (hello_data_len > 0) {
state->npn_valid = true;
state->npn_status = GetNextProto(&state->npn_protocol);
} else {
state->npn_valid = false;
}
state->certs.clear();
PeerCertificateChain certs(nss_fd_);
for (unsigned i = 0; i < certs.size(); i++) {
if (certs[i]->derCert.len > std::numeric_limits<uint16>::max())
return;
state->certs.push_back(std::string(
reinterpret_cast<char*>(certs[i]->derCert.data),
certs[i]->derCert.len));
}
LOG(ERROR) << "Setting Snap Start info " << host_and_port_.ToString();
ssl_host_info_->Persist();
}
static void DestroyCertificates(CERTCertificate** certs, unsigned len) {
for (unsigned i = 0; i < len; i++)
CERT_DestroyCertificate(certs[i]);
}
// LoadSnapStartInfo parses |info|, which contains data previously serialised
// by |SaveSnapStartInfo|, and sets the predicted certificates and ServerHello
// data on the NSS socket. Returns true on success. If this function returns
// false, the caller should try a normal TLS handshake.
bool SSLClientSocketNSS::LoadSnapStartInfo() {
const SSLHostInfo::State& state(ssl_host_info_->state());
if (state.server_hello.empty() ||
state.certs.empty() ||
!state.npn_valid) {
return false;
}
SECStatus rv;
rv = SSL_SetPredictedServerHelloData(
nss_fd_,
reinterpret_cast<const uint8*>(state.server_hello.data()),
state.server_hello.size());
DCHECK_EQ(SECSuccess, rv);
const std::vector<std::string>& certs_in = state.certs;
scoped_array<CERTCertificate*> certs(new CERTCertificate*[certs_in.size()]);
for (size_t i = 0; i < certs_in.size(); i++) {
SECItem derCert;
derCert.data =
const_cast<uint8*>(reinterpret_cast<const uint8*>(certs_in[i].data()));
derCert.len = certs_in[i].size();
certs[i] = CERT_NewTempCertificate(
CERT_GetDefaultCertDB(), &derCert, NULL /* no nickname given */,
PR_FALSE /* not permanent */, PR_TRUE /* copy DER data */);
if (!certs[i]) {
DestroyCertificates(&certs[0], i);
NOTREACHED();
return false;
}
}
rv = SSL_SetPredictedPeerCertificates(nss_fd_, certs.get(), certs_in.size());
DestroyCertificates(&certs[0], certs_in.size());
DCHECK_EQ(SECSuccess, rv);
if (state.npn_valid) {
predicted_npn_status_ = state.npn_status;
predicted_npn_proto_ = state.npn_protocol;
}
return true;
}
bool SSLClientSocketNSS::IsNPNProtocolMispredicted() {
DCHECK(handshake_callback_called_);
if (!predicted_npn_proto_used_)
return false;
std::string npn_proto;
GetNextProto(&npn_proto);
return predicted_npn_proto_ != npn_proto;
}
void SSLClientSocketNSS::UncorkAfterTimeout() {
corked_ = false;
int nsent;
do {
nsent = BufferSend();
} while (nsent > 0);
}
int SSLClientSocketNSS::Connect(CompletionCallback* callback) {
EnterFunction("");
DCHECK(transport_.get());
DCHECK(next_handshake_state_ == STATE_NONE);
DCHECK(!user_read_callback_);
DCHECK(!user_write_callback_);
DCHECK(!user_connect_callback_);
DCHECK(!user_read_buf_);
DCHECK(!user_write_buf_);
DCHECK(!pseudo_connected_);
net_log_.BeginEvent(NetLog::TYPE_SSL_CONNECT, NULL);
int rv = Init();
if (rv != OK) {
net_log_.EndEvent(NetLog::TYPE_SSL_CONNECT, NULL);
return rv;
}
rv = InitializeSSLOptions();
if (rv != OK) {
net_log_.EndEvent(NetLog::TYPE_SSL_CONNECT, NULL);
return rv;
}
// Attempt to initialize the peer name. In the case of TCP FastOpen,
// we don't have the peer yet.
if (!UsingTCPFastOpen()) {
rv = InitializeSSLPeerName();
if (rv != OK) {
net_log_.EndEvent(NetLog::TYPE_SSL_CONNECT, NULL);
return rv;
}
}
if (ssl_config_.snap_start_enabled && ssl_host_info_.get()) {
GotoState(STATE_SNAP_START_LOAD_INFO);
} else {
GotoState(STATE_HANDSHAKE);
}
rv = DoHandshakeLoop(OK);
if (rv == ERR_IO_PENDING) {
if (pseudo_connected_) {
net_log_.EndEvent(NetLog::TYPE_SSL_CONNECT, NULL);
rv = OK;
} else {
user_connect_callback_ = callback;
}
} else {
net_log_.EndEvent(NetLog::TYPE_SSL_CONNECT, NULL);
}
LeaveFunction("");
return rv > OK ? OK : rv;
}
int SSLClientSocketNSS::InitializeSSLOptions() {
// Transport connected, now hook it up to nss
// TODO(port): specify rx and tx buffer sizes separately
nss_fd_ = memio_CreateIOLayer(kRecvBufferSize);
if (nss_fd_ == NULL) {
return ERR_OUT_OF_MEMORY; // TODO(port): map NSPR error code.
}
// Grab pointer to buffers
nss_bufs_ = memio_GetSecret(nss_fd_);
/* Create SSL state machine */
/* Push SSL onto our fake I/O socket */
nss_fd_ = SSL_ImportFD(NULL, nss_fd_);
if (nss_fd_ == NULL) {
LogFailedNSSFunction(net_log_, "SSL_ImportFD", "");
return ERR_OUT_OF_MEMORY; // TODO(port): map NSPR/NSS error code.
}
// TODO(port): set more ssl options! Check errors!
int rv;
rv = SSL_OptionSet(nss_fd_, SSL_SECURITY, PR_TRUE);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_SECURITY");
return ERR_UNEXPECTED;
}
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SSL2, ssl_config_.ssl2_enabled);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_SSL2");
return ERR_UNEXPECTED;
}
// SNI is enabled automatically if TLS is enabled -- as long as
// SSL_V2_COMPATIBLE_HELLO isn't.
// So don't do V2 compatible hellos unless we're really using SSL2,
// to avoid errors like
// "common name `mail.google.com' != requested host name `gmail.com'"
rv = SSL_OptionSet(nss_fd_, SSL_V2_COMPATIBLE_HELLO,
ssl_config_.ssl2_enabled);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_V2_COMPATIBLE_HELLO");
return ERR_UNEXPECTED;
}
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SSL3, ssl_config_.ssl3_enabled);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_SSL3");
return ERR_UNEXPECTED;
}
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_TLS, ssl_config_.tls1_enabled);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_TLS");
return ERR_UNEXPECTED;
}
for (std::vector<uint16>::const_iterator it =
ssl_config_.disabled_cipher_suites.begin();
it != ssl_config_.disabled_cipher_suites.end(); ++it) {
// This will fail if the specified cipher is not implemented by NSS, but
// the failure is harmless.
SSL_CipherPrefSet(nss_fd_, *it, PR_FALSE);
}
#ifdef SSL_ENABLE_SESSION_TICKETS
// Support RFC 5077
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SESSION_TICKETS, PR_TRUE);
if (rv != SECSuccess) {
LogFailedNSSFunction(
net_log_, "SSL_OptionSet", "SSL_ENABLE_SESSION_TICKETS");
}
#else
#error "You need to install NSS-3.12 or later to build chromium"
#endif
#ifdef SSL_ENABLE_DEFLATE
// Some web servers have been found to break if TLS is used *or* if DEFLATE
// is advertised. Thus, if TLS is disabled (probably because we are doing
// SSLv3 fallback), we disable DEFLATE also.
// See http://crbug.com/31628
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_DEFLATE, ssl_config_.tls1_enabled);
if (rv != SECSuccess)
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_DEFLATE");
#endif
#ifdef SSL_ENABLE_FALSE_START
rv = SSL_OptionSet(
nss_fd_, SSL_ENABLE_FALSE_START,
ssl_config_.false_start_enabled &&
!SSLConfigService::IsKnownFalseStartIncompatibleServer(
host_and_port_.host()));
if (rv != SECSuccess)
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_FALSE_START");
#endif
#ifdef SSL_ENABLE_SNAP_START
// TODO(agl): check that SSL_ENABLE_SNAP_START actually does something in the
// current NSS code.
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SNAP_START,
ssl_config_.snap_start_enabled);
if (rv != SECSuccess)
VLOG(1) << "SSL_ENABLE_SNAP_START failed. Old system nss?";
#endif
#ifdef SSL_ENABLE_RENEGOTIATION
// Deliberately disable this check for now: http://crbug.com/55410
if (false &&
SSLConfigService::IsKnownStrictTLSServer(host_and_port_.host()) &&
!ssl_config_.mitm_proxies_allowed) {
rv = SSL_OptionSet(nss_fd_, SSL_REQUIRE_SAFE_NEGOTIATION, PR_TRUE);
if (rv != SECSuccess) {
LogFailedNSSFunction(
net_log_, "SSL_OptionSet", "SSL_REQUIRE_SAFE_NEGOTIATION");
}
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_RENEGOTIATION,
SSL_RENEGOTIATE_REQUIRES_XTN);
} else {
// We allow servers to request renegotiation. Since we're a client,
// prohibiting this is rather a waste of time. Only servers are in a
// position to prevent renegotiation attacks.
