| // Copyright (c) 2006-2010 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/disk_cache/mem_entry_impl.h" |
| |
| #include "base/logging.h" |
| #include "base/stringprintf.h" |
| #include "net/base/io_buffer.h" |
| #include "net/base/net_errors.h" |
| #include "net/disk_cache/mem_backend_impl.h" |
| #include "net/disk_cache/net_log_parameters.h" |
| |
| using base::Time; |
| |
| namespace { |
| |
| const int kSparseData = 1; |
| |
| // Maximum size of a sparse entry is 2 to the power of this number. |
| const int kMaxSparseEntryBits = 12; |
| |
| // Sparse entry has maximum size of 4KB. |
| const int kMaxSparseEntrySize = 1 << kMaxSparseEntryBits; |
| |
| // Convert global offset to child index. |
| inline int ToChildIndex(int64 offset) { |
| return static_cast<int>(offset >> kMaxSparseEntryBits); |
| } |
| |
| // Convert global offset to offset in child entry. |
| inline int ToChildOffset(int64 offset) { |
| return static_cast<int>(offset & (kMaxSparseEntrySize - 1)); |
| } |
| |
| // Returns a name for a child entry given the base_name of the parent and the |
| // child_id. This name is only used for logging purposes. |
| // If the entry is called entry_name, child entries will be named something |
| // like Range_entry_name:YYY where YYY is the number of the particular child. |
| std::string GenerateChildName(const std::string& base_name, int child_id) { |
| return base::StringPrintf("Range_%s:%i", base_name.c_str(), child_id); |
| } |
| |
| } // namespace |
| |
| namespace disk_cache { |
| |
| MemEntryImpl::MemEntryImpl(MemBackendImpl* backend) { |
| doomed_ = false; |
| backend_ = backend; |
| ref_count_ = 0; |
| parent_ = NULL; |
| child_id_ = 0; |
| child_first_pos_ = 0; |
| next_ = NULL; |
| prev_ = NULL; |
| for (int i = 0; i < NUM_STREAMS; i++) |
| data_size_[i] = 0; |
| } |
| |
| // ------------------------------------------------------------------------ |
| |
| bool MemEntryImpl::CreateEntry(const std::string& key, net::NetLog* net_log) { |
| net_log_ = net::BoundNetLog::Make(net_log, |
| net::NetLog::SOURCE_MEMORY_CACHE_ENTRY); |
| net_log_.BeginEvent( |
| net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL, |
| make_scoped_refptr(new EntryCreationParameters(key, true))); |
| key_ = key; |
| Time current = Time::Now(); |
| last_modified_ = current; |
| last_used_ = current; |
| Open(); |
| backend_->ModifyStorageSize(0, static_cast<int32>(key.size())); |
| return true; |
| } |
| |
| void MemEntryImpl::InternalDoom() { |
| net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM, NULL); |
| doomed_ = true; |
| if (!ref_count_) { |
| if (type() == kParentEntry) { |
| // If this is a parent entry, we need to doom all the child entries. |
| if (children_.get()) { |
| EntryMap children; |
| children.swap(*children_); |
| for (EntryMap::iterator i = children.begin(); |
| i != children.end(); ++i) { |
| // Since a pointer to this object is also saved in the map, avoid |
| // dooming it. |
| if (i->second != this) |
| i->second->Doom(); |
| } |
| DCHECK(children_->empty()); |
| } |
| } else { |
| // If this is a child entry, detach it from the parent. |
| parent_->DetachChild(child_id_); |
| } |
| delete this; |
| } |
| } |
| |
| void MemEntryImpl::Open() { |
| // Only a parent entry can be opened. |
| // TODO(hclam): make sure it's correct to not apply the concept of ref |
| // counting to child entry. |
| DCHECK(type() == kParentEntry); |
| ref_count_++; |
| DCHECK(ref_count_ >= 0); |
| DCHECK(!doomed_); |
| } |
| |
| bool MemEntryImpl::InUse() { |
| if (type() == kParentEntry) { |
| return ref_count_ > 0; |
| } else { |
| // A child entry is always not in use. The consequence is that a child entry |
| // can always be evicted while the associated parent entry is currently in |
| // used (i.e. opened). |
| return false; |
| } |
| } |
| |
| // ------------------------------------------------------------------------ |
| |
| void MemEntryImpl::Doom() { |
