| // Copyright (c) 2006-2010 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/basictypes.h" |
| #include "base/platform_thread.h" |
| #include "base/timer.h" |
| #include "base/string_util.h" |
| #include "net/base/io_buffer.h" |
| #include "net/base/net_errors.h" |
| #include "net/base/test_completion_callback.h" |
| #include "net/disk_cache/disk_cache_test_base.h" |
| #include "net/disk_cache/disk_cache_test_util.h" |
| #include "net/disk_cache/entry_impl.h" |
| #include "net/disk_cache/mem_entry_impl.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| using base::Time; |
| |
| extern volatile int g_cache_tests_received; |
| extern volatile bool g_cache_tests_error; |
| |
| // Tests that can run with different types of caches. |
| class DiskCacheEntryTest : public DiskCacheTestWithCache { |
| protected: |
| void InternalSyncIO(); |
| void InternalAsyncIO(); |
| void ExternalSyncIO(); |
| void ExternalAsyncIO(); |
| void StreamAccess(); |
| void GetKey(); |
| void GrowData(); |
| void TruncateData(); |
| void ZeroLengthIO(); |
| void ReuseEntry(int size); |
| void InvalidData(); |
| void DoomNormalEntry(); |
| void DoomedEntry(); |
| void BasicSparseIO(bool async); |
| void HugeSparseIO(bool async); |
| void GetAvailableRange(); |
| void CouldBeSparse(); |
| void DoomSparseEntry(); |
| void PartialSparseEntry(); |
| }; |
| |
| void DiskCacheEntryTest::InternalSyncIO() { |
| disk_cache::Entry *entry1 = NULL; |
| ASSERT_EQ(net::OK, CreateEntry("the first key", &entry1)); |
| ASSERT_TRUE(NULL != entry1); |
| |
| const int kSize1 = 10; |
| scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| EXPECT_EQ(0, entry1->ReadData(0, 0, buffer1, kSize1, NULL)); |
| base::strlcpy(buffer1->data(), "the data", kSize1); |
| EXPECT_EQ(10, entry1->WriteData(0, 0, buffer1, kSize1, NULL, false)); |
| memset(buffer1->data(), 0, kSize1); |
| EXPECT_EQ(10, entry1->ReadData(0, 0, buffer1, kSize1, NULL)); |
| EXPECT_STREQ("the data", buffer1->data()); |
| |
| const int kSize2 = 5000; |
| const int kSize3 = 10000; |
| scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2); |
| scoped_refptr<net::IOBuffer> buffer3 = new net::IOBuffer(kSize3); |
| memset(buffer3->data(), 0, kSize3); |
| CacheTestFillBuffer(buffer2->data(), kSize2, false); |
| base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); |
| EXPECT_EQ(5000, entry1->WriteData(1, 1500, buffer2, kSize2, NULL, false)); |
| memset(buffer2->data(), 0, kSize2); |
| EXPECT_EQ(4989, entry1->ReadData(1, 1511, buffer2, kSize2, NULL)); |
| EXPECT_STREQ("big data goes here", buffer2->data()); |
| EXPECT_EQ(5000, entry1->ReadData(1, 0, buffer2, kSize2, NULL)); |
| EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); |
| EXPECT_EQ(1500, entry1->ReadData(1, 5000, buffer2, kSize2, NULL)); |
| |
| EXPECT_EQ(0, entry1->ReadData(1, 6500, buffer2, kSize2, NULL)); |
| EXPECT_EQ(6500, entry1->ReadData(1, 0, buffer3, kSize3, NULL)); |
| EXPECT_EQ(8192, entry1->WriteData(1, 0, buffer3, 8192, NULL, false)); |
| EXPECT_EQ(8192, entry1->ReadData(1, 0, buffer3, kSize3, NULL)); |
| EXPECT_EQ(8192, entry1->GetDataSize(1)); |
| |
| entry1->Doom(); |
| entry1->Close(); |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, InternalSyncIO) { |
| SetDirectMode(); |
| InitCache(); |
| InternalSyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| InternalSyncIO(); |
| } |
| |
| void DiskCacheEntryTest::InternalAsyncIO() { |
| disk_cache::Entry *entry1 = NULL; |
| ASSERT_EQ(net::OK, CreateEntry("the first key", &entry1)); |
| ASSERT_TRUE(NULL != entry1); |
| |
| // Avoid using internal buffers for the test. We have to write something to |
| // the entry and close it so that we flush the internal buffer to disk. After |
| // that, IO operations will be really hitting the disk. We don't care about |
| // the content, so just extending the entry is enough (all extensions zero- |
| // fill any holes). |
| EXPECT_EQ(0, entry1->WriteData(0, 15 * 1024, NULL, 0, NULL, false)); |
| EXPECT_EQ(0, entry1->WriteData(1, 15 * 1024, NULL, 0, NULL, false)); |
| entry1->Close(); |
| ASSERT_EQ(net::OK, OpenEntry("the first key", &entry1)); |
| |
| // Let's verify that each IO goes to the right callback object. |
| CallbackTest callback1(false); |
| CallbackTest callback2(false); |
| CallbackTest callback3(false); |
| CallbackTest callback4(false); |
| CallbackTest callback5(false); |
| CallbackTest callback6(false); |
| CallbackTest callback7(false); |
| CallbackTest callback8(false); |
| CallbackTest callback9(false); |
| CallbackTest callback10(false); |
| CallbackTest callback11(false); |
| CallbackTest callback12(false); |
| CallbackTest callback13(false); |
| |
| g_cache_tests_error = false; |
| g_cache_tests_received = 0; |
| |
| MessageLoopHelper helper; |
| |
| const int kSize1 = 10; |
| const int kSize2 = 5000; |
| const int kSize3 = 10000; |
| scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2); |
| scoped_refptr<net::IOBuffer> buffer3 = new net::IOBuffer(kSize3); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| CacheTestFillBuffer(buffer2->data(), kSize2, false); |
| CacheTestFillBuffer(buffer3->data(), kSize3, false); |
| |
| EXPECT_EQ(0, entry1->ReadData(0, 15 * 1024, buffer1, kSize1, &callback1)); |
| base::strlcpy(buffer1->data(), "the data", kSize1); |
| int expected = 0; |
| int ret = entry1->WriteData(0, 0, buffer1, kSize1, &callback2, false); |
| EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| memset(buffer2->data(), 0, kSize2); |
| ret = entry1->ReadData(0, 0, buffer2, kSize1, &callback3); |
| EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_STREQ("the data", buffer2->data()); |
| |
| base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); |
| ret = entry1->WriteData(1, 1500, buffer2, kSize2, &callback4, true); |
| EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| memset(buffer3->data(), 0, kSize3); |