// http://extendedsubset.com/?p=8
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_RENEGOTIATION,
SSL_RENEGOTIATE_TRANSITIONAL);
}
if (rv != SECSuccess) {
LogFailedNSSFunction(
net_log_, "SSL_OptionSet", "SSL_ENABLE_RENEGOTIATION");
}
#endif // SSL_ENABLE_RENEGOTIATION
#ifdef SSL_NEXT_PROTO_NEGOTIATED
if (!ssl_config_.next_protos.empty()) {
rv = SSL_SetNextProtoNego(
nss_fd_,
reinterpret_cast<const unsigned char *>(ssl_config_.next_protos.data()),
ssl_config_.next_protos.size());
if (rv != SECSuccess)
LogFailedNSSFunction(net_log_, "SSL_SetNextProtoNego", "");
}
#endif
rv = SSL_OptionSet(nss_fd_, SSL_HANDSHAKE_AS_CLIENT, PR_TRUE);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_HANDSHAKE_AS_CLIENT");
return ERR_UNEXPECTED;
}
rv = SSL_AuthCertificateHook(nss_fd_, OwnAuthCertHandler, this);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_AuthCertificateHook", "");
return ERR_UNEXPECTED;
}
#if defined(NSS_PLATFORM_CLIENT_AUTH)
rv = SSL_GetPlatformClientAuthDataHook(nss_fd_, PlatformClientAuthHandler,
this);
#else
rv = SSL_GetClientAuthDataHook(nss_fd_, ClientAuthHandler, this);
#endif
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_GetClientAuthDataHook", "");
return ERR_UNEXPECTED;
}
rv = SSL_HandshakeCallback(nss_fd_, HandshakeCallback, this);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_HandshakeCallback", "");
return ERR_UNEXPECTED;
}
// Tell SSL the hostname we're trying to connect to.
SSL_SetURL(nss_fd_, host_and_port_.host().c_str());
// Tell SSL we're a client; needed if not letting NSPR do socket I/O
SSL_ResetHandshake(nss_fd_, 0);
return OK;
}
int SSLClientSocketNSS::InitializeSSLPeerName() {
// Tell NSS who we're connected to
AddressList peer_address;
int err = transport_->socket()->GetPeerAddress(&peer_address);
if (err != OK)
return err;
const struct addrinfo* ai = peer_address.head();
PRNetAddr peername;
memset(&peername, 0, sizeof(peername));
DCHECK_LE(ai->ai_addrlen, sizeof(peername));
size_t len = std::min(static_cast<size_t>(ai->ai_addrlen),
sizeof(peername));
memcpy(&peername, ai->ai_addr, len);
// Adjust the address family field for BSD, whose sockaddr
// structure has a one-byte length and one-byte address family
// field at the beginning. PRNetAddr has a two-byte address
// family field at the beginning.
peername.raw.family = ai->ai_addr->sa_family;
memio_SetPeerName(nss_fd_, &peername);
// Set the peer ID for session reuse. This is necessary when we create an
// SSL tunnel through a proxy -- GetPeerName returns the proxy's address
// rather than the destination server's address in that case.
std::string peer_id = host_and_port_.ToString();
SECStatus rv = SSL_SetSockPeerID(nss_fd_, const_cast<char*>(peer_id.c_str()));
if (rv != SECSuccess)
LogFailedNSSFunction(net_log_, "SSL_SetSockPeerID", peer_id.c_str());
peername_initialized_ = true;
return OK;
}
void SSLClientSocketNSS::Disconnect() {
EnterFunction("");
// TODO(wtc): Send SSL close_notify alert.
if (nss_fd_ != NULL) {
PR_Close(nss_fd_);
nss_fd_ = NULL;
}
// Shut down anything that may call us back (through buffer_send_callback_,
// buffer_recv_callback, or handshake_io_callback_).
verifier_.reset();
transport_->socket()->Disconnect();
// Reset object state
transport_send_busy_ = false;
transport_recv_busy_ = false;
user_connect_callback_ = NULL;
user_read_callback_ = NULL;
user_write_callback_ = NULL;
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
server_cert_ = NULL;
if (server_cert_nss_) {
CERT_DestroyCertificate(server_cert_nss_);
server_cert_nss_ = NULL;
}
local_server_cert_verify_result_.Reset();
server_cert_verify_result_ = NULL;
ssl_connection_status_ = 0;
completed_handshake_ = false;
pseudo_connected_ = false;
eset_mitm_detected_ = false;
predicted_cert_chain_correct_ = false;
peername_initialized_ = false;
nss_bufs_ = NULL;
client_certs_.clear();
client_auth_cert_needed_ = false;
LeaveFunction("");
}
bool SSLClientSocketNSS::IsConnected() const {
// Ideally, we should also check if we have received the close_notify alert
// message from the server, and return false in that case. We're not doing
// that, so this function may return a false positive. Since the upper
// layer (HttpNetworkTransaction) needs to handle a persistent connection
// closed by the server when we send a request anyway, a false positive in
// exchange for simpler code is a good trade-off.
EnterFunction("");
bool ret = (pseudo_connected_ || completed_handshake_) &&
transport_->socket()->IsConnected();
LeaveFunction("");
return ret;
}
bool SSLClientSocketNSS::IsConnectedAndIdle() const {
// Unlike IsConnected, this method doesn't return a false positive.
//
// Strictly speaking, we should check if we have received the close_notify
// alert message from the server, and return false in that case. Although
// the close_notify alert message means EOF in the SSL layer, it is just
// bytes to the transport layer below, so
// transport_->socket()->IsConnectedAndIdle() returns the desired false
// when we receive close_notify.
EnterFunction("");
bool ret = (pseudo_connected_ || completed_handshake_) &&
transport_->socket()->IsConnectedAndIdle();
LeaveFunction("");
return ret;
}
int SSLClientSocketNSS::GetPeerAddress(AddressList* address) const {
return transport_->socket()->GetPeerAddress(address);
}
void SSLClientSocketNSS::SetSubresourceSpeculation() {
if (transport_.get() && transport_->socket()) {
transport_->socket()->SetSubresourceSpeculation();
} else {
NOTREACHED();
}
}
void SSLClientSocketNSS::SetOmniboxSpeculation() {
if (transport_.get() && transport_->socket()) {
transport_->socket()->SetOmniboxSpeculation();
} else {
NOTREACHED();
}
}
bool SSLClientSocketNSS::WasEverUsed() const {
if (transport_.get() && transport_->socket()) {
return transport_->socket()->WasEverUsed();
}
NOTREACHED();
return false;
}
bool SSLClientSocketNSS::UsingTCPFastOpen() const {
if (transport_.get() && transport_->socket()) {
return transport_->socket()->UsingTCPFastOpen();
}
NOTREACHED();
return false;
}
int SSLClientSocketNSS::Read(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
EnterFunction(buf_len);
DCHECK(!user_read_callback_);
DCHECK(!user_connect_callback_);
DCHECK(!user_read_buf_);
DCHECK(nss_bufs_);
user_read_buf_ = buf;
user_read_buf_len_ = buf_len;
if (!completed_handshake_) {
// In this case we have lied about being connected in order to merge the
// first Write into a Snap Start handshake. We'll leave the read hanging
// until the handshake has completed.
DCHECK(pseudo_connected_);
user_read_callback_ = callback;
LeaveFunction(ERR_IO_PENDING);
return ERR_IO_PENDING;
}
int rv = DoReadLoop(OK);
if (rv == ERR_IO_PENDING) {
user_read_callback_ = callback;
} else {
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
}
LeaveFunction(rv);
return rv;
}
int SSLClientSocketNSS::Write(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
EnterFunction(buf_len);
if (!pseudo_connected_) {
DCHECK(completed_handshake_);
DCHECK(next_handshake_state_ == STATE_NONE);
DCHECK(!user_connect_callback_);
}
DCHECK(!user_write_callback_);
DCHECK(!user_write_buf_);
DCHECK(nss_bufs_);
user_write_buf_ = buf;
user_write_buf_len_ = buf_len;
if (next_handshake_state_ == STATE_SNAP_START_WAIT_FOR_WRITE) {
// We lied about being connected and we have been waiting for this write in
// order to merge it into the Snap Start handshake. We'll leave the write
// pending until the handshake completes.
DCHECK(pseudo_connected_);
int rv = DoHandshakeLoop(OK);
if (rv == ERR_IO_PENDING) {
user_write_callback_ = callback;
} else {
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
}
if (rv != OK)
return rv;
}
if (corked_) {
corked_ = false;
uncork_timer_.Reset();
}
int rv = DoWriteLoop(OK);
if (rv == ERR_IO_PENDING) {
user_write_callback_ = callback;
} else {
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
}
LeaveFunction(rv);
return rv;
}
bool SSLClientSocketNSS::SetReceiveBufferSize(int32 size) {
return transport_->socket()->SetReceiveBufferSize(size);
}
bool SSLClientSocketNSS::SetSendBufferSize(int32 size) {
return transport_->socket()->SetSendBufferSize(size);
}
// static
void SSLClientSocketNSS::ClearSessionCache() {
SSL_ClearSessionCache();
}
// Sets server_cert_ and server_cert_nss_ if not yet set.
// Returns server_cert_.
