| // Copyright (c) 2010 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This is a simple application that stress-tests the crash recovery of the disk |
| // cache. The main application starts a copy of itself on a loop, checking the |
| // exit code of the child process. When the child dies in an unexpected way, |
| // the main application quits. |
| |
| // The child application has two threads: one to exercise the cache in an |
| // infinite loop, and another one to asynchronously kill the process. |
| |
| // A regular build should never crash. |
| // To test that the disk cache doesn't generate critical errors with regular |
| // application level crashes, add the following code and re-compile: |
| // |
| // void BackendImpl::CriticalError(int error) { |
| // NOTREACHED(); |
| // |
| // void BackendImpl::ReportError(int error) { |
| // if (error && error != ERR_PREVIOUS_CRASH) { |
| // NOTREACHED(); |
| // } |
| |
| #include <string> |
| #include <vector> |
| |
| #include "base/at_exit.h" |
| #include "base/command_line.h" |
| #include "base/debug/debugger.h" |
| #include "base/file_path.h" |
| #include "base/logging.h" |
| #include "base/message_loop.h" |
| #include "base/path_service.h" |
| #include "base/process_util.h" |
| #include "base/string_number_conversions.h" |
| #include "base/string_util.h" |
| #include "base/threading/platform_thread.h" |
| #include "base/threading/thread.h" |
| #include "base/utf_string_conversions.h" |
| #include "net/base/net_errors.h" |
| #include "net/base/test_completion_callback.h" |
| #include "net/base/io_buffer.h" |
| #include "net/disk_cache/backend_impl.h" |
| #include "net/disk_cache/disk_cache.h" |
| #include "net/disk_cache/disk_cache_test_util.h" |
| |
| using base::Time; |
| |
| const int kError = -1; |
| const int kExpectedCrash = 100; |
| |
| // Starts a new process. |
| int RunSlave(int iteration) { |
| FilePath exe; |
| PathService::Get(base::FILE_EXE, &exe); |
| |
| CommandLine cmdline(exe); |
| cmdline.AppendArg(base::IntToString(iteration)); |
| |
| base::ProcessHandle handle; |
| if (!base::LaunchApp(cmdline, false, false, &handle)) { |
| printf("Unable to run test\n"); |
| return kError; |
| } |
| |
| int exit_code; |
| if (!base::WaitForExitCode(handle, &exit_code)) { |
| printf("Unable to get return code\n"); |
| return kError; |
| } |
| return exit_code; |
| } |
| |
| // Main loop for the master process. |
| int MasterCode() { |
| for (int i = 0; i < 100000; i++) { |
| int ret = RunSlave(i); |
| if (kExpectedCrash != ret) |
| return ret; |
| } |
| |
| printf("More than enough...\n"); |
| |
| return 0; |
| } |
| |
| // ----------------------------------------------------------------------- |
| |
| // This thread will loop forever, adding and removing entries from the cache. |
| // iteration is the current crash cycle, so the entries on the cache are marked |
| // to know which instance of the application wrote them. |
| void StressTheCache(int iteration) { |
| int cache_size = 0x800000; // 8MB |
| FilePath path = GetCacheFilePath().InsertBeforeExtensionASCII("_stress"); |
| |
| base::Thread cache_thread("CacheThread"); |
| if (!cache_thread.StartWithOptions( |
| base::Thread::Options(MessageLoop::TYPE_IO, 0))) |
| return; |
| |
| TestCompletionCallback cb; |
| disk_cache::Backend* cache; |
| int rv = disk_cache::BackendImpl::CreateBackend( |
| path, false, cache_size, net::DISK_CACHE, |
| disk_cache::kNoLoadProtection | disk_cache::kNoRandom, |
| cache_thread.message_loop_proxy(), NULL, &cache, &cb); |
| |
| if (cb.GetResult(rv) != net::OK) { |
| printf("Unable to initialize cache.\n"); |
| return; |