| ret = entry1->ReadData(1, 1511, buffer3, kSize2, &callback5); |
| EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_STREQ("big data goes here", buffer3->data()); |
| ret = entry1->ReadData(1, 0, buffer2, kSize2, &callback6); |
| EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| memset(buffer3->data(), 0, kSize3); |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); |
| ret = entry1->ReadData(1, 5000, buffer2, kSize2, &callback7); |
| EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| ret = entry1->ReadData(1, 0, buffer3, kSize3, &callback9); |
| EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| ret = entry1->WriteData(1, 0, buffer3, 8192, &callback10, true); |
| EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| ret = entry1->ReadData(1, 0, buffer3, kSize3, &callback11); |
| EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_EQ(8192, entry1->GetDataSize(1)); |
| |
| ret = entry1->ReadData(0, 0, buffer1, kSize1, &callback12); |
| EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| ret = entry1->ReadData(1, 0, buffer2, kSize2, &callback13); |
| EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| |
| EXPECT_FALSE(g_cache_tests_error); |
| EXPECT_EQ(expected, g_cache_tests_received); |
| |
| entry1->Doom(); |
| entry1->Close(); |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, InternalAsyncIO) { |
| SetDirectMode(); |
| InitCache(); |
| InternalAsyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| InternalAsyncIO(); |
| } |
| |
| void DiskCacheEntryTest::ExternalSyncIO() { |
| disk_cache::Entry *entry1; |
| ASSERT_EQ(net::OK, CreateEntry("the first key", &entry1)); |
| |
| const int kSize1 = 17000; |
| const int kSize2 = 25000; |
| scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| CacheTestFillBuffer(buffer2->data(), kSize2, false); |
| base::strlcpy(buffer1->data(), "the data", kSize1); |
| EXPECT_EQ(17000, entry1->WriteData(0, 0, buffer1, kSize1, NULL, false)); |
| memset(buffer1->data(), 0, kSize1); |
| EXPECT_EQ(17000, entry1->ReadData(0, 0, buffer1, kSize1, NULL)); |
| EXPECT_STREQ("the data", buffer1->data()); |
| |
| base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); |
| EXPECT_EQ(25000, entry1->WriteData(1, 10000, buffer2, kSize2, NULL, false)); |
| memset(buffer2->data(), 0, kSize2); |
| EXPECT_EQ(24989, entry1->ReadData(1, 10011, buffer2, kSize2, NULL)); |
| EXPECT_STREQ("big data goes here", buffer2->data()); |
| EXPECT_EQ(25000, entry1->ReadData(1, 0, buffer2, kSize2, NULL)); |
| EXPECT_EQ(0, memcmp(buffer2->data(), buffer2->data(), 10000)); |
| EXPECT_EQ(5000, entry1->ReadData(1, 30000, buffer2, kSize2, NULL)); |
| |
| EXPECT_EQ(0, entry1->ReadData(1, 35000, buffer2, kSize2, NULL)); |
| EXPECT_EQ(17000, entry1->ReadData(1, 0, buffer1, kSize1, NULL)); |
| EXPECT_EQ(17000, entry1->WriteData(1, 20000, buffer1, kSize1, NULL, false)); |
| EXPECT_EQ(37000, entry1->GetDataSize(1)); |
| |
| entry1->Doom(); |
| entry1->Close(); |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ExternalSyncIO) { |
| SetDirectMode(); |
| InitCache(); |
| ExternalSyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| ExternalSyncIO(); |
| } |
| |
| void DiskCacheEntryTest::ExternalAsyncIO() { |
| disk_cache::Entry *entry1; |
| ASSERT_EQ(net::OK, CreateEntry("the first key", &entry1)); |
| |
| // Let's verify that each IO goes to the right callback object. |
| CallbackTest callback1(false); |
| CallbackTest callback2(false); |
| CallbackTest callback3(false); |
| CallbackTest callback4(false); |
| CallbackTest callback5(false); |
| CallbackTest callback6(false); |
| CallbackTest callback7(false); |
| CallbackTest callback8(false); |
| CallbackTest callback9(false); |
| |
| g_cache_tests_error = false; |
| g_cache_tests_received = 0; |
| int expected = 0; |
| |
| MessageLoopHelper helper; |
| |
| const int kSize1 = 17000; |
| const int kSize2 = 25000; |
| const int kSize3 = 25000; |
| scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2); |
| scoped_refptr<net::IOBuffer> buffer3 = new net::IOBuffer(kSize3); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| CacheTestFillBuffer(buffer2->data(), kSize2, false); |
| CacheTestFillBuffer(buffer3->data(), kSize3, false); |
| base::strlcpy(buffer1->data(), "the data", kSize1); |
| int ret = entry1->WriteData(0, 0, buffer1, kSize1, &callback1, false); |
| EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| |
| memset(buffer2->data(), 0, kSize1); |
| ret = entry1->ReadData(0, 0, buffer2, kSize1, &callback2); |
| EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_STREQ("the data", buffer1->data()); |
| |
| base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); |
| ret = entry1->WriteData(1, 10000, buffer2, kSize2, &callback3, false); |
| EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| |
| memset(buffer3->data(), 0, kSize3); |
| ret = entry1->ReadData(1, 10011, buffer3, kSize3, &callback4); |
| EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_STREQ("big data goes here", buffer3->data()); |
| ret = entry1->ReadData(1, 0, buffer2, kSize2, &callback5); |
| EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_EQ(0, memcmp(buffer2->data(), buffer2->data(), 10000)); |
| ret = entry1->ReadData(1, 30000, buffer2, kSize2, &callback6); |
| EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_EQ(0, entry1->ReadData(1, 35000, buffer2, kSize2, &callback7)); |
| ret = entry1->ReadData(1, 0, buffer1, kSize1, &callback8); |
| EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| ret = entry1->WriteData(1, 20000, buffer1, kSize1, &callback9, false); |
| EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_EQ(37000, entry1->GetDataSize(1)); |
| |
| EXPECT_FALSE(g_cache_tests_error); |
| EXPECT_EQ(expected, g_cache_tests_received); |
| |
| entry1->Doom(); |
| entry1->Close(); |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ExternalAsyncIO) { |
| SetDirectMode(); |