X509Certificate *SSLClientSocketNSS::UpdateServerCert() {
// We set the server_cert_ from HandshakeCallback().
if (server_cert_ == NULL) {
server_cert_nss_ = SSL_PeerCertificate(nss_fd_);
if (server_cert_nss_) {
PeerCertificateChain certs(nss_fd_);
server_cert_ = X509Certificate::CreateFromDERCertChain(
certs.AsStringPieceVector());
}
}
return server_cert_;
}
// Sets ssl_connection_status_.
void SSLClientSocketNSS::UpdateConnectionStatus() {
SSLChannelInfo channel_info;
SECStatus ok = SSL_GetChannelInfo(nss_fd_,
&channel_info, sizeof(channel_info));
if (ok == SECSuccess &&
channel_info.length == sizeof(channel_info) &&
channel_info.cipherSuite) {
ssl_connection_status_ |=
(static_cast<int>(channel_info.cipherSuite) &
SSL_CONNECTION_CIPHERSUITE_MASK) <<
SSL_CONNECTION_CIPHERSUITE_SHIFT;
ssl_connection_status_ |=
(static_cast<int>(channel_info.compressionMethod) &
SSL_CONNECTION_COMPRESSION_MASK) <<
SSL_CONNECTION_COMPRESSION_SHIFT;
// NSS 3.12.x doesn't have version macros for TLS 1.1 and 1.2 (because NSS
// doesn't support them yet), so we use 0x0302 and 0x0303 directly.
int version = SSL_CONNECTION_VERSION_UNKNOWN;
if (channel_info.protocolVersion < SSL_LIBRARY_VERSION_3_0) {
// All versions less than SSL_LIBRARY_VERSION_3_0 are treated as SSL
// version 2.
version = SSL_CONNECTION_VERSION_SSL2;
} else if (channel_info.protocolVersion == SSL_LIBRARY_VERSION_3_0) {
version = SSL_CONNECTION_VERSION_SSL3;
} else if (channel_info.protocolVersion == SSL_LIBRARY_VERSION_3_1_TLS) {
version = SSL_CONNECTION_VERSION_TLS1;
} else if (channel_info.protocolVersion == 0x0302) {
version = SSL_CONNECTION_VERSION_TLS1_1;
} else if (channel_info.protocolVersion == 0x0303) {
version = SSL_CONNECTION_VERSION_TLS1_2;
}
ssl_connection_status_ |=
(version & SSL_CONNECTION_VERSION_MASK) <<
SSL_CONNECTION_VERSION_SHIFT;
}
// SSL_HandshakeNegotiatedExtension was added in NSS 3.12.6.
// Since SSL_MAX_EXTENSIONS was added at the same time, we can test
// SSL_MAX_EXTENSIONS for the presence of SSL_HandshakeNegotiatedExtension.
#if defined(SSL_MAX_EXTENSIONS)
PRBool peer_supports_renego_ext;
ok = SSL_HandshakeNegotiatedExtension(nss_fd_, ssl_renegotiation_info_xtn,
&peer_supports_renego_ext);
if (ok == SECSuccess) {
if (!peer_supports_renego_ext) {
ssl_connection_status_ |= SSL_CONNECTION_NO_RENEGOTIATION_EXTENSION;
// Log an informational message if the server does not support secure
// renegotiation (RFC 5746).
VLOG(1) << "The server " << host_and_port_.ToString()
<< " does not support the TLS renegotiation_info extension.";
}
UMA_HISTOGRAM_ENUMERATION("Net.RenegotiationExtensionSupported",
peer_supports_renego_ext, 2);
}
#endif
if (ssl_config_.ssl3_fallback)
ssl_connection_status_ |= SSL_CONNECTION_SSL3_FALLBACK;
}
void SSLClientSocketNSS::GetSSLInfo(SSLInfo* ssl_info) {
EnterFunction("");
ssl_info->Reset();
if (!server_cert_) {
LOG(DFATAL) << "!server_cert_";
return;
}
ssl_info->cert_status = server_cert_verify_result_->cert_status;
DCHECK(server_cert_ != NULL);
ssl_info->cert = server_cert_;
ssl_info->connection_status = ssl_connection_status_;
PRUint16 cipher_suite =
SSLConnectionStatusToCipherSuite(ssl_connection_status_);
SSLCipherSuiteInfo cipher_info;
SECStatus ok = SSL_GetCipherSuiteInfo(cipher_suite,
&cipher_info, sizeof(cipher_info));
if (ok == SECSuccess) {
ssl_info->security_bits = cipher_info.effectiveKeyBits;
} else {
ssl_info->security_bits = -1;
LOG(DFATAL) << "SSL_GetCipherSuiteInfo returned " << PR_GetError()
<< " for cipherSuite " << cipher_suite;
}
LeaveFunction("");
}
void SSLClientSocketNSS::GetSSLCertRequestInfo(
SSLCertRequestInfo* cert_request_info) {
EnterFunction("");
// TODO(rch): switch SSLCertRequestInfo.host_and_port to a HostPortPair
cert_request_info->host_and_port = host_and_port_.ToString();
cert_request_info->client_certs = client_certs_;
LeaveFunction(cert_request_info->client_certs.size());
}
SSLClientSocket::NextProtoStatus
SSLClientSocketNSS::GetNextProto(std::string* proto) {
#if defined(SSL_NEXT_PROTO_NEGOTIATED)
if (!handshake_callback_called_) {
DCHECK(pseudo_connected_);
predicted_npn_proto_used_ = true;
*proto = predicted_npn_proto_;
return predicted_npn_status_;
}
unsigned char buf[255];
int state;
unsigned len;
SECStatus rv = SSL_GetNextProto(nss_fd_, &state, buf, &len, sizeof(buf));
if (rv != SECSuccess) {
NOTREACHED() << "Error return from SSL_GetNextProto: " << rv;
proto->clear();
return kNextProtoUnsupported;
}
// We don't check for truncation because sizeof(buf) is large enough to hold
// the maximum protocol size.
switch (state) {
case SSL_NEXT_PROTO_NO_SUPPORT:
proto->clear();
return kNextProtoUnsupported;
case SSL_NEXT_PROTO_NEGOTIATED:
*proto = std::string(reinterpret_cast<char*>(buf), len);
return kNextProtoNegotiated;
case SSL_NEXT_PROTO_NO_OVERLAP:
*proto = std::string(reinterpret_cast<char*>(buf), len);
return kNextProtoNoOverlap;
default:
NOTREACHED() << "Unknown status from SSL_GetNextProto: " << state;
proto->clear();
return kNextProtoUnsupported;
}
#else
// No NPN support in the libssl that we are building with.
proto->clear();
return kNextProtoUnsupported;
#endif
}
void SSLClientSocketNSS::UseDNSSEC(DNSSECProvider* provider) {
dnssec_provider_ = provider;
}
void SSLClientSocketNSS::DoReadCallback(int rv) {
EnterFunction(rv);
DCHECK(rv != ERR_IO_PENDING);
DCHECK(user_read_callback_);
// Since Run may result in Read being called, clear |user_read_callback_|
// up front.
CompletionCallback* c = user_read_callback_;
user_read_callback_ = NULL;
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
c->Run(rv);
LeaveFunction("");
}
void SSLClientSocketNSS::DoWriteCallback(int rv) {
EnterFunction(rv);
DCHECK(rv != ERR_IO_PENDING);
DCHECK(user_write_callback_);
// Since Run may result in Write being called, clear |user_write_callback_|
// up front.
CompletionCallback* c = user_write_callback_;
user_write_callback_ = NULL;
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
c->Run(rv);
LeaveFunction("");
}
// As part of Connect(), the SSLClientSocketNSS object performs an SSL
// handshake. This requires network IO, which in turn calls
// BufferRecvComplete() with a non-zero byte count. This byte count eventually
// winds its way through the state machine and ends up being passed to the
// callback. For Read() and Write(), that's what we want. But for Connect(),
// the caller expects OK (i.e. 0) for success.
//
void SSLClientSocketNSS::DoConnectCallback(int rv) {
EnterFunction(rv);
DCHECK_NE(rv, ERR_IO_PENDING);
CompletionCallback* c = user_connect_callback_;
user_connect_callback_ = NULL;
c->Run(rv > OK ? OK : rv);
LeaveFunction("");
}
void SSLClientSocketNSS::OnHandshakeIOComplete(int result) {
EnterFunction(result);
int rv = DoHandshakeLoop(result);
if (rv != ERR_IO_PENDING) {
net_log_.EndEvent(net::NetLog::TYPE_SSL_CONNECT, NULL);
// If we pseudo connected for Snap Start, then we won't have a connect
// callback.
if (user_connect_callback_)
DoConnectCallback(rv);
}
LeaveFunction("");
}
void SSLClientSocketNSS::OnSendComplete(int result) {
EnterFunction(result);
if (next_handshake_state_ == STATE_HANDSHAKE) {
// In handshake phase.
OnHandshakeIOComplete(result);
LeaveFunction("");
return;
}
// OnSendComplete may need to call DoPayloadRead while the renegotiation
// handshake is in progress.
int rv_read = ERR_IO_PENDING;
int rv_write = ERR_IO_PENDING;
bool network_moved;
do {
if (user_read_buf_)
rv_read = DoPayloadRead();
if (user_write_buf_)
rv_write = DoPayloadWrite();
network_moved = DoTransportIO();
} while (rv_read == ERR_IO_PENDING &&
rv_write == ERR_IO_PENDING &&
network_moved);
if (user_read_buf_ && rv_read != ERR_IO_PENDING)
DoReadCallback(rv_read);
if (user_write_buf_ && rv_write != ERR_IO_PENDING)
DoWriteCallback(rv_write);
LeaveFunction("");
}
void SSLClientSocketNSS::OnRecvComplete(int result) {
EnterFunction(result);
if (next_handshake_state_ == STATE_HANDSHAKE) {
// In handshake phase.
