| // Copyright (c) 2009 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/process_util.h" |
| |
| #include <ctype.h> |
| #include <dirent.h> |
| #include <dlfcn.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <sys/time.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| #include "base/file_util.h" |
| #include "base/logging.h" |
| #include "base/string_number_conversions.h" |
| #include "base/string_split.h" |
| #include "base/string_tokenizer.h" |
| #include "base/string_util.h" |
| #include "base/sys_info.h" |
| #include "base/threading/thread_restrictions.h" |
| |
| namespace { |
| |
| enum ParsingState { |
| KEY_NAME, |
| KEY_VALUE |
| }; |
| |
| // Reads /proc/<pid>/stat and populates |proc_stats| with the values split by |
| // spaces. Returns true if successful. |
| bool GetProcStats(pid_t pid, std::vector<std::string>* proc_stats) { |
| // Synchronously reading files in /proc is safe. |
| base::ThreadRestrictions::ScopedAllowIO allow_io; |
| |
| FilePath stat_file("/proc"); |
| stat_file = stat_file.Append(base::IntToString(pid)); |
| stat_file = stat_file.Append("stat"); |
| std::string mem_stats; |
| if (!file_util::ReadFileToString(stat_file, &mem_stats)) |
| return false; |
| base::SplitString(mem_stats, ' ', proc_stats); |
| return true; |
| } |
| |
| // Reads /proc/<pid>/cmdline and populates |proc_cmd_line_args| with the command |
| // line arguments. Returns true if successful. |
| // Note: /proc/<pid>/cmdline contains command line arguments separated by single |
| // null characters. We tokenize it into a vector of strings using '\0' as a |
| // delimiter. |
| bool GetProcCmdline(pid_t pid, std::vector<std::string>* proc_cmd_line_args) { |
| // Synchronously reading files in /proc is safe. |
| base::ThreadRestrictions::ScopedAllowIO allow_io; |
| |
| FilePath cmd_line_file("/proc"); |
| cmd_line_file = cmd_line_file.Append(base::IntToString(pid)); |
| cmd_line_file = cmd_line_file.Append("cmdline"); |
| std::string cmd_line; |
| if (!file_util::ReadFileToString(cmd_line_file, &cmd_line)) |
| return false; |
| std::string delimiters; |
| delimiters.push_back('\0'); |
| Tokenize(cmd_line, delimiters, proc_cmd_line_args); |
| return true; |
| } |
| |
| // Get the total CPU of a single process. Return value is number of jiffies |
| // on success or -1 on error. |
| int GetProcessCPU(pid_t pid) { |
| // Synchronously reading files in /proc is safe. |
| base::ThreadRestrictions::ScopedAllowIO allow_io; |
| |
| // Use /proc/<pid>/task to find all threads and parse their /stat file. |
| FilePath path = FilePath(StringPrintf("/proc/%d/task/", pid)); |
| |
| DIR* dir = opendir(path.value().c_str()); |
| if (!dir) { |
| PLOG(ERROR) << "opendir(" << path.value() << ")"; |
| return -1; |
| } |
| |
| int total_cpu = 0; |
| while (struct dirent* ent = readdir(dir)) { |
| if (ent->d_name[0] == '.') |
| continue; |
| |
| FilePath stat_path = path.AppendASCII(ent->d_name).AppendASCII("stat"); |
| std::string stat; |
| if (file_util::ReadFileToString(stat_path, &stat)) { |
| int cpu = base::ParseProcStatCPU(stat); |
| if (cpu > 0) |
| total_cpu += cpu; |
| } |
| } |
| closedir(dir); |
| |
| return total_cpu; |
| } |
| |
| } // namespace |
| |
| namespace base { |
| |
| ProcessId GetParentProcessId(ProcessHandle process) { |
| // Synchronously reading files in /proc is safe. |
| base::ThreadRestrictions::ScopedAllowIO allow_io; |
| |
| FilePath stat_file("/proc"); |
| stat_file = stat_file.Append(base::IntToString(process)); |
| stat_file = stat_file.Append("status"); |
| std::string status; |
| if (!file_util::ReadFileToString(stat_file, &status)) |
| return -1; |
| |
| StringTokenizer tokenizer(status, ":\n"); |
| ParsingState state = KEY_NAME; |
| std::string last_key_name; |
| while (tokenizer.GetNext()) { |
| switch (state) { |