| InitCache(); |
| ExternalAsyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| ExternalAsyncIO(); |
| } |
| |
| void DiskCacheEntryTest::StreamAccess() { |
| disk_cache::Entry *entry = NULL; |
| ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); |
| ASSERT_TRUE(NULL != entry); |
| |
| const int kBufferSize = 1024; |
| scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kBufferSize); |
| scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kBufferSize); |
| |
| const int kNumStreams = 3; |
| for (int i = 0; i < kNumStreams; i++) { |
| CacheTestFillBuffer(buffer1->data(), kBufferSize, false); |
| EXPECT_EQ(kBufferSize, entry->WriteData(i, 0, buffer1, kBufferSize, NULL, |
| false)); |
| memset(buffer2->data(), 0, kBufferSize); |
| EXPECT_EQ(kBufferSize, entry->ReadData(i, 0, buffer2, kBufferSize, NULL)); |
| EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kBufferSize)); |
| } |
| |
| EXPECT_EQ(net::ERR_INVALID_ARGUMENT, |
| entry->ReadData(kNumStreams, 0, buffer1, kBufferSize, NULL)); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, StreamAccess) { |
| InitCache(); |
| StreamAccess(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| StreamAccess(); |
| } |
| |
| void DiskCacheEntryTest::GetKey() { |
| std::string key1("the first key"); |
| disk_cache::Entry *entry1; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| EXPECT_EQ(key1, entry1->GetKey()) << "short key"; |
| entry1->Close(); |
| |
| int seed = static_cast<int>(Time::Now().ToInternalValue()); |
| srand(seed); |
| char key_buffer[20000]; |
| |
| CacheTestFillBuffer(key_buffer, 3000, true); |
| key_buffer[1000] = '\0'; |
| |
| key1 = key_buffer; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| EXPECT_TRUE(key1 == entry1->GetKey()) << "1000 bytes key"; |
| entry1->Close(); |
| |
| key_buffer[1000] = 'p'; |
| key_buffer[3000] = '\0'; |
| key1 = key_buffer; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| EXPECT_TRUE(key1 == entry1->GetKey()) << "medium size key"; |
| entry1->Close(); |
| |
| CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true); |
| key_buffer[19999] = '\0'; |
| |
| key1 = key_buffer; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| EXPECT_TRUE(key1 == entry1->GetKey()) << "long key"; |
| entry1->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, GetKey) { |
| InitCache(); |
| GetKey(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| GetKey(); |
| } |
| |
| void DiskCacheEntryTest::GrowData() { |
| std::string key1("the first key"); |
| disk_cache::Entry *entry1, *entry2; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| |
| const int kSize = 20000; |
| scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize); |
| scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buffer1->data(), kSize, false); |
| memset(buffer2->data(), 0, kSize); |
| |
| base::strlcpy(buffer1->data(), "the data", kSize); |
| EXPECT_EQ(10, entry1->WriteData(0, 0, buffer1, 10, NULL, false)); |
| EXPECT_EQ(10, entry1->ReadData(0, 0, buffer2, 10, NULL)); |
| EXPECT_STREQ("the data", buffer2->data()); |
| EXPECT_EQ(10, entry1->GetDataSize(0)); |
| |
| EXPECT_EQ(2000, entry1->WriteData(0, 0, buffer1, 2000, NULL, false)); |
| EXPECT_EQ(2000, entry1->GetDataSize(0)); |
| EXPECT_EQ(2000, entry1->ReadData(0, 0, buffer2, 2000, NULL)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); |
| |
| EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer1, kSize, NULL, false)); |
| EXPECT_EQ(20000, entry1->GetDataSize(0)); |
| EXPECT_EQ(20000, entry1->ReadData(0, 0, buffer2, kSize, NULL)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); |
| entry1->Close(); |
| |
| memset(buffer2->data(), 0, kSize); |
| ASSERT_EQ(net::OK, CreateEntry("Second key", &entry2)); |
| EXPECT_EQ(10, entry2->WriteData(0, 0, buffer1, 10, NULL, false)); |
| EXPECT_EQ(10, entry2->GetDataSize(0)); |
| entry2->Close(); |
| |
| // Go from an internal address to a bigger block size. |
| ASSERT_EQ(net::OK, OpenEntry("Second key", &entry2)); |
| EXPECT_EQ(2000, entry2->WriteData(0, 0, buffer1, 2000, NULL, false)); |
| EXPECT_EQ(2000, entry2->GetDataSize(0)); |
| EXPECT_EQ(2000, entry2->ReadData(0, 0, buffer2, 2000, NULL)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); |
| entry2->Close(); |
| memset(buffer2->data(), 0, kSize); |
| |
| // Go from an internal address to an external one. |
| ASSERT_EQ(net::OK, OpenEntry("Second key", &entry2)); |
| EXPECT_EQ(20000, entry2->WriteData(0, 0, buffer1, kSize, NULL, false)); |
| EXPECT_EQ(20000, entry2->GetDataSize(0)); |
| EXPECT_EQ(20000, entry2->ReadData(0, 0, buffer2, kSize, NULL)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); |
| entry2->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, GrowData) { |
| InitCache(); |
| GrowData(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| GrowData(); |
| } |
| |
| void DiskCacheEntryTest::TruncateData() { |
| std::string key1("the first key"); |
| disk_cache::Entry *entry1; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| |
| const int kSize1 = 20000; |
| const int kSize2 = 20000; |
| scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2); |
| |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| memset(buffer2->data(), 0, kSize2); |
| |
| // Simple truncation: |
| EXPECT_EQ(200, entry1->WriteData(0, 0, buffer1, 200, NULL, false)); |
| EXPECT_EQ(200, entry1->GetDataSize(0)); |
| EXPECT_EQ(100, entry1->WriteData(0, 0, buffer1, 100, NULL, false)); |
| EXPECT_EQ(200, entry1->GetDataSize(0)); |
| EXPECT_EQ(100, entry1->WriteData(0, 0, buffer1, 100, NULL, true)); |
| EXPECT_EQ(100, entry1->GetDataSize(0)); |
| EXPECT_EQ(0, entry1->WriteData(0, 50, buffer1, 0, NULL, true)); |
| EXPECT_EQ(50, entry1->GetDataSize(0)); |
| EXPECT_EQ(0, entry1->WriteData(0, 0, buffer1, 0, NULL, true)); |
| EXPECT_EQ(0, entry1->GetDataSize(0)); |
| entry1->Close(); |
| ASSERT_EQ(net::OK, OpenEntry(key1, &entry1)); |