OnHandshakeIOComplete(result);
LeaveFunction("");
return;
}
// Network layer received some data, check if client requested to read
// decrypted data or if we're waiting for the first write for Snap Start.
if (!user_read_buf_ || !completed_handshake_) {
LeaveFunction("");
return;
}
int rv = DoReadLoop(result);
if (rv != ERR_IO_PENDING)
DoReadCallback(rv);
LeaveFunction("");
}
// Map a Chromium net error code to an NSS error code.
// See _MD_unix_map_default_error in the NSS source
// tree for inspiration.
static PRErrorCode MapErrorToNSS(int result) {
if (result >=0)
return result;
switch (result) {
case ERR_IO_PENDING:
return PR_WOULD_BLOCK_ERROR;
case ERR_ACCESS_DENIED:
case ERR_NETWORK_ACCESS_DENIED:
// For connect, this could be mapped to PR_ADDRESS_NOT_SUPPORTED_ERROR.
return PR_NO_ACCESS_RIGHTS_ERROR;
case ERR_NOT_IMPLEMENTED:
return PR_NOT_IMPLEMENTED_ERROR;
case ERR_INTERNET_DISCONNECTED: // Equivalent to ENETDOWN.
return PR_NETWORK_UNREACHABLE_ERROR; // Best approximation.
case ERR_CONNECTION_TIMED_OUT:
case ERR_TIMED_OUT:
return PR_IO_TIMEOUT_ERROR;
case ERR_CONNECTION_RESET:
return PR_CONNECT_RESET_ERROR;
case ERR_CONNECTION_ABORTED:
return PR_CONNECT_ABORTED_ERROR;
case ERR_CONNECTION_REFUSED:
return PR_CONNECT_REFUSED_ERROR;
case ERR_ADDRESS_UNREACHABLE:
return PR_HOST_UNREACHABLE_ERROR; // Also PR_NETWORK_UNREACHABLE_ERROR.
case ERR_ADDRESS_INVALID:
return PR_ADDRESS_NOT_AVAILABLE_ERROR;
case ERR_NAME_NOT_RESOLVED:
return PR_DIRECTORY_LOOKUP_ERROR;
default:
LOG(WARNING) << "MapErrorToNSS " << result
<< " mapped to PR_UNKNOWN_ERROR";
return PR_UNKNOWN_ERROR;
}
}
// Do network I/O between the given buffer and the given socket.
// Return true if some I/O performed, false otherwise (error or ERR_IO_PENDING)
bool SSLClientSocketNSS::DoTransportIO() {
EnterFunction("");
bool network_moved = false;
if (nss_bufs_ != NULL) {
int nsent = BufferSend();
int nreceived = BufferRecv();
network_moved = (nsent > 0 || nreceived >= 0);
}
LeaveFunction(network_moved);
return network_moved;
}
// Return 0 for EOF,
// > 0 for bytes transferred immediately,
// < 0 for error (or the non-error ERR_IO_PENDING).
int SSLClientSocketNSS::BufferSend(void) {
if (transport_send_busy_)
return ERR_IO_PENDING;
EnterFunction("");
const char* buf1;
const char* buf2;
unsigned int len1, len2;
memio_GetWriteParams(nss_bufs_, &buf1, &len1, &buf2, &len2);
const unsigned int len = len1 + len2;
if (corked_ && len < kRecvBufferSize / 2)
return 0;
int rv = 0;
if (len) {
scoped_refptr<IOBuffer> send_buffer(new IOBuffer(len));
memcpy(send_buffer->data(), buf1, len1);
memcpy(send_buffer->data() + len1, buf2, len2);
rv = transport_->socket()->Write(send_buffer, len,
&buffer_send_callback_);
if (rv == ERR_IO_PENDING) {
transport_send_busy_ = true;
} else {
memio_PutWriteResult(nss_bufs_, MapErrorToNSS(rv));
}
}
LeaveFunction(rv);
return rv;
}
void SSLClientSocketNSS::BufferSendComplete(int result) {
EnterFunction(result);
// In the case of TCP FastOpen, connect is now finished.
if (!peername_initialized_ && UsingTCPFastOpen())
InitializeSSLPeerName();
memio_PutWriteResult(nss_bufs_, MapErrorToNSS(result));
transport_send_busy_ = false;
OnSendComplete(result);
LeaveFunction("");
}
int SSLClientSocketNSS::BufferRecv(void) {
if (transport_recv_busy_) return ERR_IO_PENDING;
char *buf;
int nb = memio_GetReadParams(nss_bufs_, &buf);
EnterFunction(nb);
int rv;
if (!nb) {
// buffer too full to read into, so no I/O possible at moment
rv = ERR_IO_PENDING;
} else {
recv_buffer_ = new IOBuffer(nb);
rv = transport_->socket()->Read(recv_buffer_, nb, &buffer_recv_callback_);
if (rv == ERR_IO_PENDING) {
transport_recv_busy_ = true;
} else {
if (rv > 0)
memcpy(buf, recv_buffer_->data(), rv);
memio_PutReadResult(nss_bufs_, MapErrorToNSS(rv));
recv_buffer_ = NULL;
}
}
LeaveFunction(rv);
return rv;
}
void SSLClientSocketNSS::BufferRecvComplete(int result) {
EnterFunction(result);
if (result > 0) {
char *buf;
memio_GetReadParams(nss_bufs_, &buf);
memcpy(buf, recv_buffer_->data(), result);
}
recv_buffer_ = NULL;
memio_PutReadResult(nss_bufs_, MapErrorToNSS(result));
transport_recv_busy_ = false;
OnRecvComplete(result);
LeaveFunction("");
}
int SSLClientSocketNSS::DoHandshakeLoop(int last_io_result) {
EnterFunction(last_io_result);
bool network_moved;
int rv = last_io_result;
do {
// Default to STATE_NONE for next state.
// (This is a quirk carried over from the windows
// implementation. It makes reading the logs a bit harder.)
// State handlers can and often do call GotoState just
// to stay in the current state.
State state = next_handshake_state_;
GotoState(STATE_NONE);
switch (state) {
case STATE_NONE:
// we're just pumping data between the buffer and the network
break;
case STATE_SNAP_START_LOAD_INFO:
rv = DoSnapStartLoadInfo();
break;
case STATE_SNAP_START_WAIT_FOR_WRITE:
rv = DoSnapStartWaitForWrite();
break;
case STATE_HANDSHAKE:
rv = DoHandshake();
break;
case STATE_VERIFY_DNSSEC:
rv = DoVerifyDNSSEC(rv);
break;
case STATE_VERIFY_DNSSEC_COMPLETE:
rv = DoVerifyDNSSECComplete(rv);
break;
case STATE_VERIFY_CERT:
DCHECK(rv == OK);
rv = DoVerifyCert(rv);
break;
case STATE_VERIFY_CERT_COMPLETE:
rv = DoVerifyCertComplete(rv);
break;
default:
rv = ERR_UNEXPECTED;
LOG(DFATAL) << "unexpected state " << state;
break;
}
// Do the actual network I/O
network_moved = DoTransportIO();
} while ((rv != ERR_IO_PENDING || network_moved) &&
next_handshake_state_ != STATE_NONE);
LeaveFunction("");
return rv;
}
int SSLClientSocketNSS::DoReadLoop(int result) {
EnterFunction("");
DCHECK(completed_handshake_);
DCHECK(next_handshake_state_ == STATE_NONE);
if (result < 0)
return result;
if (!nss_bufs_) {
LOG(DFATAL) << "!nss_bufs_";
int rv = ERR_UNEXPECTED;
net_log_.AddEvent(NetLog::TYPE_SSL_READ_ERROR,
make_scoped_refptr(new SSLErrorParams(rv, 0)));
return rv;
}
bool network_moved;
int rv;
do {
rv = DoPayloadRead();
network_moved = DoTransportIO();
} while (rv == ERR_IO_PENDING && network_moved);
LeaveFunction("");
return rv;
}
int SSLClientSocketNSS::DoWriteLoop(int result) {
EnterFunction("");
DCHECK(completed_handshake_);
DCHECK(next_handshake_state_ == STATE_NONE);
if (result < 0)
return result;
if (!nss_bufs_) {
LOG(DFATAL) << "!nss_bufs_";
int rv = ERR_UNEXPECTED;
net_log_.AddEvent(NetLog::TYPE_SSL_WRITE_ERROR,
make_scoped_refptr(new SSLErrorParams(rv, 0)));
return rv;
}
bool network_moved;
int rv;
do {
rv = DoPayloadWrite();
network_moved = DoTransportIO();
} while (rv == ERR_IO_PENDING && network_moved);
LeaveFunction("");
return rv;
}
// static
// NSS calls this if an incoming certificate needs to be verified.
// Do nothing but return SECSuccess.
// This is called only in full handshake mode.
// Peer certificate is retrieved in HandshakeCallback() later, which is called
// in full handshake mode or in resumption handshake mode.
SECStatus SSLClientSocketNSS::OwnAuthCertHandler(void* arg,
PRFileDesc* socket,
PRBool checksig,
PRBool is_server) {
#ifdef SSL_ENABLE_FALSE_START
// In the event that we are False Starting this connection, we wish to send
// out the Finished message and first application data record in the same
// packet. This prevents non-determinism when talking to False Start
// intolerant servers which, otherwise, might see the two messages in
// different reads or not, depending on network conditions.
PRBool false_start = 0;
SECStatus rv = SSL_OptionGet(socket, SSL_ENABLE_FALSE_START, &false_start);
DCHECK_EQ(SECSuccess, rv);
if (false_start) {
SSLClientSocketNSS* that = reinterpret_cast<SSLClientSocketNSS*>(arg);
// ESET anti-virus is capable of intercepting HTTPS connections on Windows.
