| $$ This is a pump file for generating file templates. Pump is a python |
| $$ script that is part of the Google Test suite of utilities. Description |
| $$ can be found here: |
| $$ |
| $$ http://code.google.com/p/googletest/wiki/PumpManual |
| $$ |
| |
| $var MAX_ARITY = 6 |
| |
| // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef BASE_CALLBACK_H_ |
| #define BASE_CALLBACK_H_ |
| #pragma once |
| |
| #include "base/callback_internal.h" |
| #include "base/callback_old.h" |
| |
| // New, super-duper, unified Callback system. This will eventually replace |
| // NewRunnableMethod, NewRunnableFunction, CreateFunctor, and CreateCallback |
| // systems currently in the Chromium code base. |
| // |
| // WHAT IS THIS: |
| // |
| // The templated Callback class is a generalized function object. Together |
| // with the Bind() function in bind.h, they provide a type-safe method for |
| // performing currying of arguments, and creating a "closure." |
| // |
| // In programing languages, a closure is a first-class function where all its |
| // parameters have been bound (usually via currying). Closures are well |
| // suited for representing, and passing around a unit of delayed execution. |
| // They are used in Chromium code to schedule tasks on different MessageLoops. |
| // |
| // |
| // MEMORY MANAGEMENT AND PASSING |
| // |
| // The Callback objects themselves should be passed by const-reference, and |
| // stored by copy. They internally store their state via a refcounted class |
| // and thus do not need to be deleted. |
| // |
| // The reason to pass via a const-reference is to avoid unnecessary |
| // AddRef/Release pairs to the internal state. |
| // |
| // |
| // EXAMPLE USAGE: |
| // |
| // /* Binding a normal function. */ |
| // int Return5() { return 5; } |
| // base::Callback<int(int)> func_cb = base::Bind(&Return5); |
| // LOG(INFO) << func_cb.Run(5); // Prints 5. |
| // |
| // void PrintHi() { LOG(INFO) << "hi."; } |
| // base::Closure void_func_cb = base::Bind(&PrintHi); |
| // LOG(INFO) << void_func_cb.Run(); // Prints: hi. |
| // |
| // /* Binding a class method. */ |
| // class Ref : public RefCountedThreadSafe<Ref> { |
| // public: |
| // int Foo() { return 3; } |
| // void PrintBye() { LOG(INFO) << "bye."; } |
| // }; |
| // scoped_refptr<Ref> ref = new Ref(); |
| // base::Callback<int(void)> ref_cb = base::Bind(&Ref::Foo, ref.get()); |
| // LOG(INFO) << ref_cb.Run(); // Prints out 3. |
| // |
| // base::Closure void_ref_cb = base::Bind(&Ref::PrintBye, ref.get()); |
| // void_ref_cb.Run(); // Prints: bye. |
| // |
| // /* Binding a class method in a non-refcounted class. |
| // * |
| // * WARNING: You must be sure the referee outlives the callback! |
| // * This is particularly important if you post a closure to a |
| // * MessageLoop because then it becomes hard to know what the |
| // * lifetime of the referee needs to be. |
| // */ |
| // class NoRef { |
| // public: |
| // int Foo() { return 4; } |
| // void PrintWhy() { LOG(INFO) << "why???"; } |
| // }; |
| // NoRef no_ref; |
| // base::Callback<int(void)> base::no_ref_cb = |
| // base::Bind(&NoRef::Foo, base::Unretained(&no_ref)); |
| // LOG(INFO) << ref_cb.Run(); // Prints out 4. |
| // |
| // base::Closure void_no_ref_cb = |
| // base::Bind(&NoRef::PrintWhy, base::Unretained(no_ref)); |
| // void_no_ref_cb.Run(); // Prints: why??? |
| // |
| // /* Binding a reference. */ |
| // int Identity(int n) { return n; } |
| // int value = 1; |
| // base::Callback<int(void)> bound_copy_cb = base::Bind(&Identity, value); |
| // base::Callback<int(void)> bound_ref_cb = |
| // base::Bind(&Identity, base::ConstRef(value)); |
| // LOG(INFO) << bound_copy_cb.Run(); // Prints 1. |
| // LOG(INFO) << bound_ref_cb.Run(); // Prints 1. |
| // value = 2; |
| // LOG(INFO) << bound_copy_cb.Run(); // Prints 1. |
| // LOG(INFO) << bound_ref_cb.Run(); // Prints 2. |
| // |
| // |
| // WHERE IS THIS DESIGN FROM: |
| // |
| // The design Callback and Bind is heavily influenced by C++'s |