| |
| // Go to an external file. |
| EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer1, 20000, NULL, true)); |
| EXPECT_EQ(20000, entry1->GetDataSize(0)); |
| EXPECT_EQ(20000, entry1->ReadData(0, 0, buffer2, 20000, NULL)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000)); |
| memset(buffer2->data(), 0, kSize2); |
| |
| // External file truncation |
| EXPECT_EQ(18000, entry1->WriteData(0, 0, buffer1, 18000, NULL, false)); |
| EXPECT_EQ(20000, entry1->GetDataSize(0)); |
| EXPECT_EQ(18000, entry1->WriteData(0, 0, buffer1, 18000, NULL, true)); |
| EXPECT_EQ(18000, entry1->GetDataSize(0)); |
| EXPECT_EQ(0, entry1->WriteData(0, 17500, buffer1, 0, NULL, true)); |
| EXPECT_EQ(17500, entry1->GetDataSize(0)); |
| |
| // And back to an internal block. |
| EXPECT_EQ(600, entry1->WriteData(0, 1000, buffer1, 600, NULL, true)); |
| EXPECT_EQ(1600, entry1->GetDataSize(0)); |
| EXPECT_EQ(600, entry1->ReadData(0, 1000, buffer2, 600, NULL)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600)); |
| EXPECT_EQ(1000, entry1->ReadData(0, 0, buffer2, 1000, NULL)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000)) << |
| "Preserves previous data"; |
| |
| // Go from external file to zero length. |
| EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer1, 20000, NULL, true)); |
| EXPECT_EQ(20000, entry1->GetDataSize(0)); |
| EXPECT_EQ(0, entry1->WriteData(0, 0, buffer1, 0, NULL, true)); |
| EXPECT_EQ(0, entry1->GetDataSize(0)); |
| |
| entry1->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, TruncateData) { |
| InitCache(); |
| TruncateData(); |
| |
| // We generate asynchronous IO that is not really tracked until completion |
| // so we just wait here before running the next test. |
| MessageLoopHelper helper; |
| helper.WaitUntilCacheIoFinished(1); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| TruncateData(); |
| } |
| |
| void DiskCacheEntryTest::ZeroLengthIO() { |
| std::string key1("the first key"); |
| disk_cache::Entry *entry1; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| |
| EXPECT_EQ(0, entry1->ReadData(0, 0, NULL, 0, NULL)); |
| EXPECT_EQ(0, entry1->WriteData(0, 0, NULL, 0, NULL, false)); |
| |
| // This write should extend the entry. |
| EXPECT_EQ(0, entry1->WriteData(0, 1000, NULL, 0, NULL, false)); |
| EXPECT_EQ(0, entry1->ReadData(0, 500, NULL, 0, NULL)); |
| EXPECT_EQ(0, entry1->ReadData(0, 2000, NULL, 0, NULL)); |
| EXPECT_EQ(1000, entry1->GetDataSize(0)); |
| entry1->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ZeroLengthIO) { |
| InitCache(); |
| ZeroLengthIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| ZeroLengthIO(); |
| } |
| |
| // Write more than the total cache capacity but to a single entry. |size| is the |
| // amount of bytes to write each time. |
| void DiskCacheEntryTest::ReuseEntry(int size) { |
| std::string key1("the first key"); |
| disk_cache::Entry *entry; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry)); |
| |
| entry->Close(); |
| std::string key2("the second key"); |
| ASSERT_EQ(net::OK, CreateEntry(key2, &entry)); |
| |
| scoped_refptr<net::IOBuffer> buffer = new net::IOBuffer(size); |
| CacheTestFillBuffer(buffer->data(), size, false); |
| |
| for (int i = 0; i < 15; i++) { |
| EXPECT_EQ(0, entry->WriteData(0, 0, buffer, 0, NULL, true)); |
| EXPECT_EQ(size, entry->WriteData(0, 0, buffer, size, NULL, false)); |
| entry->Close(); |
| ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); |
| } |
| |
| entry->Close(); |
| ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry"; |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ReuseExternalEntry) { |
| SetDirectMode(); |
| SetMaxSize(200 * 1024); |
| InitCache(); |
| ReuseEntry(20 * 1024); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) { |
| SetDirectMode(); |
| SetMemoryOnlyMode(); |
| SetMaxSize(200 * 1024); |
| InitCache(); |
| ReuseEntry(20 * 1024); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ReuseInternalEntry) { |
| SetDirectMode(); |
| SetMaxSize(100 * 1024); |
| InitCache(); |
| ReuseEntry(10 * 1024); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) { |
| SetDirectMode(); |
| SetMemoryOnlyMode(); |
| SetMaxSize(100 * 1024); |
| InitCache(); |
| ReuseEntry(10 * 1024); |
| } |
| |
| // Reading somewhere that was not written should return zeros. |
| void DiskCacheEntryTest::InvalidData() { |
| std::string key1("the first key"); |
| disk_cache::Entry *entry1; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| |
| const int kSize1 = 20000; |
| const int kSize2 = 20000; |
| const int kSize3 = 20000; |
| scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2); |
| scoped_refptr<net::IOBuffer> buffer3 = new net::IOBuffer(kSize3); |
| |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| memset(buffer2->data(), 0, kSize2); |
| |
| // Simple data grow: |
| EXPECT_EQ(200, entry1->WriteData(0, 400, buffer1, 200, NULL, false)); |
| EXPECT_EQ(600, entry1->GetDataSize(0)); |
| EXPECT_EQ(100, entry1->ReadData(0, 300, buffer3, 100, NULL)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); |
| entry1->Close(); |
| ASSERT_EQ(net::OK, OpenEntry(key1, &entry1)); |
| |
| // The entry is now on disk. Load it and extend it. |
| EXPECT_EQ(200, entry1->WriteData(0, 800, buffer1, 200, NULL, false)); |
| EXPECT_EQ(1000, entry1->GetDataSize(0)); |
| EXPECT_EQ(100, entry1->ReadData(0, 700, buffer3, 100, NULL)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); |
| entry1->Close(); |
| ASSERT_EQ(net::OK, OpenEntry(key1, &entry1)); |
| |
| // This time using truncate. |
| EXPECT_EQ(200, entry1->WriteData(0, 1800, buffer1, 200, NULL, true)); |
| EXPECT_EQ(2000, entry1->GetDataSize(0)); |
| EXPECT_EQ(100, entry1->ReadData(0, 1500, buffer3, 100, NULL)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); |
| |
| // Go to an external file. |
| EXPECT_EQ(200, entry1->WriteData(0, 19800, buffer1, 200, NULL, false)); |