// However, it is False Start intolerant and causes the connections to hang
// forever. We detect ESET by the issuer of the leaf certificate and set a
// flag to return a specific error, giving the user instructions for
// reconfiguring ESET.
CERTCertificate* cert = SSL_PeerCertificate(that->nss_fd_);
if (cert) {
char* common_name = CERT_GetCommonName(&cert->issuer);
if (common_name) {
if (strcmp(common_name, "ESET_RootSslCert") == 0)
that->eset_mitm_detected_ = true;
if (strcmp(common_name, "ContentWatch Root Certificate Authority") == 0) {
// This is NetNanny. NetNanny are updating their product so we
// silently disable False Start for now.
rv = SSL_OptionSet(socket, SSL_ENABLE_FALSE_START, PR_FALSE);
DCHECK_EQ(SECSuccess, rv);
false_start = 0;
}
PORT_Free(common_name);
}
CERT_DestroyCertificate(cert);
}
if (false_start && !that->handshake_callback_called_) {
that->corked_ = true;
that->uncork_timer_.Start(
base::TimeDelta::FromMilliseconds(kCorkTimeoutMs),
that, &SSLClientSocketNSS::UncorkAfterTimeout);
}
}
#endif
// Tell NSS to not verify the certificate.
return SECSuccess;
}
#if defined(NSS_PLATFORM_CLIENT_AUTH)
// static
// NSS calls this if a client certificate is needed.
SECStatus SSLClientSocketNSS::PlatformClientAuthHandler(
void* arg,
PRFileDesc* socket,
CERTDistNames* ca_names,
CERTCertList** result_certs,
void** result_private_key) {
SSLClientSocketNSS* that = reinterpret_cast<SSLClientSocketNSS*>(arg);
that->client_auth_cert_needed_ = !that->ssl_config_.send_client_cert;
#if defined(OS_WIN)
if (that->ssl_config_.send_client_cert) {
if (that->ssl_config_.client_cert) {
PCCERT_CONTEXT cert_context =
that->ssl_config_.client_cert->os_cert_handle();
if (VLOG_IS_ON(1)) {
do {
DWORD size_needed = 0;
BOOL got_info = CertGetCertificateContextProperty(
cert_context, CERT_KEY_PROV_INFO_PROP_ID, NULL, &size_needed);
if (!got_info) {
VLOG(1) << "Failed to get key prov info size " << GetLastError();
break;
}
std::vector<BYTE> raw_info(size_needed);
got_info = CertGetCertificateContextProperty(
cert_context, CERT_KEY_PROV_INFO_PROP_ID, &raw_info[0],
&size_needed);
if (!got_info) {
VLOG(1) << "Failed to get key prov info " << GetLastError();
break;
}
PCRYPT_KEY_PROV_INFO info =
reinterpret_cast<PCRYPT_KEY_PROV_INFO>(&raw_info[0]);
VLOG(1) << "Container Name: " << info->pwszContainerName
<< "\nProvider Name: " << info->pwszProvName
<< "\nProvider Type: " << info->dwProvType
<< "\nFlags: " << info->dwFlags
<< "\nProvider Param Count: " << info->cProvParam
<< "\nKey Specifier: " << info->dwKeySpec;
} while (false);
do {
DWORD size_needed = 0;
BOOL got_identifier = CertGetCertificateContextProperty(
cert_context, CERT_KEY_IDENTIFIER_PROP_ID, NULL, &size_needed);
if (!got_identifier) {
VLOG(1) << "Failed to get key identifier size "
<< GetLastError();
break;
}
std::vector<BYTE> raw_id(size_needed);
got_identifier = CertGetCertificateContextProperty(
cert_context, CERT_KEY_IDENTIFIER_PROP_ID, &raw_id[0],
&size_needed);
if (!got_identifier) {
VLOG(1) << "Failed to get key identifier " << GetLastError();
break;
}
VLOG(1) << "Key Identifier: " << base::HexEncode(&raw_id[0],
size_needed);
} while (false);
}
HCRYPTPROV provider = NULL;
DWORD key_spec = AT_KEYEXCHANGE;
BOOL must_free = FALSE;
BOOL acquired_key = CryptAcquireCertificatePrivateKey(
cert_context,
CRYPT_ACQUIRE_CACHE_FLAG | CRYPT_ACQUIRE_COMPARE_KEY_FLAG,
NULL, &provider, &key_spec, &must_free);
if (acquired_key && provider) {
DCHECK_NE(key_spec, CERT_NCRYPT_KEY_SPEC);
// The certificate cache may have been updated/used, in which case,
// duplicate the existing handle, since NSS will free it when no
// longer in use.
if (!must_free)
CryptContextAddRef(provider, NULL, 0);
SECItem der_cert;
der_cert.type = siDERCertBuffer;
der_cert.data = cert_context->pbCertEncoded;
der_cert.len = cert_context->cbCertEncoded;
// TODO(rsleevi): Error checking for NSS allocation errors.
*result_certs = CERT_NewCertList();
CERTCertDBHandle* db_handle = CERT_GetDefaultCertDB();
CERTCertificate* user_cert = CERT_NewTempCertificate(
db_handle, &der_cert, NULL, PR_FALSE, PR_TRUE);
CERT_AddCertToListTail(*result_certs, user_cert);
// Add the intermediates.
X509Certificate::OSCertHandles intermediates =
that->ssl_config_.client_cert->GetIntermediateCertificates();
for (X509Certificate::OSCertHandles::const_iterator it =
intermediates.begin(); it != intermediates.end(); ++it) {
der_cert.data = (*it)->pbCertEncoded;
der_cert.len = (*it)->cbCertEncoded;
CERTCertificate* intermediate = CERT_NewTempCertificate(
db_handle, &der_cert, NULL, PR_FALSE, PR_TRUE);
CERT_AddCertToListTail(*result_certs, intermediate);
}
// TODO(wtc): |key_spec| should be passed along with |provider|.
*result_private_key = reinterpret_cast<void*>(provider);
return SECSuccess;
}
LOG(WARNING) << "Client cert found without private key";
}
// Send no client certificate.
return SECFailure;
}
that->client_certs_.clear();
std::vector<CERT_NAME_BLOB> issuer_list(ca_names->nnames);
for (int i = 0; i < ca_names->nnames; ++i) {
issuer_list[i].cbData = ca_names->names[i].len;
issuer_list[i].pbData = ca_names->names[i].data;
}
// Client certificates of the user are in the "MY" system certificate store.
HCERTSTORE my_cert_store = CertOpenSystemStore(NULL, L"MY");
if (!my_cert_store) {
LOG(ERROR) << "Could not open the \"MY\" system certificate store: "
<< GetLastError();
return SECFailure;
}
// Enumerate the client certificates.
CERT_CHAIN_FIND_BY_ISSUER_PARA find_by_issuer_para;
memset(&find_by_issuer_para, 0, sizeof(find_by_issuer_para));
find_by_issuer_para.cbSize = sizeof(find_by_issuer_para);
find_by_issuer_para.pszUsageIdentifier = szOID_PKIX_KP_CLIENT_AUTH;
find_by_issuer_para.cIssuer = ca_names->nnames;
find_by_issuer_para.rgIssuer = ca_names->nnames ? &issuer_list[0] : NULL;
find_by_issuer_para.pfnFindCallback = ClientCertFindCallback;
PCCERT_CHAIN_CONTEXT chain_context = NULL;
for (;;) {
// Find a certificate chain.
chain_context = CertFindChainInStore(my_cert_store,
X509_ASN_ENCODING,
0,
CERT_CHAIN_FIND_BY_ISSUER,
&find_by_issuer_para,
chain_context);
if (!chain_context) {
DWORD err = GetLastError();
if (err != CRYPT_E_NOT_FOUND)
DLOG(ERROR) << "CertFindChainInStore failed: " << err;
break;
}
// Get the leaf certificate.
PCCERT_CONTEXT cert_context =
chain_context->rgpChain[0]->rgpElement[0]->pCertContext;
// Copy it to our own certificate store, so that we can close the "MY"
// certificate store before returning from this function.
PCCERT_CONTEXT cert_context2;
BOOL ok = CertAddCertificateContextToStore(X509Certificate::cert_store(),
cert_context,
CERT_STORE_ADD_USE_EXISTING,
&cert_context2);
if (!ok) {
NOTREACHED();
continue;
}
// Copy the rest of the chain to our own store as well. Copying the chain
// stops gracefully if an error is encountered, with the partial chain
// being used as the intermediates, rather than failing to consider the
// client certificate.
net::X509Certificate::OSCertHandles intermediates;
for (DWORD i = 1; i < chain_context->rgpChain[0]->cElement; i++) {
PCCERT_CONTEXT intermediate_copy;
ok = CertAddCertificateContextToStore(X509Certificate::cert_store(),
chain_context->rgpChain[0]->rgpElement[i]->pCertContext,
CERT_STORE_ADD_USE_EXISTING, &intermediate_copy);
if (!ok) {
NOTREACHED();
break;
}
intermediates.push_back(intermediate_copy);
}
scoped_refptr<X509Certificate> cert = X509Certificate::CreateFromHandle(
cert_context2, X509Certificate::SOURCE_LONE_CERT_IMPORT,
intermediates);
that->client_certs_.push_back(cert);
X509Certificate::FreeOSCertHandle(cert_context2);
for (net::X509Certificate::OSCertHandles::iterator it =
intermediates.begin(); it != intermediates.end(); ++it) {
net::X509Certificate::FreeOSCertHandle(*it);
}
}
BOOL ok = CertCloseStore(my_cert_store, CERT_CLOSE_STORE_CHECK_FLAG);
DCHECK(ok);
// Tell NSS to suspend the client authentication. We will then abort the
// handshake by returning ERR_SSL_CLIENT_AUTH_CERT_NEEDED.
return SECWouldBlock;
#elif defined(OS_MACOSX)
if (that->ssl_config_.send_client_cert) {
if (that->ssl_config_.client_cert) {
OSStatus os_error = noErr;
SecIdentityRef identity = NULL;
SecKeyRef private_key = NULL;
CFArrayRef chain =
that->ssl_config_.client_cert->CreateClientCertificateChain();
if (chain) {
identity = reinterpret_cast<SecIdentityRef>(
const_cast<void*>(CFArrayGetValueAtIndex(chain, 0)));
}
if (identity)
os_error = SecIdentityCopyPrivateKey(identity, &private_key);
if (chain && identity && os_error == noErr) {
// TODO(rsleevi): Error checking for NSS allocation errors.