| case KEY_NAME: |
| last_key_name = tokenizer.token(); |
| state = KEY_VALUE; |
| break; |
| case KEY_VALUE: |
| DCHECK(!last_key_name.empty()); |
| if (last_key_name == "PPid") { |
| int ppid; |
| base::StringToInt(tokenizer.token(), &ppid); |
| return ppid; |
| } |
| state = KEY_NAME; |
| break; |
| } |
| } |
| NOTREACHED(); |
| return -1; |
| } |
| |
| FilePath GetProcessExecutablePath(ProcessHandle process) { |
| FilePath stat_file("/proc"); |
| stat_file = stat_file.Append(base::IntToString(process)); |
| stat_file = stat_file.Append("exe"); |
| FilePath exe_name; |
| if (!file_util::ReadSymbolicLink(stat_file, &exe_name)) { |
| // No such process. Happens frequently in e.g. TerminateAllChromeProcesses |
| return FilePath(); |
| } |
| return exe_name; |
| } |
| |
| ProcessIterator::ProcessIterator(const ProcessFilter* filter) |
| : filter_(filter) { |
| procfs_dir_ = opendir("/proc"); |
| } |
| |
| ProcessIterator::~ProcessIterator() { |
| if (procfs_dir_) { |
| closedir(procfs_dir_); |
| procfs_dir_ = NULL; |
| } |
| } |
| |
| bool ProcessIterator::CheckForNextProcess() { |
| // TODO(port): skip processes owned by different UID |
| |
| dirent* slot = 0; |
| const char* openparen; |
| const char* closeparen; |
| std::vector<std::string> cmd_line_args; |
| |
| // Arbitrarily guess that there will never be more than 200 non-process |
| // files in /proc. Hardy has 53. |
| int skipped = 0; |
| const int kSkipLimit = 200; |
| while (skipped < kSkipLimit) { |
| slot = readdir(procfs_dir_); |
| // all done looking through /proc? |
| if (!slot) |
| return false; |
| |
| // If not a process, keep looking for one. |
| bool notprocess = false; |
| int i; |
| for (i = 0; i < NAME_MAX && slot->d_name[i]; ++i) { |
| if (!isdigit(slot->d_name[i])) { |
| notprocess = true; |
| break; |
| } |
| } |
| if (i == NAME_MAX || notprocess) { |
| skipped++; |
| continue; |
| } |
| |
| // Read the process's command line. |
| std::string pid_string(slot->d_name); |
| int pid; |
| if (StringToInt(pid_string, &pid) && !GetProcCmdline(pid, &cmd_line_args)) |
| continue; |
| |
| // Read the process's status. |
| char buf[NAME_MAX + 12]; |
| sprintf(buf, "/proc/%s/stat", slot->d_name); |
| FILE *fp = fopen(buf, "r"); |
| if (!fp) |
| continue; |
| const char* result = fgets(buf, sizeof(buf), fp); |
| fclose(fp); |
| if (!result) |
| continue; |
| |
| // Parse the status. It is formatted like this: |
| // %d (%s) %c %d %d ... |
| // pid (name) runstate ppid gid |
| // To avoid being fooled by names containing a closing paren, scan |
| // backwards. |
| openparen = strchr(buf, '('); |
| closeparen = strrchr(buf, ')'); |
| if (!openparen || !closeparen) |
| continue; |
| char runstate = closeparen[2]; |
| |
| // Is the process in 'Zombie' state, i.e. dead but waiting to be reaped? |
| // Allowed values: D R S T Z |
| if (runstate != 'Z') |
| break; |
| |
| // Nope, it's a zombie; somebody isn't cleaning up after their children. |
| // (e.g. WaitForProcessesToExit doesn't clean up after dead children yet.) |
| // There could be a lot of zombies, can't really decrement i here. |
| } |
| if (skipped >= kSkipLimit) { |
| NOTREACHED(); |
| return false; |
| } |
| |
| // This seems fragile. |
| entry_.pid_ = atoi(slot->d_name); |
| entry_.ppid_ = atoi(closeparen + 3); |
| entry_.gid_ = atoi(strchr(closeparen + 4, ' ')); |
| |
| entry_.cmd_line_args_.assign(cmd_line_args.begin(), cmd_line_args.end()); |
| |
| // TODO(port): read pid's commandline's $0, like killall does. Using the |
| // short name between openparen and closeparen won't work for long names! |
| int len = closeparen - openparen - 1; |
| entry_.exe_file_.assign(openparen + 1, len); |
| return true; |
| } |
| |
| bool NamedProcessIterator::IncludeEntry() { |
| if (executable_name_ != entry().exe_file()) |