| EXPECT_EQ(20000, entry1->GetDataSize(0)); |
| EXPECT_EQ(4000, entry1->ReadData(0, 14000, buffer3, 4000, NULL)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000)); |
| |
| // And back to an internal block. |
| EXPECT_EQ(600, entry1->WriteData(0, 1000, buffer1, 600, NULL, true)); |
| EXPECT_EQ(1600, entry1->GetDataSize(0)); |
| EXPECT_EQ(600, entry1->ReadData(0, 1000, buffer3, 600, NULL)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600)); |
| |
| // Extend it again. |
| EXPECT_EQ(600, entry1->WriteData(0, 2000, buffer1, 600, NULL, false)); |
| EXPECT_EQ(2600, entry1->GetDataSize(0)); |
| EXPECT_EQ(200, entry1->ReadData(0, 1800, buffer3, 200, NULL)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); |
| |
| // And again (with truncation flag). |
| EXPECT_EQ(600, entry1->WriteData(0, 3000, buffer1, 600, NULL, true)); |
| EXPECT_EQ(3600, entry1->GetDataSize(0)); |
| EXPECT_EQ(200, entry1->ReadData(0, 2800, buffer3, 200, NULL)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); |
| |
| entry1->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, InvalidData) { |
| InitCache(); |
| InvalidData(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| InvalidData(); |
| } |
| |
| void DiskCacheEntryTest::DoomNormalEntry() { |
| std::string key1("the first key"); |
| disk_cache::Entry *entry1; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| entry1->Doom(); |
| entry1->Close(); |
| |
| const int kSize = 20000; |
| scoped_refptr<net::IOBuffer> buffer = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, true); |
| buffer->data()[19999] = '\0'; |
| |
| key1 = buffer->data(); |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer, kSize, NULL, false)); |
| EXPECT_EQ(20000, entry1->WriteData(1, 0, buffer, kSize, NULL, false)); |
| entry1->Doom(); |
| entry1->Close(); |
| |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, DoomEntry) { |
| SetDirectMode(); |
| InitCache(); |
| DoomNormalEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| DoomNormalEntry(); |
| } |
| |
| // Verify that basic operations work as expected with doomed entries. |
| void DiskCacheEntryTest::DoomedEntry() { |
| std::string key("the first key"); |
| disk_cache::Entry *entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| entry->Doom(); |
| |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| Time initial = Time::Now(); |
| PlatformThread::Sleep(20); |
| |
| const int kSize1 = 2000; |
| const int kSize2 = 2000; |
| scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| memset(buffer2->data(), 0, kSize2); |
| |
| EXPECT_EQ(2000, entry->WriteData(0, 0, buffer1, 2000, NULL, false)); |
| EXPECT_EQ(2000, entry->ReadData(0, 0, buffer2, 2000, NULL)); |
| EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1)); |
| EXPECT_EQ(key, entry->GetKey()); |
| EXPECT_TRUE(initial < entry->GetLastModified()); |
| EXPECT_TRUE(initial < entry->GetLastUsed()); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, DoomedEntry) { |
| SetDirectMode(); |
| InitCache(); |
| DoomedEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| DoomedEntry(); |
| } |
| |
| // Test that child entries in a memory cache backend are not visible from |
| // enumerations. |
| TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| |
| const int kSize = 4096; |
| scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| std::string key("the first key"); |
| disk_cache::Entry* parent_entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &parent_entry)); |
| |
| // Writes to the parent entry. |
| EXPECT_EQ(kSize, parent_entry->WriteSparseData(0, buf, kSize, NULL)); |
| |
| // This write creates a child entry and writes to it. |
| EXPECT_EQ(kSize, parent_entry->WriteSparseData(8192, buf, kSize, NULL)); |
| |
| parent_entry->Close(); |
| |
| // Perform the enumerations. |
| void* iter = NULL; |
| disk_cache::Entry* entry = NULL; |
| int count = 0; |
| while (OpenNextEntry(&iter, &entry) == net::OK) { |
| ASSERT_TRUE(entry != NULL); |
| ++count; |
| disk_cache::MemEntryImpl* mem_entry = |
| reinterpret_cast<disk_cache::MemEntryImpl*>(entry); |
| EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry, mem_entry->type()); |
| mem_entry->Close(); |
| } |
| EXPECT_EQ(1, count); |
| } |
| |
| // Writes |buf_1| to offset and reads it back as |buf_2|. |
| void VerifySparseIO(disk_cache::Entry* entry, int64 offset, |
| net::IOBuffer* buf_1, int size, bool async, |
| net::IOBuffer* buf_2) { |
| TestCompletionCallback callback; |
| TestCompletionCallback* cb = async ? &callback : NULL; |
| |
| memset(buf_2->data(), 0, size); |
| int ret = entry->ReadSparseData(offset, buf_2, size, cb); |
| ret = callback.GetResult(ret); |
| EXPECT_EQ(0, ret); |
| |
| ret = entry->WriteSparseData(offset, buf_1, size, cb); |
| ret = callback.GetResult(ret); |
| EXPECT_EQ(size, ret); |
| |
| ret = entry->ReadSparseData(offset, buf_2, size, cb); |
| ret = callback.GetResult(ret); |
| EXPECT_EQ(size, ret); |
| |
| EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size)); |
| } |
| |
| // Reads |size| bytes from |entry| at |offset| and verifies that they are the |
| // same as the content of the provided |buffer|. |
| void VerifyContentSparseIO(disk_cache::Entry* entry, int64 offset, char* buffer, |
| int size, bool async) { |
| TestCompletionCallback callback; |
| TestCompletionCallback* cb = async ? &callback : NULL; |
| |
| scoped_refptr<net::IOBuffer> buf_1 = new net::IOBuffer(size); |
| memset(buf_1->data(), 0, size); |
| int ret = entry->ReadSparseData(offset, buf_1, size, cb); |
| ret = callback.GetResult(ret); |
| EXPECT_EQ(size, ret); |
| |
| EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size)); |
| } |
| |
| void DiskCacheEntryTest::BasicSparseIO(bool async) { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| |
| const int kSize = 2048; |
| scoped_refptr<net::IOBuffer> buf_1 = new net::IOBuffer(kSize); |