| if (doomed_) |
| return; |
| if (type() == kParentEntry) { |
| // Perform internal doom from the backend if this is a parent entry. |
| backend_->InternalDoomEntry(this); |
| } else { |
| // Manually detach from the backend and perform internal doom. |
| backend_->RemoveFromRankingList(this); |
| InternalDoom(); |
| } |
| } |
| |
| void MemEntryImpl::Close() { |
| // Only a parent entry can be closed. |
| DCHECK(type() == kParentEntry); |
| ref_count_--; |
| DCHECK(ref_count_ >= 0); |
| if (!ref_count_ && doomed_) |
| InternalDoom(); |
| } |
| |
| std::string MemEntryImpl::GetKey() const { |
| // A child entry doesn't have key so this method should not be called. |
| DCHECK(type() == kParentEntry); |
| return key_; |
| } |
| |
| Time MemEntryImpl::GetLastUsed() const { |
| return last_used_; |
| } |
| |
| Time MemEntryImpl::GetLastModified() const { |
| return last_modified_; |
| } |
| |
| int32 MemEntryImpl::GetDataSize(int index) const { |
| if (index < 0 || index >= NUM_STREAMS) |
| return 0; |
| return data_size_[index]; |
| } |
| |
| int MemEntryImpl::ReadData(int index, int offset, net::IOBuffer* buf, |
| int buf_len, net::CompletionCallback* completion_callback) { |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.BeginEvent( |
| net::NetLog::TYPE_ENTRY_READ_DATA, |
| make_scoped_refptr( |
| new ReadWriteDataParameters(index, offset, buf_len, false))); |
| } |
| |
| int result = InternalReadData(index, offset, buf, buf_len); |
| |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.EndEvent( |
| net::NetLog::TYPE_ENTRY_READ_DATA, |
| make_scoped_refptr(new ReadWriteCompleteParameters(result))); |
| } |
| return result; |
| } |
| |
| int MemEntryImpl::WriteData(int index, int offset, net::IOBuffer* buf, |
| int buf_len, net::CompletionCallback* completion_callback, bool truncate) { |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.BeginEvent( |
| net::NetLog::TYPE_ENTRY_WRITE_DATA, |
| make_scoped_refptr( |
| new ReadWriteDataParameters(index, offset, buf_len, truncate))); |
| } |
| |
| int result = InternalWriteData(index, offset, buf, buf_len, truncate); |
| |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.EndEvent( |
| net::NetLog::TYPE_ENTRY_WRITE_DATA, |
| make_scoped_refptr(new ReadWriteCompleteParameters(result))); |
| } |
| return result; |
| } |
| |
| int MemEntryImpl::ReadSparseData(int64 offset, net::IOBuffer* buf, int buf_len, |
| net::CompletionCallback* completion_callback) { |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.BeginEvent( |
| net::NetLog::TYPE_SPARSE_READ, |
| make_scoped_refptr( |
| new SparseOperationParameters(offset, buf_len))); |
| } |
| int result = InternalReadSparseData(offset, buf, buf_len); |
| if (net_log_.IsLoggingAllEvents()) |
| net_log_.EndEvent(net::NetLog::TYPE_SPARSE_READ, NULL); |
| return result; |
| } |
| |
| int MemEntryImpl::WriteSparseData(int64 offset, net::IOBuffer* buf, int buf_len, |
| net::CompletionCallback* completion_callback) { |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.BeginEvent(net::NetLog::TYPE_SPARSE_WRITE, |
| make_scoped_refptr( |
| new SparseOperationParameters(offset, buf_len))); |
| } |
| int result = InternalWriteSparseData(offset, buf, buf_len); |
| if (net_log_.IsLoggingAllEvents()) |
| net_log_.EndEvent(net::NetLog::TYPE_SPARSE_WRITE, NULL); |
| return result; |
| } |
| |
| int MemEntryImpl::GetAvailableRange(int64 offset, int len, int64* start, |
| CompletionCallback* callback) { |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.BeginEvent( |
| net::NetLog::TYPE_SPARSE_GET_RANGE, |
| make_scoped_refptr( |
| new SparseOperationParameters(offset, len))); |
| } |
| int result = GetAvailableRange(offset, len, start); |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.EndEvent( |
| net::NetLog::TYPE_SPARSE_GET_RANGE, |
| make_scoped_refptr( |
| new GetAvailableRangeResultParameters(*start, result))); |
| } |
| return result; |
| } |
| |