| return false; |
| return ProcessIterator::IncludeEntry(); |
| } |
| |
| |
| // static |
| ProcessMetrics* ProcessMetrics::CreateProcessMetrics(ProcessHandle process) { |
| return new ProcessMetrics(process); |
| } |
| |
| // On linux, we return vsize. |
| size_t ProcessMetrics::GetPagefileUsage() const { |
| std::vector<std::string> proc_stats; |
| if (!GetProcStats(process_, &proc_stats)) |
| LOG(WARNING) << "Failed to get process stats."; |
| const size_t kVmSize = 22; |
| if (proc_stats.size() > kVmSize) { |
| int vm_size; |
| base::StringToInt(proc_stats[kVmSize], &vm_size); |
| return static_cast<size_t>(vm_size); |
| } |
| return 0; |
| } |
| |
| // On linux, we return the high water mark of vsize. |
| size_t ProcessMetrics::GetPeakPagefileUsage() const { |
| std::vector<std::string> proc_stats; |
| if (!GetProcStats(process_, &proc_stats)) |
| LOG(WARNING) << "Failed to get process stats."; |
| const size_t kVmPeak = 21; |
| if (proc_stats.size() > kVmPeak) { |
| int vm_peak; |
| if (base::StringToInt(proc_stats[kVmPeak], &vm_peak)) |
| return vm_peak; |
| } |
| return 0; |
| } |
| |
| // On linux, we return RSS. |
| size_t ProcessMetrics::GetWorkingSetSize() const { |
| std::vector<std::string> proc_stats; |
| if (!GetProcStats(process_, &proc_stats)) |
| LOG(WARNING) << "Failed to get process stats."; |
| const size_t kVmRss = 23; |
| if (proc_stats.size() > kVmRss) { |
| int num_pages; |
| if (base::StringToInt(proc_stats[kVmRss], &num_pages)) |
| return static_cast<size_t>(num_pages) * getpagesize(); |
| } |
| return 0; |
| } |
| |
| // On linux, we return the high water mark of RSS. |
| size_t ProcessMetrics::GetPeakWorkingSetSize() const { |
| std::vector<std::string> proc_stats; |
| if (!GetProcStats(process_, &proc_stats)) |
| LOG(WARNING) << "Failed to get process stats."; |
| const size_t kVmHwm = 23; |
| if (proc_stats.size() > kVmHwm) { |
| int num_pages; |
| base::StringToInt(proc_stats[kVmHwm], &num_pages); |
| return static_cast<size_t>(num_pages) * getpagesize(); |
| } |
| return 0; |
| } |
| |
| bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes, |
| size_t* shared_bytes) { |
| WorkingSetKBytes ws_usage; |
| if (!GetWorkingSetKBytes(&ws_usage)) |
| return false; |
| |
| if (private_bytes) |
| *private_bytes = ws_usage.priv << 10; |
| |
| if (shared_bytes) |
| *shared_bytes = ws_usage.shared * 1024; |
| |
| return true; |
| } |
| |
| // Private and Shared working set sizes are obtained from /proc/<pid>/smaps. |
| // When that's not available, use the values from /proc<pid>/statm as a |
| // close approximation. |
| // See http://www.pixelbeat.org/scripts/ps_mem.py |
| bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const { |
| // Synchronously reading files in /proc is safe. |
| base::ThreadRestrictions::ScopedAllowIO allow_io; |
| |
| FilePath proc_dir = FilePath("/proc").Append(base::IntToString(process_)); |
| std::string smaps; |
| int private_kb = 0; |
| int pss_kb = 0; |
| bool have_pss = false; |
| bool ret; |
| |
| { |
| FilePath smaps_file = proc_dir.Append("smaps"); |
| // Synchronously reading files in /proc is safe. |
| base::ThreadRestrictions::ScopedAllowIO allow_io; |
| ret = file_util::ReadFileToString(smaps_file, &smaps); |
| } |
| if (ret && smaps.length() > 0) { |
| const std::string private_prefix = "Private_"; |
| const std::string pss_prefix = "Pss"; |
| StringTokenizer tokenizer(smaps, ":\n"); |
| StringPiece last_key_name; |
| ParsingState state = KEY_NAME; |
| while (tokenizer.GetNext()) { |
| switch (state) { |
| case KEY_NAME: |
| last_key_name = tokenizer.token_piece(); |
| state = KEY_VALUE; |
| break; |
| case KEY_VALUE: |
| if (last_key_name.empty()) { |
| NOTREACHED(); |
| return false; |
| } |
| if (last_key_name.starts_with(private_prefix)) { |