*result_certs = CERT_NewCertList();
*result_private_key = reinterpret_cast<void*>(private_key);
for (CFIndex i = 0; i < CFArrayGetCount(chain); ++i) {
CSSM_DATA cert_data;
SecCertificateRef cert_ref;
if (i == 0) {
cert_ref = that->ssl_config_.client_cert->os_cert_handle();
} else {
cert_ref = reinterpret_cast<SecCertificateRef>(
const_cast<void*>(CFArrayGetValueAtIndex(chain, i)));
}
os_error = SecCertificateGetData(cert_ref, &cert_data);
if (os_error != noErr)
break;
SECItem der_cert;
der_cert.type = siDERCertBuffer;
der_cert.data = cert_data.Data;
der_cert.len = cert_data.Length;
CERTCertificate* nss_cert = CERT_NewTempCertificate(
CERT_GetDefaultCertDB(), &der_cert, NULL, PR_FALSE, PR_TRUE);
CERT_AddCertToListTail(*result_certs, nss_cert);
}
}
if (os_error == noErr) {
CFRelease(chain);
return SECSuccess;
}
LOG(WARNING) << "Client cert found, but could not be used: "
<< os_error;
if (*result_certs) {
CERT_DestroyCertList(*result_certs);
*result_certs = NULL;
}
if (*result_private_key)
*result_private_key = NULL;
if (private_key)
CFRelease(private_key);
if (chain)
CFRelease(chain);
}
// Send no client certificate.
return SECFailure;
}
that->client_certs_.clear();
// First, get the cert issuer names allowed by the server.
std::vector<CertPrincipal> valid_issuers;
int n = ca_names->nnames;
for (int i = 0; i < n; i++) {
// Parse each name into a CertPrincipal object.
CertPrincipal p;
if (p.ParseDistinguishedName(ca_names->names[i].data,
ca_names->names[i].len)) {
valid_issuers.push_back(p);
}
}
// Now get the available client certs whose issuers are allowed by the server.
X509Certificate::GetSSLClientCertificates(that->host_and_port_.host(),
valid_issuers,
&that->client_certs_);
// Tell NSS to suspend the client authentication. We will then abort the
// handshake by returning ERR_SSL_CLIENT_AUTH_CERT_NEEDED.
return SECWouldBlock;
#else
return SECFailure;
#endif
}
#else // NSS_PLATFORM_CLIENT_AUTH
// static
// NSS calls this if a client certificate is needed.
// Based on Mozilla's NSS_GetClientAuthData.
SECStatus SSLClientSocketNSS::ClientAuthHandler(
void* arg,
PRFileDesc* socket,
CERTDistNames* ca_names,
CERTCertificate** result_certificate,
SECKEYPrivateKey** result_private_key) {
SSLClientSocketNSS* that = reinterpret_cast<SSLClientSocketNSS*>(arg);
that->client_auth_cert_needed_ = !that->ssl_config_.send_client_cert;
void* wincx = SSL_RevealPinArg(socket);
// Second pass: a client certificate should have been selected.
if (that->ssl_config_.send_client_cert) {
if (that->ssl_config_.client_cert) {
CERTCertificate* cert = CERT_DupCertificate(
that->ssl_config_.client_cert->os_cert_handle());
SECKEYPrivateKey* privkey = PK11_FindKeyByAnyCert(cert, wincx);
if (privkey) {
// TODO(jsorianopastor): We should wait for server certificate
// verification before sending our credentials. See
// http://crbug.com/13934.
*result_certificate = cert;
*result_private_key = privkey;
return SECSuccess;
}
LOG(WARNING) << "Client cert found without private key";
}
// Send no client certificate.
return SECFailure;
}
// Iterate over all client certificates.
CERTCertList* client_certs = CERT_FindUserCertsByUsage(
CERT_GetDefaultCertDB(), certUsageSSLClient,
PR_FALSE, PR_FALSE, wincx);
if (client_certs) {
for (CERTCertListNode* node = CERT_LIST_HEAD(client_certs);
!CERT_LIST_END(node, client_certs);
node = CERT_LIST_NEXT(node)) {
// Only offer unexpired certificates.
if (CERT_CheckCertValidTimes(node->cert, PR_Now(), PR_TRUE) !=
secCertTimeValid)
continue;
// Filter by issuer.
//
// TODO(davidben): This does a binary comparison of the DER-encoded
// issuers. We should match according to RFC 5280 sec. 7.1. We should find
// an appropriate NSS function or add one if needbe.
if (ca_names->nnames &&
NSS_CmpCertChainWCANames(node->cert, ca_names) != SECSuccess)
continue;
X509Certificate* x509_cert = X509Certificate::CreateFromHandle(
node->cert, X509Certificate::SOURCE_LONE_CERT_IMPORT,
net::X509Certificate::OSCertHandles());
that->client_certs_.push_back(x509_cert);
}
CERT_DestroyCertList(client_certs);
}
// Tell NSS to suspend the client authentication. We will then abort the
// handshake by returning ERR_SSL_CLIENT_AUTH_CERT_NEEDED.
return SECWouldBlock;
}
#endif // NSS_PLATFORM_CLIENT_AUTH
// static
// NSS calls this when handshake is completed.
// After the SSL handshake is finished, use CertVerifier to verify
// the saved server certificate.
void SSLClientSocketNSS::HandshakeCallback(PRFileDesc* socket,
void* arg) {
SSLClientSocketNSS* that = reinterpret_cast<SSLClientSocketNSS*>(arg);
that->handshake_callback_called_ = true;
that->UpdateServerCert();
that->UpdateConnectionStatus();
}
int SSLClientSocketNSS::DoSnapStartLoadInfo() {
EnterFunction("");
int rv = ssl_host_info_->WaitForDataReady(&handshake_io_callback_);
GotoState(STATE_HANDSHAKE);
if (rv == OK) {
if (ssl_host_info_->WaitForCertVerification(NULL) == OK) {
if (LoadSnapStartInfo()) {
pseudo_connected_ = true;
GotoState(STATE_SNAP_START_WAIT_FOR_WRITE);
if (user_connect_callback_)
DoConnectCallback(OK);
}
} else if (!ssl_host_info_->state().server_hello.empty()) {
// A non-empty ServerHello suggests that we would have tried a Snap Start
// connection.
base::TimeTicks now = base::TimeTicks::Now();
const base::TimeDelta duration =
now - ssl_host_info_->verification_start_time();
UMA_HISTOGRAM_TIMES("Net.SSLSnapStartNeededVerificationInMs", duration);
VLOG(1) << "Cannot snap start because verification isn't ready. "
<< "Wanted verification after "
<< duration.InMilliseconds() << "ms";
}
} else {
DCHECK_EQ(ERR_IO_PENDING, rv);
GotoState(STATE_SNAP_START_LOAD_INFO);
}
LeaveFunction("");
return rv;
}
int SSLClientSocketNSS::DoSnapStartWaitForWrite() {
EnterFunction("");
// In this state, we're waiting for the first Write call so that we can merge
// it into the Snap Start handshake.
if (!user_write_buf_) {
// We'll lie and say that we're connected in order that someone will call
// Write.
GotoState(STATE_SNAP_START_WAIT_FOR_WRITE);
DCHECK(!user_connect_callback_);
LeaveFunction("");
return ERR_IO_PENDING;
}
// This is the largest Snap Start application data payload that we'll try to
// use. A TCP client can only send three frames of data without an ACK and,
// at 2048 bytes, this leaves some space for the rest of the ClientHello
// (including possible session ticket).
static const int kMaxSnapStartPayloadSize = 2048;
if (user_write_buf_len_ > kMaxSnapStartPayloadSize) {
user_write_buf_len_ = kMaxSnapStartPayloadSize;
// When we complete the handshake and call user_write_callback_ we'll say
// that we only wrote |kMaxSnapStartPayloadSize| bytes. That way the rest
// of the payload will be presented to |Write| again and transmitted as
// normal application data.