| // tr1::function/tr1::bind, and by the "Google Callback" system used inside |
| // Google. |
| // |
| // |
| // HOW THE IMPLEMENTATION WORKS: |
| // |
| // There are three main components to the system: |
| // 1) The Callback classes. |
| // 2) The Bind() functions. |
| // 3) The arguments wrappers (eg., Unretained() and ConstRef()). |
| // |
| // The Callback classes represent a generic function pointer. Internally, |
| // it stores a refcounted piece of state that represents the target function |
| // and all its bound parameters. Each Callback specialization has a templated |
| // constructor that takes an InvokerStorageHolder<> object. In the context of |
| // the constructor, the static type of this InvokerStorageHolder<> object |
| // uniquely identifies the function it is representing, all its bound |
| // parameters, and a DoInvoke() that is capable of invoking the target. |
| // |
| // Callback's constructor is takes the InvokerStorageHolder<> that has the |
| // full static type and erases the target function type, and the bound |
| // parameters. It does this by storing a pointer to the specific DoInvoke() |
| // function, and upcasting the state of InvokerStorageHolder<> to a |
| // InvokerStorageBase. This is safe as long as this InvokerStorageBase pointer |
| // is only used with the stored DoInvoke() pointer. |
| // |
| // To create InvokerStorageHolder<> objects, we use the Bind() functions. |
| // These functions, along with a set of internal templates, are reponsible for |
| // |
| // - Unwrapping the function signature into return type, and parameters |
| // - Determining the number of parameters that are bound |
| // - Creating the storage for the bound parameters |
| // - Performing compile-time asserts to avoid error-prone behavior |
| // - Returning an InvokerStorageHolder<> with an DoInvoke() that has an arity |
| // matching the number of unbound parameters, and knows the correct |
| // refcounting semantics for the target object if we are binding a class |
| // method. |
| // |
| // The Bind functions do the above using type-inference, and template |
| // specializations. |
| // |
| // By default Bind() will store copies of all bound parameters, and attempt |
| // to refcount a target object if the function being bound is a class method. |
| // |
| // To change this behavior, we introduce a set of argument wrappers |
| // (eg. Unretained(), and ConstRef()). These are simple container templates |
| // that are passed by value, and wrap a pointer to argument. See the |
| // file-level comment in base/bind_helpers.h for more info. |
| // |
| // These types are passed to the Unwrap() functions, and the MaybeRefcount() |
| // functions respectively to modify the behavior of Bind(). The Unwrap() |
| // and MaybeRefcount() functions change behavior by doing partial |
| // specialization based on whether or not a parameter is a wrapper type. |
| // |
| // ConstRef() is similar to tr1::cref. Unretained() is specific to Chromium. |
| // |
| // |
| // WHY NOT TR1 FUNCTION/BIND? |
| // |
| // Direct use of tr1::function and tr1::bind was considered, but ultimately |
| // rejected because of the number of copy constructors invocations involved |
| // in the binding of arguments during construction, and the forwarding of |
| // arguments during invocation. These copies will no longer be an issue in |
| // C++0x because C++0x will support rvalue reference allowing for the compiler |
| // to avoid these copies. However, waiting for C++0x is not an option. |
| // |
| // Measured with valgrind on gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), the |
| // tr1::bind call itself will invoke a non-trivial copy constructor three times |
| // for each bound parameter. Also, each when passing a tr1::function, each |
| // bound argument will be copied again. |
| // |
| // In addition to the copies taken at binding and invocation, copying a |
| // tr1::function causes a copy to be made of all the bound parameters and |
| // state. |
| // |