| int cur; |
| base::StringToInt(tokenizer.token(), &cur); |
| private_kb += cur; |
| } else if (last_key_name.starts_with(pss_prefix)) { |
| have_pss = true; |
| int cur; |
| base::StringToInt(tokenizer.token(), &cur); |
| pss_kb += cur; |
| } |
| state = KEY_NAME; |
| break; |
| } |
| } |
| } else { |
| // Try statm if smaps is empty because of the SUID sandbox. |
| // First we need to get the page size though. |
| int page_size_kb = sysconf(_SC_PAGE_SIZE) / 1024; |
| if (page_size_kb <= 0) |
| return false; |
| |
| std::string statm; |
| { |
| FilePath statm_file = proc_dir.Append("statm"); |
| // Synchronously reading files in /proc is safe. |
| base::ThreadRestrictions::ScopedAllowIO allow_io; |
| ret = file_util::ReadFileToString(statm_file, &statm); |
| } |
| if (!ret || statm.length() == 0) |
| return false; |
| |
| std::vector<std::string> statm_vec; |
| base::SplitString(statm, ' ', &statm_vec); |
| if (statm_vec.size() != 7) |
| return false; // Not the format we expect. |
| |
| int statm1, statm2; |
| base::StringToInt(statm_vec[1], &statm1); |
| base::StringToInt(statm_vec[2], &statm2); |
| private_kb = (statm1 - statm2) * page_size_kb; |
| } |
| ws_usage->priv = private_kb; |
| // Sharable is not calculated, as it does not provide interesting data. |
| ws_usage->shareable = 0; |
| |
| ws_usage->shared = 0; |
| if (have_pss) |
| ws_usage->shared = pss_kb; |
| return true; |
| } |
| |
| double ProcessMetrics::GetCPUUsage() { |
| // This queries the /proc-specific scaling factor which is |
| // conceptually the system hertz. To dump this value on another |
| // system, try |
| // od -t dL /proc/self/auxv |
| // and look for the number after 17 in the output; mine is |
| // 0000040 17 100 3 134512692 |
| // which means the answer is 100. |
| // It may be the case that this value is always 100. |
| static const int kHertz = sysconf(_SC_CLK_TCK); |
| |
| struct timeval now; |
| int retval = gettimeofday(&now, NULL); |
| if (retval) |
| return 0; |
| int64 time = TimeValToMicroseconds(now); |
| |
| if (last_time_ == 0) { |
| // First call, just set the last values. |
| last_time_ = time; |
| last_cpu_ = GetProcessCPU(process_); |
| return 0; |
| } |
| |
| int64 time_delta = time - last_time_; |
| DCHECK_NE(time_delta, 0); |
| if (time_delta == 0) |
| return 0; |
| |
| int cpu = GetProcessCPU(process_); |
| |
| // We have the number of jiffies in the time period. Convert to percentage. |
| // Note this means we will go *over* 100 in the case where multiple threads |
| // are together adding to more than one CPU's worth. |
| int percentage = 100 * (cpu - last_cpu_) / |
| (kHertz * TimeDelta::FromMicroseconds(time_delta).InSecondsF()); |
| |
| last_time_ = time; |
| last_cpu_ = cpu; |
| |
| return percentage; |
| } |
| |
| // To have /proc/self/io file you must enable CONFIG_TASK_IO_ACCOUNTING |
| // in your kernel configuration. |
| bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const { |
| // Synchronously reading files in /proc is safe. |
| base::ThreadRestrictions::ScopedAllowIO allow_io; |
| |
| std::string proc_io_contents; |
| FilePath io_file("/proc"); |
| io_file = io_file.Append(base::IntToString(process_)); |
| io_file = io_file.Append("io"); |
| if (!file_util::ReadFileToString(io_file, &proc_io_contents)) |
| return false; |
| |
| (*io_counters).OtherOperationCount = 0; |
| (*io_counters).OtherTransferCount = 0; |
| |
| StringTokenizer tokenizer(proc_io_contents, ": \n"); |
| ParsingState state = KEY_NAME; |
| std::string last_key_name; |
| while (tokenizer.GetNext()) { |
| switch (state) { |
| case KEY_NAME: |
| last_key_name = tokenizer.token(); |
| state = KEY_VALUE; |
| break; |
| case KEY_VALUE: |
| DCHECK(!last_key_name.empty()); |
| if (last_key_name == "syscr") { |
| base::StringToInt64(tokenizer.token(), |