| } |
| printf("Iteration %d, initial entries: %d\n", iteration, |
| cache->GetEntryCount()); |
| |
| int seed = static_cast<int>(Time::Now().ToInternalValue()); |
| srand(seed); |
| |
| #ifdef NDEBUG |
| const int kNumKeys = 5000; |
| #else |
| const int kNumKeys = 1700; |
| #endif |
| const int kNumEntries = 30; |
| std::string keys[kNumKeys]; |
| disk_cache::Entry* entries[kNumEntries] = {0}; |
| |
| for (int i = 0; i < kNumKeys; i++) { |
| keys[i] = GenerateKey(true); |
| } |
| |
| const int kSize = 4000; |
| scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); |
| memset(buffer->data(), 'k', kSize); |
| |
| for (int i = 0;; i++) { |
| int slot = rand() % kNumEntries; |
| int key = rand() % kNumKeys; |
| bool truncate = rand() % 2 ? false : true; |
| int size = kSize - (rand() % 4) * kSize / 4; |
| |
| if (entries[slot]) |
| entries[slot]->Close(); |
| |
| rv = cache->OpenEntry(keys[key], &entries[slot], &cb); |
| if (cb.GetResult(rv) != net::OK) { |
| rv = cache->CreateEntry(keys[key], &entries[slot], &cb); |
| CHECK_EQ(net::OK, cb.GetResult(rv)); |
| } |
| |
| base::snprintf(buffer->data(), kSize, |
| "i: %d iter: %d, size: %d, truncate: %d", i, iteration, size, |
| truncate ? 1 : 0); |
| rv = entries[slot]->WriteData(0, 0, buffer, size, &cb, truncate); |
| CHECK_EQ(size, cb.GetResult(rv)); |
| |
| if (rand() % 100 > 80) { |
| key = rand() % kNumKeys; |
| rv = cache->DoomEntry(keys[key], &cb); |
| cb.GetResult(rv); |
| } |
| |
| if (!(i % 100)) |
| printf("Entries: %d \r", i); |
| } |
| } |
| |
| // We want to prevent the timer thread from killing the process while we are |
| // waiting for the debugger to attach. |
| bool g_crashing = false; |
| |
| class CrashTask : public Task { |
| public: |
| CrashTask() {} |
| ~CrashTask() {} |
| |
| virtual void Run() { |
| // Keep trying to run. |
| RunSoon(MessageLoop::current()); |
| |
| if (g_crashing) |
| return; |
| |
| if (rand() % 100 > 1) { |
| printf("sweet death...\n"); |
| #if defined(OS_WIN) |
| // Windows does more work on _exit() that we would like, so we use Kill. |
| base::KillProcessById(base::GetCurrentProcId(), kExpectedCrash, false); |
| #elif defined(OS_POSIX) |
| // On POSIX, _exit() will terminate the process with minimal cleanup, |
| // and it is cleaner than killing. |
| _exit(kExpectedCrash); |
| #endif |
| } |
| } |
| |
| static void RunSoon(MessageLoop* target_loop) { |
| int task_delay = 10000; // 10 seconds |
| CrashTask* task = new CrashTask(); |
| target_loop->PostDelayedTask(FROM_HERE, task, task_delay); |
| } |
| }; |
| |
| // We leak everything here :) |
| bool StartCrashThread() { |
| base::Thread* thread = new base::Thread("party_crasher"); |
| if (!thread->Start()) |
| return false; |
| |
| CrashTask::RunSoon(thread->message_loop()); |
| return true; |
| } |
| |
| void CrashHandler(const std::string& str) { |
| g_crashing = true; |
| base::debug::BreakDebugger(); |
| } |
| |
| // ----------------------------------------------------------------------- |
| |
| int main(int argc, const char* argv[]) { |
| // Setup an AtExitManager so Singleton objects will be destructed. |
| base::AtExitManager at_exit_manager; |
| |
| if (argc < 2) |
| return MasterCode(); |
| |
| logging::SetLogAssertHandler(CrashHandler); |
| |
| // Some time for the memory manager to flush stuff. |
| base::PlatformThread::Sleep(3000); |
| MessageLoop message_loop(MessageLoop::TYPE_IO); |
| |
| char* end; |
| long int iteration = strtol(argv[1], &end, 0); |
| |
| if (!StartCrashThread()) { |
| printf("failed to start thread\n"); |
| return kError; |
| } |
| |
| StressTheCache(iteration); |
| return 0; |
| } |