| scoped_refptr<net::IOBuffer> buf_2 = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf_1->data(), kSize, false); |
| |
| // Write at offset 0. |
| VerifySparseIO(entry, 0, buf_1, kSize, async, buf_2); |
| |
| // Write at offset 0x400000 (4 MB). |
| VerifySparseIO(entry, 0x400000, buf_1, kSize, async, buf_2); |
| |
| // Write at offset 0x800000000 (32 GB). |
| VerifySparseIO(entry, 0x800000000LL, buf_1, kSize, async, buf_2); |
| |
| entry->Close(); |
| |
| // Check everything again. |
| ASSERT_EQ(net::OK, OpenEntry(key, &entry)); |
| VerifyContentSparseIO(entry, 0, buf_1->data(), kSize, async); |
| VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize, async); |
| VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize, async); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, BasicSparseSyncIO) { |
| InitCache(); |
| BasicSparseIO(false); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseSyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| BasicSparseIO(false); |
| } |
| |
| TEST_F(DiskCacheEntryTest, BasicSparseAsyncIO) { |
| InitCache(); |
| BasicSparseIO(true); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseAsyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| BasicSparseIO(true); |
| } |
| |
| void DiskCacheEntryTest::HugeSparseIO(bool async) { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| |
| // Write 1.2 MB so that we cover multiple entries. |
| const int kSize = 1200 * 1024; |
| scoped_refptr<net::IOBuffer> buf_1 = new net::IOBuffer(kSize); |
| scoped_refptr<net::IOBuffer> buf_2 = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf_1->data(), kSize, false); |
| |
| // Write at offset 0x20F0000 (33 MB - 64 KB). |
| VerifySparseIO(entry, 0x20F0000, buf_1, kSize, async, buf_2); |
| entry->Close(); |
| |
| // Check it again. |
| ASSERT_EQ(net::OK, OpenEntry(key, &entry)); |
| VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize, async); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, HugeSparseSyncIO) { |
| InitCache(); |
| HugeSparseIO(false); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseSyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| HugeSparseIO(false); |
| } |
| |
| TEST_F(DiskCacheEntryTest, HugeSparseAsyncIO) { |
| InitCache(); |
| HugeSparseIO(true); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseAsyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| HugeSparseIO(true); |
| } |
| |
| void DiskCacheEntryTest::GetAvailableRange() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| |
| const int kSize = 16 * 1024; |
| scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB). |
| EXPECT_EQ(kSize, entry->WriteSparseData(0x20F0000, buf, kSize, NULL)); |
| EXPECT_EQ(kSize, entry->WriteSparseData(0x20F4400, buf, kSize, NULL)); |
| |
| // We stop at the first empty block. |
| int64 start; |
| TestCompletionCallback cb; |
| int rv = entry->GetAvailableRange(0x20F0000, kSize * 2, &start, &cb); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| EXPECT_EQ(0x20F0000, start); |
| |
| start = 0; |
| rv = entry->GetAvailableRange(0, kSize, &start, &cb); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| rv = entry->GetAvailableRange(0x20F0000 - kSize, kSize, &start, &cb); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| rv = entry->GetAvailableRange(0, 0x2100000, &start, &cb); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| EXPECT_EQ(0x20F0000, start); |
| |
| // We should be able to Read based on the results of GetAvailableRange. |
| start = -1; |
| rv = entry->GetAvailableRange(0x2100000, kSize, &start, &cb); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| rv = entry->ReadSparseData(start, buf, kSize, &cb); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| |
| start = 0; |
| rv = entry->GetAvailableRange(0x20F2000, kSize, &start, &cb); |
| EXPECT_EQ(0x2000, cb.GetResult(rv)); |
| EXPECT_EQ(0x20F2000, start); |
| EXPECT_EQ(0x2000, entry->ReadSparseData(start, buf, kSize, NULL)); |
| |
| // Make sure that we respect the |len| argument. |
| start = 0; |
| rv = entry->GetAvailableRange(0x20F0001 - kSize, kSize, &start, &cb); |
| EXPECT_EQ(1, cb.GetResult(rv)); |
| EXPECT_EQ(0x20F0000, start); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, GetAvailableRange) { |
| InitCache(); |
| GetAvailableRange(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| GetAvailableRange(); |
| } |
| |
| void DiskCacheEntryTest::CouldBeSparse() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| |
| const int kSize = 16 * 1024; |
| scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| // Write at offset 0x20F0000 (33 MB - 64 KB). |
| EXPECT_EQ(kSize, entry->WriteSparseData(0x20F0000, buf, kSize, NULL)); |
| |
| EXPECT_TRUE(entry->CouldBeSparse()); |
| entry->Close(); |
| |
| ASSERT_EQ(net::OK, OpenEntry(key, &entry)); |
| EXPECT_TRUE(entry->CouldBeSparse()); |
| entry->Close(); |
| |
| // Now verify a regular entry. |
| key.assign("another key"); |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| EXPECT_FALSE(entry->CouldBeSparse()); |
| |
| EXPECT_EQ(kSize, entry->WriteData(0, 0, buf, kSize, NULL, false)); |
| EXPECT_EQ(kSize, entry->WriteData(1, 0, buf, kSize, NULL, false)); |
| EXPECT_EQ(kSize, entry->WriteData(2, 0, buf, kSize, NULL, false)); |
| |
| EXPECT_FALSE(entry->CouldBeSparse()); |
| entry->Close(); |
| |
| ASSERT_EQ(net::OK, OpenEntry(key, &entry)); |
| EXPECT_FALSE(entry->CouldBeSparse()); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, CouldBeSparse) { |
| InitCache(); |
| CouldBeSparse(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| CouldBeSparse(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| |
| const int kSize = 8192; |
| scoped_refptr<net::IOBuffer> buf_1 = new net::IOBuffer(kSize); |
| scoped_refptr<net::IOBuffer> buf_2 = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf_1->data(), kSize, false); |
| |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| |