| bool MemEntryImpl::CouldBeSparse() const { |
| DCHECK_EQ(kParentEntry, type()); |
| return (children_.get() != NULL); |
| } |
| |
| int MemEntryImpl::ReadyForSparseIO( |
| net::CompletionCallback* completion_callback) { |
| return net::OK; |
| } |
| |
| // ------------------------------------------------------------------------ |
| |
| MemEntryImpl::~MemEntryImpl() { |
| for (int i = 0; i < NUM_STREAMS; i++) |
| backend_->ModifyStorageSize(data_size_[i], 0); |
| backend_->ModifyStorageSize(static_cast<int32>(key_.size()), 0); |
| net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL, NULL); |
| } |
| |
| int MemEntryImpl::InternalReadData(int index, int offset, net::IOBuffer* buf, |
| int buf_len) { |
| DCHECK(type() == kParentEntry || index == kSparseData); |
| |
| if (index < 0 || index >= NUM_STREAMS) |
| return net::ERR_INVALID_ARGUMENT; |
| |
| int entry_size = GetDataSize(index); |
| if (offset >= entry_size || offset < 0 || !buf_len) |
| return 0; |
| |
| if (buf_len < 0) |
| return net::ERR_INVALID_ARGUMENT; |
| |
| if (offset + buf_len > entry_size) |
| buf_len = entry_size - offset; |
| |
| UpdateRank(false); |
| |
| memcpy(buf->data(), &(data_[index])[offset], buf_len); |
| return buf_len; |
| } |
| |
| int MemEntryImpl::InternalWriteData(int index, int offset, net::IOBuffer* buf, |
| int buf_len, bool truncate) { |
| DCHECK(type() == kParentEntry || index == kSparseData); |
| |
| if (index < 0 || index >= NUM_STREAMS) |
| return net::ERR_INVALID_ARGUMENT; |
| |
| if (offset < 0 || buf_len < 0) |
| return net::ERR_INVALID_ARGUMENT; |
| |
| int max_file_size = backend_->MaxFileSize(); |
| |
| // offset of buf_len could be negative numbers. |
| if (offset > max_file_size || buf_len > max_file_size || |
| offset + buf_len > max_file_size) { |
| return net::ERR_FAILED; |
| } |
| |
| // Read the size at this point. |
| int entry_size = GetDataSize(index); |
| |
| PrepareTarget(index, offset, buf_len); |
| |
| if (entry_size < offset + buf_len) { |
| backend_->ModifyStorageSize(entry_size, offset + buf_len); |
| data_size_[index] = offset + buf_len; |
| } else if (truncate) { |
| if (entry_size > offset + buf_len) { |
| backend_->ModifyStorageSize(entry_size, offset + buf_len); |
| data_size_[index] = offset + buf_len; |
| } |
| } |
| |
| UpdateRank(true); |
| |
| if (!buf_len) |
| return 0; |
| |
| memcpy(&(data_[index])[offset], buf->data(), buf_len); |
| return buf_len; |
| } |
| |
| int MemEntryImpl::InternalReadSparseData(int64 offset, net::IOBuffer* buf, |
| int buf_len) { |
| DCHECK(type() == kParentEntry); |
| |
| if (!InitSparseInfo()) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| if (offset < 0 || buf_len < 0) |
| return net::ERR_INVALID_ARGUMENT; |
| |
| // We will keep using this buffer and adjust the offset in this buffer. |
| scoped_refptr<net::DrainableIOBuffer> io_buf( |
| new net::DrainableIOBuffer(buf, buf_len)); |
| |
| // Iterate until we have read enough. |
| while (io_buf->BytesRemaining()) { |
| MemEntryImpl* child = OpenChild(offset + io_buf->BytesConsumed(), false); |
| |
| // No child present for that offset. |
| if (!child) |
| break; |
| |
| // We then need to prepare the child offset and len. |
| int child_offset = ToChildOffset(offset + io_buf->BytesConsumed()); |
| |
| // If we are trying to read from a position that the child entry has no data |
| // we should stop. |
| if (child_offset < child->child_first_pos_) |
| break; |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.BeginEvent( |
| net::NetLog::TYPE_SPARSE_READ_CHILD_DATA, |
| make_scoped_refptr(new SparseReadWriteParameters( |
| child->net_log().source(), |
| io_buf->BytesRemaining()))); |
| } |
| int ret = child->ReadData(kSparseData, child_offset, io_buf, |
| io_buf->BytesRemaining(), NULL); |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.EndEventWithNetErrorCode( |
| net::NetLog::TYPE_SPARSE_READ_CHILD_DATA, ret); |
| } |
| |