}
SECStatus rv = SSL_SetSnapStartApplicationData(
nss_fd_, reinterpret_cast<const unsigned char*>(user_write_buf_->data()),
user_write_buf_len_);
DCHECK_EQ(SECSuccess, rv);
GotoState(STATE_HANDSHAKE);
LeaveFunction("");
return OK;
}
int SSLClientSocketNSS::DoHandshake() {
EnterFunction("");
int net_error = net::OK;
SECStatus rv = SSL_ForceHandshake(nss_fd_);
if (client_auth_cert_needed_) {
net_error = ERR_SSL_CLIENT_AUTH_CERT_NEEDED;
net_log_.AddEvent(NetLog::TYPE_SSL_HANDSHAKE_ERROR,
make_scoped_refptr(new SSLErrorParams(net_error, 0)));
// If the handshake already succeeded (because the server requests but
// doesn't require a client cert), we need to invalidate the SSL session
// so that we won't try to resume the non-client-authenticated session in
// the next handshake. This will cause the server to ask for a client
// cert again.
if (rv == SECSuccess && SSL_InvalidateSession(nss_fd_) != SECSuccess) {
LOG(WARNING) << "Couldn't invalidate SSL session: " << PR_GetError();
}
} else if (rv == SECSuccess) {
if (handshake_callback_called_) {
if (eset_mitm_detected_) {
net_error = ERR_ESET_ANTI_VIRUS_SSL_INTERCEPTION;
} else {
// We need to see if the predicted certificate chain (in
// |ssl_host_info_->state().certs) matches the actual certificate chain
// before we call SaveSnapStartInfo, as that will update
// |ssl_host_info_|.
if (ssl_host_info_.get() && !ssl_host_info_->state().certs.empty()) {
PeerCertificateChain certs(nss_fd_);
const SSLHostInfo::State& state = ssl_host_info_->state();
predicted_cert_chain_correct_ = certs.size() == state.certs.size();
if (predicted_cert_chain_correct_) {
for (unsigned i = 0; i < certs.size(); i++) {
if (certs[i]->derCert.len != state.certs[i].size() ||
memcmp(certs[i]->derCert.data, state.certs[i].data(),
certs[i]->derCert.len) != 0) {
predicted_cert_chain_correct_ = false;
break;
}
}
}
}
SaveSnapStartInfo();
// SSL handshake is completed. It's possible that we mispredicted the
// NPN agreed protocol. In this case, we've just sent a request in the
// wrong protocol! The higher levels of this network stack aren't
// prepared for switching the protocol like that so we make up an error
// and rely on the fact that the request will be retried.
if (IsNPNProtocolMispredicted()) {
LOG(WARNING) << "Mispredicted NPN protocol for "
<< host_and_port_.ToString();
net_error = ERR_SSL_SNAP_START_NPN_MISPREDICTION;
} else {
// Let's verify the certificate.
GotoState(STATE_VERIFY_DNSSEC);
}
}
// Done!
} else {
// Workaround for https://bugzilla.mozilla.org/show_bug.cgi?id=562434 -
// SSL_ForceHandshake returned SECSuccess prematurely.
rv = SECFailure;
net_error = ERR_SSL_PROTOCOL_ERROR;
net_log_.AddEvent(NetLog::TYPE_SSL_HANDSHAKE_ERROR,
make_scoped_refptr(new SSLErrorParams(net_error, 0)));
}
} else {
PRErrorCode prerr = PR_GetError();
net_error = MapHandshakeError(prerr);
// If not done, stay in this state
if (net_error == ERR_IO_PENDING) {
GotoState(STATE_HANDSHAKE);
} else {
LOG(ERROR) << "handshake failed; NSS error code " << prerr
<< ", net_error " << net_error;
net_log_.AddEvent(
NetLog::TYPE_SSL_HANDSHAKE_ERROR,
make_scoped_refptr(new SSLErrorParams(net_error, prerr)));
}
}
LeaveFunction("");
return net_error;
}
// DNSValidationResult enumerates the possible outcomes from processing a
// set of DNS records.
enum DNSValidationResult {
DNSVR_SUCCESS, // the cert is immediately acceptable.
DNSVR_FAILURE, // the cert is unconditionally rejected.
DNSVR_CONTINUE, // perform CA validation as usual.
};
// VerifyTXTRecords processes the RRDATA for a number of DNS TXT records and
// checks them against the given certificate.
// dnssec: if true then the TXT records are DNSSEC validated. In this case,
// DNSVR_SUCCESS may be returned.
// server_cert_nss: the certificate to validate
// rrdatas: the TXT records for the current domain.
static DNSValidationResult VerifyTXTRecords(
bool dnssec,
CERTCertificate* server_cert_nss,
const std::vector<base::StringPiece>& rrdatas) {
bool found_well_formed_record = false;
bool matched_record = false;
for (std::vector<base::StringPiece>::const_iterator
i = rrdatas.begin(); i != rrdatas.end(); ++i) {
std::map<std::string, std::string> m(
DNSSECChainVerifier::ParseTLSTXTRecord(*i));
if (m.empty())
continue;
std::map<std::string, std::string>::const_iterator j;
j = m.find("v");
if (j == m.end() || j->second != "tls1")
continue;
j = m.find("ha");
HASH_HashType hash_algorithm;
unsigned hash_length;
if (j == m.end() || j->second == "sha1") {
hash_algorithm = HASH_AlgSHA1;
hash_length = SHA1_LENGTH;
} else if (j->second == "sha256") {
hash_algorithm = HASH_AlgSHA256;
hash_length = SHA256_LENGTH;
} else {
continue;
}
j = m.find("h");
if (j == m.end())
continue;
std::vector<uint8> given_hash;
if (!base::HexStringToBytes(j->second, &given_hash))
continue;
if (given_hash.size() != hash_length)
continue;
uint8 calculated_hash[SHA256_LENGTH]; // SHA256 is the largest.
SECStatus rv;
j = m.find("hr");
if (j == m.end() || j->second == "pubkey") {
rv = HASH_HashBuf(hash_algorithm, calculated_hash,
server_cert_nss->derPublicKey.data,
server_cert_nss->derPublicKey.len);
} else if (j->second == "cert") {
rv = HASH_HashBuf(hash_algorithm, calculated_hash,
server_cert_nss->derCert.data,
server_cert_nss->derCert.len);
} else {
continue;
}
if (rv != SECSuccess)
NOTREACHED();
found_well_formed_record = true;
if (memcmp(calculated_hash, &given_hash[0], hash_length) == 0) {
matched_record = true;
if (dnssec)
return DNSVR_SUCCESS;
}
}
if (found_well_formed_record && !matched_record)
return DNSVR_FAILURE;
return DNSVR_CONTINUE;
}
// CheckDNSSECChain tries to validate a DNSSEC chain embedded in
// |server_cert_nss_|. It returns true iff a chain is found that proves the
// value of a TXT record that contains a valid public key fingerprint.
static DNSValidationResult CheckDNSSECChain(
const std::string& hostname,
CERTCertificate* server_cert_nss) {
if (!server_cert_nss)
return DNSVR_CONTINUE;
// CERT_FindCertExtensionByOID isn't exported so we have to install an OID,
// get a tag for it and find the extension by using that tag.
static SECOidTag dnssec_chain_tag;
static bool dnssec_chain_tag_valid;
if (!dnssec_chain_tag_valid) {
// It's harmless if multiple threads enter this block concurrently.
static const uint8 kDNSSECChainOID[] =
// 1.3.6.1.4.1.11129.2.1.4
// (iso.org.dod.internet.private.enterprises.google.googleSecurity.
// certificateExtensions.dnssecEmbeddedChain)
{0x2b, 0x06, 0x01, 0x04, 0x01, 0xd6, 0x79, 0x02, 0x01, 0x04};
SECOidData oid_data;
memset(&oid_data, 0, sizeof(oid_data));
oid_data.oid.data = const_cast<uint8*>(kDNSSECChainOID);
oid_data.oid.len = sizeof(kDNSSECChainOID);
oid_data.desc = "DNSSEC chain";
oid_data.supportedExtension = SUPPORTED_CERT_EXTENSION;
dnssec_chain_tag = SECOID_AddEntry(&oid_data);
DCHECK_NE(SEC_OID_UNKNOWN, dnssec_chain_tag);
dnssec_chain_tag_valid = true;
}
SECItem dnssec_embedded_chain;
SECStatus rv = CERT_FindCertExtension(server_cert_nss,
dnssec_chain_tag, &dnssec_embedded_chain);
if (rv != SECSuccess)
return DNSVR_CONTINUE;
base::StringPiece chain(
reinterpret_cast<char*>(dnssec_embedded_chain.data),
dnssec_embedded_chain.len);
std::string dns_hostname;
if (!DNSDomainFromDot(hostname, &dns_hostname))
return DNSVR_CONTINUE;
DNSSECChainVerifier verifier(dns_hostname, chain);
DNSSECChainVerifier::Error err = verifier.Verify();
if (err != DNSSECChainVerifier::OK) {
LOG(ERROR) << "DNSSEC chain verification failed: " << err;
return DNSVR_CONTINUE;
}
if (verifier.rrtype() != kDNS_TXT)
return DNSVR_CONTINUE;
DNSValidationResult r = VerifyTXTRecords(
true /* DNSSEC verified */, server_cert_nss, verifier.rrdatas());
SECITEM_FreeItem(&dnssec_embedded_chain, PR_FALSE);
return r;
}
int SSLClientSocketNSS::DoVerifyDNSSEC(int result) {
if (ssl_config_.dnssec_enabled) {
DNSValidationResult r = CheckDNSSECChain(host_and_port_.host(),
server_cert_nss_);
if (r == DNSVR_SUCCESS) {
local_server_cert_verify_result_.cert_status |= CERT_STATUS_IS_DNSSEC;
server_cert_verify_result_ = &local_server_cert_verify_result_;
GotoState(STATE_VERIFY_CERT_COMPLETE);
return OK;
}
}
if (dnssec_provider_ == NULL) {
GotoState(STATE_VERIFY_CERT);
return OK;
}
GotoState(STATE_VERIFY_DNSSEC_COMPLETE);
RRResponse* response;
dnssec_wait_start_time_ = base::Time::Now();
return dnssec_provider_->GetDNSSECRecords(&response, &handshake_io_callback_);
}
int SSLClientSocketNSS::DoVerifyDNSSECComplete(int result) {
RRResponse* response;
int err = dnssec_provider_->GetDNSSECRecords(&response, NULL);
DCHECK_EQ(err, OK);
const base::TimeDelta elapsed = base::Time::Now() - dnssec_wait_start_time_;
HISTOGRAM_TIMES("Net.DNSSECWaitTime", elapsed);
GotoState(STATE_VERIFY_CERT);
if (!response || response->rrdatas.empty())
return OK;
std::vector<base::StringPiece> records;
records.resize(response->rrdatas.size());
for (unsigned i = 0; i < response->rrdatas.size(); i++)
records[i] = base::StringPiece(response->rrdatas[i]);
DNSValidationResult r =
VerifyTXTRecords(response->dnssec, server_cert_nss_, records);
if (!ssl_config_.dnssec_enabled) {
// If DNSSEC is not enabled we don't take any action based on the result,
// except to record the latency, above.