| // This loop writes back to back starting from offset 0 and 9000. |
| for (int i = 0; i < kSize; i += 1024) { |
| scoped_refptr<net::WrappedIOBuffer> buf_3 = |
| new net::WrappedIOBuffer(buf_1->data() + i); |
| VerifySparseIO(entry, i, buf_3, 1024, false, buf_2); |
| VerifySparseIO(entry, 9000 + i, buf_3, 1024, false, buf_2); |
| } |
| |
| // Make sure we have data written. |
| VerifyContentSparseIO(entry, 0, buf_1->data(), kSize, false); |
| VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize, false); |
| |
| // This tests a large write that spans 3 entries from a misaligned offset. |
| VerifySparseIO(entry, 20481, buf_1, 8192, false, buf_2); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| |
| const int kSize = 8192; |
| scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| disk_cache::Entry* entry; |
| std::string key("the first key"); |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| |
| // Writes in the middle of an entry. |
| EXPECT_EQ(1024, entry->WriteSparseData(0, buf, 1024, NULL)); |
| EXPECT_EQ(1024, entry->WriteSparseData(5120, buf, 1024, NULL)); |
| EXPECT_EQ(1024, entry->WriteSparseData(10000, buf, 1024, NULL)); |
| |
| // Writes in the middle of an entry and spans 2 child entries. |
| EXPECT_EQ(8192, entry->WriteSparseData(50000, buf, 8192, NULL)); |
| |
| int64 start; |
| TestCompletionCallback cb; |
| // Test that we stop at a discontinuous child at the second block. |
| int rv = entry->GetAvailableRange(0, 10000, &start, &cb); |
| EXPECT_EQ(1024, cb.GetResult(rv)); |
| EXPECT_EQ(0, start); |
| |
| // Test that number of bytes is reported correctly when we start from the |
| // middle of a filled region. |
| rv = entry->GetAvailableRange(512, 10000, &start, &cb); |
| EXPECT_EQ(512, cb.GetResult(rv)); |
| EXPECT_EQ(512, start); |
| |
| // Test that we found bytes in the child of next block. |
| rv = entry->GetAvailableRange(1024, 10000, &start, &cb); |
| EXPECT_EQ(1024, cb.GetResult(rv)); |
| EXPECT_EQ(5120, start); |
| |
| // Test that the desired length is respected. It starts within a filled |
| // region. |
| rv = entry->GetAvailableRange(5500, 512, &start, &cb); |
| EXPECT_EQ(512, cb.GetResult(rv)); |
| EXPECT_EQ(5500, start); |
| |
| // Test that the desired length is respected. It starts before a filled |
| // region. |
| rv = entry->GetAvailableRange(5000, 620, &start, &cb); |
| EXPECT_EQ(500, cb.GetResult(rv)); |
| EXPECT_EQ(5120, start); |
| |
| // Test that multiple blocks are scanned. |
| rv = entry->GetAvailableRange(40000, 20000, &start, &cb); |
| EXPECT_EQ(8192, cb.GetResult(rv)); |
| EXPECT_EQ(50000, start); |
| |
| entry->Close(); |
| } |
| |
| void DiskCacheEntryTest::DoomSparseEntry() { |
| std::string key1("the first key"); |
| std::string key2("the second key"); |
| disk_cache::Entry *entry1, *entry2; |
| ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); |
| ASSERT_EQ(net::OK, CreateEntry(key2, &entry2)); |
| |
| const int kSize = 4 * 1024; |
| scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| int64 offset = 1024; |
| // Write to a bunch of ranges. |
| for (int i = 0; i < 12; i++) { |
| EXPECT_EQ(kSize, entry1->WriteSparseData(offset, buf, kSize, NULL)); |
| // Keep the second map under the default size. |
| if (i < 9) |
| EXPECT_EQ(kSize, entry2->WriteSparseData(offset, buf, kSize, NULL)); |
| offset *= 4; |
| } |
| |
| if (memory_only_) |
| EXPECT_EQ(2, cache_->GetEntryCount()); |
| else |
| EXPECT_EQ(15, cache_->GetEntryCount()); |
| |
| // Doom the first entry while it's still open. |
| entry1->Doom(); |
| entry1->Close(); |
| entry2->Close(); |
| |
| // Doom the second entry after it's fully saved. |
| EXPECT_EQ(net::OK, DoomEntry(key2)); |
| |
| // Make sure we do all needed work. This may fail for entry2 if between Close |
| // and DoomEntry the system decides to remove all traces of the file from the |
| // system cache so we don't see that there is pending IO. |
| MessageLoop::current()->RunAllPending(); |
| |
| if (memory_only_) { |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } else { |
| if (5 == cache_->GetEntryCount()) { |
| // Most likely we are waiting for the result of reading the sparse info |
| // (it's always async on Posix so it is easy to miss). Unfortunately we |
| // don't have any signal to watch for so we can only wait. |
| PlatformThread::Sleep(500); |
| MessageLoop::current()->RunAllPending(); |
| } |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, DoomSparseEntry) { |
| SetDirectMode(); |
| UseCurrentThread(); |
| InitCache(); |
| DoomSparseEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| DoomSparseEntry(); |
| } |
| |
| void DiskCacheEntryTest::PartialSparseEntry() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| |
| // We should be able to deal with IO that is not aligned to the block size |
| // of a sparse entry, at least to write a big range without leaving holes. |
| const int kSize = 4 * 1024; |
| const int kSmallSize = 128; |
| scoped_refptr<net::IOBuffer> buf1 = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf1->data(), kSize, false); |
| |
| // The first write is just to extend the entry. The third write occupies |
| // a 1KB block partially, it may not be written internally depending on the |
| // implementation. |
| EXPECT_EQ(kSize, entry->WriteSparseData(20000, buf1, kSize, NULL)); |
| EXPECT_EQ(kSize, entry->WriteSparseData(500, buf1, kSize, NULL)); |
| EXPECT_EQ(kSmallSize, |
| entry->WriteSparseData(1080321, buf1, kSmallSize, NULL)); |
| entry->Close(); |
| ASSERT_EQ(net::OK, OpenEntry(key, &entry)); |
| |
| scoped_refptr<net::IOBuffer> buf2 = new net::IOBuffer(kSize); |
| memset(buf2->data(), 0, kSize); |
| EXPECT_EQ(0, entry->ReadSparseData(8000, buf2, kSize, NULL)); |
| |
| EXPECT_EQ(500, entry->ReadSparseData(kSize, buf2, kSize, NULL)); |
| EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500)); |