| // If we encounter an error in one entry, return immediately. |
| if (ret < 0) |
| return ret; |
| else if (ret == 0) |
| break; |
| |
| // Increment the counter by number of bytes read in the child entry. |
| io_buf->DidConsume(ret); |
| } |
| |
| UpdateRank(false); |
| |
| return io_buf->BytesConsumed(); |
| } |
| |
| int MemEntryImpl::InternalWriteSparseData(int64 offset, net::IOBuffer* buf, |
| int buf_len) { |
| DCHECK(type() == kParentEntry); |
| |
| if (!InitSparseInfo()) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| if (offset < 0 || buf_len < 0) |
| return net::ERR_INVALID_ARGUMENT; |
| |
| scoped_refptr<net::DrainableIOBuffer> io_buf( |
| new net::DrainableIOBuffer(buf, buf_len)); |
| |
| // This loop walks through child entries continuously starting from |offset| |
| // and writes blocks of data (of maximum size kMaxSparseEntrySize) into each |
| // child entry until all |buf_len| bytes are written. The write operation can |
| // start in the middle of an entry. |
| while (io_buf->BytesRemaining()) { |
| MemEntryImpl* child = OpenChild(offset + io_buf->BytesConsumed(), true); |
| int child_offset = ToChildOffset(offset + io_buf->BytesConsumed()); |
| |
| // Find the right amount to write, this evaluates the remaining bytes to |
| // write and remaining capacity of this child entry. |
| int write_len = std::min(static_cast<int>(io_buf->BytesRemaining()), |
| kMaxSparseEntrySize - child_offset); |
| |
| // Keep a record of the last byte position (exclusive) in the child. |
| int data_size = child->GetDataSize(kSparseData); |
| |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.BeginEvent( |
| net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA, |
| make_scoped_refptr(new SparseReadWriteParameters( |
| child->net_log().source(), |
| write_len))); |
| } |
| |
| // Always writes to the child entry. This operation may overwrite data |
| // previously written. |
| // TODO(hclam): if there is data in the entry and this write is not |
| // continuous we may want to discard this write. |
| int ret = child->WriteData(kSparseData, child_offset, io_buf, write_len, |
| NULL, true); |
| if (net_log_.IsLoggingAllEvents()) { |
| net_log_.EndEventWithNetErrorCode( |
| net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA, ret); |
| } |
| if (ret < 0) |
| return ret; |
| else if (ret == 0) |
| break; |
| |
| // Keep a record of the first byte position in the child if the write was |
| // not aligned nor continuous. This is to enable witting to the middle |
| // of an entry and still keep track of data off the aligned edge. |
| if (data_size != child_offset) |
| child->child_first_pos_ = child_offset; |
| |
| // Adjust the offset in the IO buffer. |
| io_buf->DidConsume(ret); |
| } |
| |
| UpdateRank(true); |
| |
| return io_buf->BytesConsumed(); |
| } |
| |
| int MemEntryImpl::GetAvailableRange(int64 offset, int len, int64* start) { |
| DCHECK(type() == kParentEntry); |
| DCHECK(start); |
| |
| if (!InitSparseInfo()) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| if (offset < 0 || len < 0 || !start) |
| return net::ERR_INVALID_ARGUMENT; |
| |
| MemEntryImpl* current_child = NULL; |
| |
| // Find the first child and record the number of empty bytes. |
| int empty = FindNextChild(offset, len, ¤t_child); |
| if (current_child) { |
| *start = offset + empty; |
| len -= empty; |
| |
| // Counts the number of continuous bytes. |
| int continuous = 0; |
| |
| // This loop scan for continuous bytes. |
| while (len && current_child) { |
| // Number of bytes available in this child. |
| int data_size = current_child->GetDataSize(kSparseData) - |
| ToChildOffset(*start + continuous); |
| if (data_size > len) |
| data_size = len; |
| |
| // We have found more continuous bytes so increment the count. Also |
| // decrement the length we should scan. |
| continuous += data_size; |
| len -= data_size; |
| |
| // If the next child is discontinuous, break the loop. |