| reinterpret_cast<int64*>(&(*io_counters).ReadOperationCount)); |
| } else if (last_key_name == "syscw") { |
| base::StringToInt64(tokenizer.token(), |
| reinterpret_cast<int64*>(&(*io_counters).WriteOperationCount)); |
| } else if (last_key_name == "rchar") { |
| base::StringToInt64(tokenizer.token(), |
| reinterpret_cast<int64*>(&(*io_counters).ReadTransferCount)); |
| } else if (last_key_name == "wchar") { |
| base::StringToInt64(tokenizer.token(), |
| reinterpret_cast<int64*>(&(*io_counters).WriteTransferCount)); |
| } |
| state = KEY_NAME; |
| break; |
| } |
| } |
| return true; |
| } |
| |
| ProcessMetrics::ProcessMetrics(ProcessHandle process) |
| : process_(process), |
| last_time_(0), |
| last_system_time_(0), |
| last_cpu_(0) { |
| processor_count_ = base::SysInfo::NumberOfProcessors(); |
| } |
| |
| |
| // Exposed for testing. |
| int ParseProcStatCPU(const std::string& input) { |
| // /proc/<pid>/stat contains the process name in parens. In case the |
| // process name itself contains parens, skip past them. |
| std::string::size_type rparen = input.rfind(')'); |
| if (rparen == std::string::npos) |
| return -1; |
| |
| // From here, we expect a bunch of space-separated fields, where the |
| // 0-indexed 11th and 12th are utime and stime. On two different machines |
| // I found 42 and 39 fields, so let's just expect the ones we need. |
| std::vector<std::string> fields; |
| base::SplitString(input.substr(rparen + 2), ' ', &fields); |
| if (fields.size() < 13) |
| return -1; // Output not in the format we expect. |
| |
| int fields11, fields12; |
| base::StringToInt(fields[11], &fields11); |
| base::StringToInt(fields[12], &fields12); |
| return fields11 + fields12; |
| } |
| |
| namespace { |
| |
| // The format of /proc/meminfo is: |
| // |
| // MemTotal: 8235324 kB |
| // MemFree: 1628304 kB |
| // Buffers: 429596 kB |
| // Cached: 4728232 kB |
| // ... |
| const size_t kMemTotalIndex = 1; |
| const size_t kMemFreeIndex = 4; |
| const size_t kMemBuffersIndex = 7; |
| const size_t kMemCacheIndex = 10; |
| |
| } // namespace |
| |
| size_t GetSystemCommitCharge() { |
| // Synchronously reading files in /proc is safe. |
| base::ThreadRestrictions::ScopedAllowIO allow_io; |
| |
| // Used memory is: total - free - buffers - caches |
| FilePath meminfo_file("/proc/meminfo"); |
| std::string meminfo_data; |
| if (!file_util::ReadFileToString(meminfo_file, &meminfo_data)) { |
| LOG(WARNING) << "Failed to open /proc/meminfo."; |
| return 0; |
| } |
| std::vector<std::string> meminfo_fields; |
| SplitStringAlongWhitespace(meminfo_data, &meminfo_fields); |
| |
| if (meminfo_fields.size() < kMemCacheIndex) { |
| LOG(WARNING) << "Failed to parse /proc/meminfo. Only found " << |
| meminfo_fields.size() << " fields."; |
| return 0; |
| } |
| |
| DCHECK_EQ(meminfo_fields[kMemTotalIndex-1], "MemTotal:"); |
| DCHECK_EQ(meminfo_fields[kMemFreeIndex-1], "MemFree:"); |
| DCHECK_EQ(meminfo_fields[kMemBuffersIndex-1], "Buffers:"); |
| DCHECK_EQ(meminfo_fields[kMemCacheIndex-1], "Cached:"); |
| |
| int mem_total, mem_free, mem_buffers, mem_cache; |
| base::StringToInt(meminfo_fields[kMemTotalIndex], &mem_total); |
| base::StringToInt(meminfo_fields[kMemFreeIndex], &mem_free); |
| base::StringToInt(meminfo_fields[kMemBuffersIndex], &mem_buffers); |
| base::StringToInt(meminfo_fields[kMemCacheIndex], &mem_cache); |
| |
| return mem_total - mem_free - mem_buffers - mem_cache; |
| } |
| |
| namespace { |
| |
| void OnNoMemorySize(size_t size) { |
| if (size != 0) |
| LOG(FATAL) << "Out of memory, size = " << size; |
| LOG(FATAL) << "Out of memory."; |
| } |
| |
| void OnNoMemory() { |
| OnNoMemorySize(0); |
| } |
| |
| } // namespace |
| |
| extern "C" { |
| #if !defined(USE_TCMALLOC) |
| |
| extern "C" { |
| void* __libc_malloc(size_t size); |