| // Furthermore, in Chromium, it is desirable for the Callback to take a |
| // reference on a target object when representing a class method call. This |
| // is not supported by tr1. |
| // |
| // Lastly, tr1::function and tr1::bind has a more general and flexible API. |
| // This includes things like argument reordering by use of |
| // tr1::bind::placeholder, support for non-const reference parameters, and some |
| // limited amount of subtyping of the tr1::function object (eg., |
| // tr1::function<int(int)> is convertible to tr1::function<void(int)>). |
| // |
| // These are not features that are required in Chromium. Some of them, such as |
| // allowing for reference parameters, and subtyping of functions, may actually |
| // because a source of errors. Removing support for these features actually |
| // allows for a simpler implementation, and a terser Currying API. |
| // |
| // |
| // WHY NOT GOOGLE CALLBACKS? |
| // |
| // The Google callback system also does not support refcounting. Furthermore, |
| // its implementation has a number of strange edge cases with respect to type |
| // conversion of its arguments. In particular, the argument's constness must |
| // at times match exactly the function signature, or the type-inference might |
| // break. Given the above, writing a custom solution was easier. |
| // |
| // |
| // MISSING FUNCTIONALITY |
| // - Invoking the return of Bind. Bind(&foo).Run() does not work; |
| // - Binding arrays to functions that take a non-const pointer. |
| // Example: |
| // void Foo(const char* ptr); |
| // void Bar(char* ptr); |
| // Bind(&Foo, "test"); |
| // Bind(&Bar, "test"); // This fails because ptr is not const. |
| |
| namespace base { |
| |
| // First, we forward declare the Callback class template. This informs the |
| // compiler that the template only has 1 type parameter which is the function |
| // signature that the Callback is representing. |
| // |
| // After this, create template specializations for 0-$(MAX_ARITY) parameters. Note that |
| // even though the template typelist grows, the specialization still |
| // only has one type: the function signature. |
| template <typename Sig> |
| class Callback; |
| |
| |
| $range ARITY 0..MAX_ARITY |
| $for ARITY [[ |
| $range ARG 1..ARITY |
| |
| $if ARITY == 0 [[ |
| template <typename R> |
| class Callback<R(void)> : public internal::CallbackBase { |
| ]] $else [[ |
| template <typename R, $for ARG , [[typename A$(ARG)]]> |
| class Callback<R($for ARG , [[A$(ARG)]])> : public internal::CallbackBase { |
| ]] |
| |
| public: |
| typedef R(*PolymorphicInvoke)( |
| internal::InvokerStorageBase*[[]] |
| $if ARITY != 0 [[, ]] |
| $for ARG , [[typename internal::ParamTraits<A$(ARG)>::ForwardType]]); |
| |
| Callback() : CallbackBase(NULL, NULL) { } |
| |
| // We pass InvokerStorageHolder by const ref to avoid incurring an |
| // unnecessary AddRef/Unref pair even though we will modify the object. |
| // We cannot use a normal reference because the compiler will warn |
| // since this is often used on a return value, which is a temporary. |
| // |
| // Note that this constructor CANNOT be explicit, and that Bind() CANNOT |
| // return the exact Callback<> type. See base/bind.h for details. |
| template <typename T> |
| Callback(const internal::InvokerStorageHolder<T>& invoker_holder) |
| : CallbackBase( |
| reinterpret_cast<InvokeFuncStorage>(&T::Invoker::DoInvoke), |
| &invoker_holder.invoker_storage_) { |
| } |
| |
| R Run($for ARG , |
| [[typename internal::ParamTraits<A$(ARG)>::ForwardType a$(ARG)]]) const { |
| PolymorphicInvoke f = |
| reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_); |
| |
| return f(invoker_storage_.get()[[]] |
| $if ARITY != 0 [[, ]] |
| $for ARG , |
| [[a$(ARG)]]); |
| } |
| }; |
| |
| |
| ]] $$ for ARITY |
| |
| // Syntactic sugar to make Callbacks<void(void)> easier to declare since it |
| // will be used in a lot of APIs with delayed execution. |
| typedef Callback<void(void)> Closure; |
| |
| } // namespace base |
| |
| #endif // BASE_CALLBACK_H |