return OK;
}
switch (r) {
case DNSVR_FAILURE:
GotoState(STATE_VERIFY_CERT_COMPLETE);
local_server_cert_verify_result_.cert_status |= CERT_STATUS_NOT_IN_DNS;
server_cert_verify_result_ = &local_server_cert_verify_result_;
return ERR_CERT_NOT_IN_DNS;
case DNSVR_CONTINUE:
GotoState(STATE_VERIFY_CERT);
break;
case DNSVR_SUCCESS:
local_server_cert_verify_result_.cert_status |= CERT_STATUS_IS_DNSSEC;
server_cert_verify_result_ = &local_server_cert_verify_result_;
GotoState(STATE_VERIFY_CERT_COMPLETE);
break;
default:
NOTREACHED();
GotoState(STATE_VERIFY_CERT);
}
return OK;
}
int SSLClientSocketNSS::DoVerifyCert(int result) {
DCHECK(server_cert_);
GotoState(STATE_VERIFY_CERT_COMPLETE);
if (ssl_host_info_.get() && !ssl_host_info_->state().certs.empty() &&
predicted_cert_chain_correct_) {
// If the SSLHostInfo had a prediction for the certificate chain of this
// server then it will have optimistically started a verification of that
// chain. So, if the prediction was correct, we should wait for that
// verification to finish rather than start our own.
net_log_.AddEvent(NetLog::TYPE_SSL_VERIFICATION_MERGED, NULL);
UMA_HISTOGRAM_ENUMERATION("Net.SSLVerificationMerged", 1 /* true */, 2);
base::TimeTicks now = base::TimeTicks::Now();
UMA_HISTOGRAM_TIMES("Net.SSLVerificationMergedMsSaved",
now - ssl_host_info_->verification_start_time());
server_cert_verify_result_ = &ssl_host_info_->cert_verify_result();
return ssl_host_info_->WaitForCertVerification(&handshake_io_callback_);
} else {
UMA_HISTOGRAM_ENUMERATION("Net.SSLVerificationMerged", 0 /* false */, 2);
}
int flags = 0;
if (ssl_config_.rev_checking_enabled)
flags |= X509Certificate::VERIFY_REV_CHECKING_ENABLED;
if (ssl_config_.verify_ev_cert)
flags |= X509Certificate::VERIFY_EV_CERT;
verifier_.reset(new CertVerifier);
server_cert_verify_result_ = &local_server_cert_verify_result_;
return verifier_->Verify(server_cert_, host_and_port_.host(), flags,
&local_server_cert_verify_result_,
&handshake_io_callback_);
}
// Derived from AuthCertificateCallback() in
// mozilla/source/security/manager/ssl/src/nsNSSCallbacks.cpp.
int SSLClientSocketNSS::DoVerifyCertComplete(int result) {
verifier_.reset();
// We used to remember the intermediate CA certs in the NSS database
// persistently. However, NSS opens a connection to the SQLite database
// during NSS initialization and doesn't close the connection until NSS
// shuts down. If the file system where the database resides is gone,
// the database connection goes bad. What's worse, the connection won't
// recover when the file system comes back. Until this NSS or SQLite bug
// is fixed, we need to avoid using the NSS database for non-essential
// purposes. See https://bugzilla.mozilla.org/show_bug.cgi?id=508081 and
// http://crbug.com/15630 for more info.
// If we have been explicitly told to accept this certificate, override the
// result of verifier_.Verify.
// Eventually, we should cache the cert verification results so that we don't
// need to call verifier_.Verify repeatedly. But for now we need to do this.
// Alternatively, we could use the cert's status that we stored along with
// the cert in the allowed_bad_certs vector.
if (IsCertificateError(result) &&
ssl_config_.IsAllowedBadCert(server_cert_)) {
VLOG(1) << "accepting bad SSL certificate, as user told us to";
result = OK;
}
if (result == OK)
LogConnectionTypeMetrics();
completed_handshake_ = true;
// If we merged a Write call into the handshake we need to make the
// callback now.
if (user_write_callback_) {
corked_ = false;
if (result != OK) {
DoWriteCallback(result);
} else {
SSLSnapStartResult snap_start_type;
SECStatus rv = SSL_GetSnapStartResult(nss_fd_, &snap_start_type);
DCHECK_EQ(rv, SECSuccess);
DCHECK_NE(snap_start_type, SSL_SNAP_START_NONE);
if (snap_start_type == SSL_SNAP_START_RECOVERY ||
snap_start_type == SSL_SNAP_START_RESUME_RECOVERY) {
// If we mispredicted the server's handshake then Snap Start will have
// triggered a recovery mode. The misprediction could have been caused
// by the server having a different certificate so the application data
// wasn't resent. Now that we have verified the certificate, we need to
// resend the application data.
int bytes_written = DoPayloadWrite();
if (bytes_written != ERR_IO_PENDING)
DoWriteCallback(bytes_written);
} else {
DoWriteCallback(user_write_buf_len_);
}
}
}
if (user_read_callback_) {
int rv = DoReadLoop(OK);
if (rv != ERR_IO_PENDING)
DoReadCallback(rv);
}
// Exit DoHandshakeLoop and return the result to the caller to Connect.
DCHECK(next_handshake_state_ == STATE_NONE);
return result;
}
int SSLClientSocketNSS::DoPayloadRead() {
EnterFunction(user_read_buf_len_);
DCHECK(user_read_buf_);
DCHECK_GT(user_read_buf_len_, 0);
int rv = PR_Read(nss_fd_, user_read_buf_->data(), user_read_buf_len_);
if (client_auth_cert_needed_) {
// We don't need to invalidate the non-client-authenticated SSL session
// because the server will renegotiate anyway.
LeaveFunction("");
rv = ERR_SSL_CLIENT_AUTH_CERT_NEEDED;
net_log_.AddEvent(NetLog::TYPE_SSL_READ_ERROR,
make_scoped_refptr(new SSLErrorParams(rv, 0)));
return rv;
}
if (rv >= 0) {
LogData(user_read_buf_->data(), rv);
LeaveFunction("");
return rv;
}
PRErrorCode prerr = PR_GetError();
if (prerr == PR_WOULD_BLOCK_ERROR) {
LeaveFunction("");
return ERR_IO_PENDING;
}
LeaveFunction("");
rv = MapNSPRError(prerr);
net_log_.AddEvent(NetLog::TYPE_SSL_READ_ERROR,
make_scoped_refptr(new SSLErrorParams(rv, prerr)));
return rv;
}
int SSLClientSocketNSS::DoPayloadWrite() {
EnterFunction(user_write_buf_len_);
DCHECK(user_write_buf_);
int rv = PR_Write(nss_fd_, user_write_buf_->data(), user_write_buf_len_);
if (rv >= 0) {
LogData(user_write_buf_->data(), rv);
LeaveFunction("");
return rv;
}
PRErrorCode prerr = PR_GetError();
if (prerr == PR_WOULD_BLOCK_ERROR) {
LeaveFunction("");
return ERR_IO_PENDING;
}
LeaveFunction("");
rv = MapNSPRError(prerr);
net_log_.AddEvent(NetLog::TYPE_SSL_WRITE_ERROR,
make_scoped_refptr(new SSLErrorParams(rv, prerr)));
return rv;
}
void SSLClientSocketNSS::LogConnectionTypeMetrics() const {
UpdateConnectionTypeHistograms(CONNECTION_SSL);
if (server_cert_verify_result_->has_md5)
UpdateConnectionTypeHistograms(CONNECTION_SSL_MD5);
if (server_cert_verify_result_->has_md2)
UpdateConnectionTypeHistograms(CONNECTION_SSL_MD2);
if (server_cert_verify_result_->has_md4)
UpdateConnectionTypeHistograms(CONNECTION_SSL_MD4);
if (server_cert_verify_result_->has_md5_ca)
UpdateConnectionTypeHistograms(CONNECTION_SSL_MD5_CA);
if (server_cert_verify_result_->has_md2_ca)
UpdateConnectionTypeHistograms(CONNECTION_SSL_MD2_CA);
int ssl_version = SSLConnectionStatusToVersion(ssl_connection_status_);
switch (ssl_version) {
case SSL_CONNECTION_VERSION_SSL2:
UpdateConnectionTypeHistograms(CONNECTION_SSL_SSL2);
break;
case SSL_CONNECTION_VERSION_SSL3:
UpdateConnectionTypeHistograms(CONNECTION_SSL_SSL3);
break;
case SSL_CONNECTION_VERSION_TLS1:
UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1);
break;
case SSL_CONNECTION_VERSION_TLS1_1:
UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1_1);
break;
case SSL_CONNECTION_VERSION_TLS1_2:
UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1_2);
break;
};
}
} // namespace net