| void* __libc_realloc(void* ptr, size_t size); |
| void* __libc_calloc(size_t nmemb, size_t size); |
| void* __libc_valloc(size_t size); |
| void* __libc_pvalloc(size_t size); |
| void* __libc_memalign(size_t alignment, size_t size); |
| } // extern "C" |
| |
| // Overriding the system memory allocation functions: |
| // |
| // For security reasons, we want malloc failures to be fatal. Too much code |
| // doesn't check for a NULL return value from malloc and unconditionally uses |
| // the resulting pointer. If the first offset that they try to access is |
| // attacker controlled, then the attacker can direct the code to access any |
| // part of memory. |
| // |
| // Thus, we define all the standard malloc functions here and mark them as |
| // visibility 'default'. This means that they replace the malloc functions for |
| // all Chromium code and also for all code in shared libraries. There are tests |
| // for this in process_util_unittest.cc. |
| // |
| // If we are using tcmalloc, then the problem is moot since tcmalloc handles |
| // this for us. Thus this code is in a !defined(USE_TCMALLOC) block. |
| // |
| // We call the real libc functions in this code by using __libc_malloc etc. |
| // Previously we tried using dlsym(RTLD_NEXT, ...) but that failed depending on |
| // the link order. Since ld.so needs calloc during symbol resolution, it |
| // defines its own versions of several of these functions in dl-minimal.c. |
| // Depending on the runtime library order, dlsym ended up giving us those |
| // functions and bad things happened. See crbug.com/31809 |
| // |
| // This means that any code which calls __libc_* gets the raw libc versions of |
| // these functions. |
| |
| #define DIE_ON_OOM_1(function_name) \ |
| void* function_name(size_t) __attribute__ ((visibility("default"))); \ |
| \ |
| void* function_name(size_t size) { \ |
| void* ret = __libc_##function_name(size); \ |
| if (ret == NULL && size != 0) \ |
| OnNoMemorySize(size); \ |
| return ret; \ |
| } |
| |
| #define DIE_ON_OOM_2(function_name, arg1_type) \ |
| void* function_name(arg1_type, size_t) \ |
| __attribute__ ((visibility("default"))); \ |
| \ |
| void* function_name(arg1_type arg1, size_t size) { \ |
| void* ret = __libc_##function_name(arg1, size); \ |
| if (ret == NULL && size != 0) \ |
| OnNoMemorySize(size); \ |
| return ret; \ |
| } |
| |
| DIE_ON_OOM_1(malloc) |
| DIE_ON_OOM_1(valloc) |
| DIE_ON_OOM_1(pvalloc) |
| |
| DIE_ON_OOM_2(calloc, size_t) |
| DIE_ON_OOM_2(realloc, void*) |
| DIE_ON_OOM_2(memalign, size_t) |
| |
| // posix_memalign has a unique signature and doesn't have a __libc_ variant. |
| int posix_memalign(void** ptr, size_t alignment, size_t size) |
| __attribute__ ((visibility("default"))); |
| |
| int posix_memalign(void** ptr, size_t alignment, size_t size) { |
| // This will use the safe version of memalign, above. |
| *ptr = memalign(alignment, size); |
| return 0; |
| } |
| |
| #endif // !defined(USE_TCMALLOC) |
| } // extern C |
| |
| void EnableTerminationOnOutOfMemory() { |
| // Set the new-out of memory handler. |
| std::set_new_handler(&OnNoMemory); |
| // If we're using glibc's allocator, the above functions will override |
| // malloc and friends and make them die on out of memory. |
| } |
| |
| bool AdjustOOMScore(ProcessId process, int score) { |
| if (score < 0 || score > 15) |
| return false; |
| |
| FilePath oom_adj("/proc"); |
| oom_adj = oom_adj.Append(base::Int64ToString(process)); |
| oom_adj = oom_adj.AppendASCII("oom_adj"); |
| |
| if (!file_util::PathExists(oom_adj)) |
| return false; |
| |
| std::string score_str = base::IntToString(score); |
| return (static_cast<int>(score_str.length()) == |
| file_util::WriteFile(oom_adj, score_str.c_str(), score_str.length())); |
| } |
| |
| } // namespace base |