| if (FindNextChild(*start + continuous, len, ¤t_child)) |
| break; |
| } |
| return continuous; |
| } |
| *start = offset; |
| return 0; |
| } |
| |
| void MemEntryImpl::PrepareTarget(int index, int offset, int buf_len) { |
| int entry_size = GetDataSize(index); |
| |
| if (entry_size >= offset + buf_len) |
| return; // Not growing the stored data. |
| |
| if (static_cast<int>(data_[index].size()) < offset + buf_len) |
| data_[index].resize(offset + buf_len); |
| |
| if (offset <= entry_size) |
| return; // There is no "hole" on the stored data. |
| |
| // Cleanup the hole not written by the user. The point is to avoid returning |
| // random stuff later on. |
| memset(&(data_[index])[entry_size], 0, offset - entry_size); |
| } |
| |
| void MemEntryImpl::UpdateRank(bool modified) { |
| Time current = Time::Now(); |
| last_used_ = current; |
| |
| if (modified) |
| last_modified_ = current; |
| |
| if (!doomed_) |
| backend_->UpdateRank(this); |
| } |
| |
| bool MemEntryImpl::InitSparseInfo() { |
| DCHECK(type() == kParentEntry); |
| |
| if (!children_.get()) { |
| // If we already have some data in sparse stream but we are being |
| // initialized as a sparse entry, we should fail. |
| if (GetDataSize(kSparseData)) |
| return false; |
| children_.reset(new EntryMap()); |
| |
| // The parent entry stores data for the first block, so save this object to |
| // index 0. |
| (*children_)[0] = this; |
| } |
| return true; |
| } |
| |
| bool MemEntryImpl::InitChildEntry(MemEntryImpl* parent, int child_id, |
| net::NetLog* net_log) { |
| DCHECK(!parent_); |
| DCHECK(!child_id_); |
| |
| net_log_ = net::BoundNetLog::Make(net_log, |
| net::NetLog::SOURCE_MEMORY_CACHE_ENTRY); |
| net_log_.BeginEvent( |
| net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL, |
| make_scoped_refptr(new EntryCreationParameters( |
| GenerateChildName(parent->key(), child_id_), |
| true))); |
| |
| parent_ = parent; |
| child_id_ = child_id; |
| Time current = Time::Now(); |
| last_modified_ = current; |
| last_used_ = current; |
| // Insert this to the backend's ranking list. |
| backend_->InsertIntoRankingList(this); |
| return true; |
| } |
| |
| MemEntryImpl* MemEntryImpl::OpenChild(int64 offset, bool create) { |
| DCHECK(type() == kParentEntry); |
| int index = ToChildIndex(offset); |
| EntryMap::iterator i = children_->find(index); |
| if (i != children_->end()) { |
| return i->second; |
| } else if (create) { |
| MemEntryImpl* child = new MemEntryImpl(backend_); |
| child->InitChildEntry(this, index, net_log_.net_log()); |
| (*children_)[index] = child; |
| return child; |
| } |
| return NULL; |
| } |
| |
| int MemEntryImpl::FindNextChild(int64 offset, int len, MemEntryImpl** child) { |
| DCHECK(child); |
| *child = NULL; |
| int scanned_len = 0; |
| |
| // This loop tries to find the first existing child. |
| while (scanned_len < len) { |
| // This points to the current offset in the child. |
| int current_child_offset = ToChildOffset(offset + scanned_len); |
| MemEntryImpl* current_child = OpenChild(offset + scanned_len, false); |
| if (current_child) { |
| int child_first_pos = current_child->child_first_pos_; |
| |
| // This points to the first byte that we should be reading from, we need |
| // to take care of the filled region and the current offset in the child. |
| int first_pos = std::max(current_child_offset, child_first_pos); |
| |
| // If the first byte position we should read from doesn't exceed the |
| // filled region, we have found the first child. |
| if (first_pos < current_child->GetDataSize(kSparseData)) { |
| *child = current_child; |
| |
| // We need to advance the scanned length. |
| scanned_len += first_pos - current_child_offset; |
| break; |
| } |
| } |
| scanned_len += kMaxSparseEntrySize - current_child_offset; |
| } |
| return scanned_len; |
| } |
| |
| void MemEntryImpl::DetachChild(int child_id) { |
| children_->erase(child_id); |
| } |
| |
| } // namespace disk_cache |