| EXPECT_EQ(0, entry->ReadSparseData(0, buf2, kSize, NULL)); |
| |
| // This read should not change anything. |
| EXPECT_EQ(96, entry->ReadSparseData(24000, buf2, kSize, NULL)); |
| EXPECT_EQ(500, entry->ReadSparseData(kSize, buf2, kSize, NULL)); |
| EXPECT_EQ(0, entry->ReadSparseData(499, buf2, kSize, NULL)); |
| |
| int rv; |
| int64 start; |
| TestCompletionCallback cb; |
| if (memory_only_) { |
| rv = entry->GetAvailableRange(0, 600, &start, &cb); |
| EXPECT_EQ(100, cb.GetResult(rv)); |
| EXPECT_EQ(500, start); |
| } else { |
| rv = entry->GetAvailableRange(0, 2048, &start, &cb); |
| EXPECT_EQ(1024, cb.GetResult(rv)); |
| EXPECT_EQ(1024, start); |
| } |
| rv = entry->GetAvailableRange(kSize, kSize, &start, &cb); |
| EXPECT_EQ(500, cb.GetResult(rv)); |
| EXPECT_EQ(kSize, start); |
| rv = entry->GetAvailableRange(20 * 1024, 10000, &start, &cb); |
| EXPECT_EQ(3616, cb.GetResult(rv)); |
| EXPECT_EQ(20 * 1024, start); |
| |
| // 1. Query before a filled 1KB block. |
| // 2. Query within a filled 1KB block. |
| // 3. Query beyond a filled 1KB block. |
| if (memory_only_) { |
| rv = entry->GetAvailableRange(19400, kSize, &start, &cb); |
| EXPECT_EQ(3496, cb.GetResult(rv)); |
| EXPECT_EQ(20000, start); |
| } else { |
| rv = entry->GetAvailableRange(19400, kSize, &start, &cb); |
| EXPECT_EQ(3016, cb.GetResult(rv)); |
| EXPECT_EQ(20480, start); |
| } |
| rv = entry->GetAvailableRange(3073, kSize, &start, &cb); |
| EXPECT_EQ(1523, cb.GetResult(rv)); |
| EXPECT_EQ(3073, start); |
| rv = entry->GetAvailableRange(4600, kSize, &start, &cb); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| EXPECT_EQ(4600, start); |
| |
| // Now make another write and verify that there is no hole in between. |
| EXPECT_EQ(kSize, entry->WriteSparseData(500 + kSize, buf1, kSize, NULL)); |
| rv = entry->GetAvailableRange(1024, 10000, &start, &cb); |
| EXPECT_EQ(7 * 1024 + 500, cb.GetResult(rv)); |
| EXPECT_EQ(1024, start); |
| EXPECT_EQ(kSize, entry->ReadSparseData(kSize, buf2, kSize, NULL)); |
| EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500)); |
| EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500)); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, PartialSparseEntry) { |
| InitCache(); |
| PartialSparseEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| PartialSparseEntry(); |
| } |
| |
| // Tests that corrupt sparse children are removed automatically. |
| TEST_F(DiskCacheEntryTest, CleanupSparseEntry) { |
| InitCache(); |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| |
| const int kSize = 4 * 1024; |
| scoped_refptr<net::IOBuffer> buf1 = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf1->data(), kSize, false); |
| |
| const int k1Meg = 1024 * 1024; |
| EXPECT_EQ(kSize, entry->WriteSparseData(8192, buf1, kSize, NULL)); |
| EXPECT_EQ(kSize, entry->WriteSparseData(k1Meg + 8192, buf1, kSize, NULL)); |
| EXPECT_EQ(kSize, entry->WriteSparseData(2 * k1Meg + 8192, buf1, kSize, NULL)); |
| entry->Close(); |
| EXPECT_EQ(4, cache_->GetEntryCount()); |
| |
| void* iter = NULL; |
| int count = 0; |
| std::string child_key[2]; |
| while (OpenNextEntry(&iter, &entry) == net::OK) { |
| ASSERT_TRUE(entry != NULL); |
| // Writing to an entry will alter the LRU list and invalidate the iterator. |
| if (entry->GetKey() != key && count < 2) |
| child_key[count++] = entry->GetKey(); |
| entry->Close(); |
| } |
| for (int i = 0; i < 2; i++) { |
| ASSERT_EQ(net::OK, OpenEntry(child_key[i], &entry)); |
| // Overwrite the header's magic and signature. |
| EXPECT_EQ(12, entry->WriteData(2, 0, buf1, 12, NULL, false)); |
| entry->Close(); |
| } |
| |
| EXPECT_EQ(4, cache_->GetEntryCount()); |
| ASSERT_EQ(net::OK, OpenEntry(key, &entry)); |
| |
| // Two children should be gone. One while reading and one while writing. |
| EXPECT_EQ(0, entry->ReadSparseData(2 * k1Meg + 8192, buf1, kSize, NULL)); |
| EXPECT_EQ(kSize, entry->WriteSparseData(k1Meg + 16384, buf1, kSize, NULL)); |
| EXPECT_EQ(0, entry->ReadSparseData(k1Meg + 8192, buf1, kSize, NULL)); |
| |
| // We never touched this one. |
| EXPECT_EQ(kSize, entry->ReadSparseData(8192, buf1, kSize, NULL)); |
| entry->Close(); |
| |
| // We re-created one of the corrupt children. |
| EXPECT_EQ(3, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, CancelSparseIO) { |
| UseCurrentThread(); |
| InitCache(); |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| |
| const int kSize = 40 * 1024; |
| scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| // This will open and write two "real" entries. |
| TestCompletionCallback cb1, cb2, cb3, cb4, cb5; |
| int rv = entry->WriteSparseData(1024 * 1024 - 4096, buf, kSize, &cb1); |
| EXPECT_EQ(net::ERR_IO_PENDING, rv); |
| |
| int64 offset = 0; |
| rv = entry->GetAvailableRange(offset, kSize, &offset, &cb5); |
| rv = cb5.GetResult(rv); |
| if (!cb1.have_result()) { |
| // We may or may not have finished writing to the entry. If we have not, |
| // we cannot start another operation at this time. |
| EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv); |
| } |
| |
| // We cancel the pending operation, and register multiple notifications. |
| entry->CancelSparseIO(); |
| EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(&cb2)); |
| EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(&cb3)); |
| entry->CancelSparseIO(); // Should be a no op at this point. |
| EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(&cb4)); |
| |
| if (!cb1.have_result()) { |
| EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, |
| entry->ReadSparseData(offset, buf, kSize, NULL)); |
| EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, |
| entry->WriteSparseData(offset, buf, kSize, NULL)); |
| } |
| |
| // Now see if we receive all notifications. Note that we should not be able |
| // to write everything (unless the timing of the system is really weird). |
| rv = cb1.WaitForResult(); |
| EXPECT_TRUE(rv == 4096 || rv == kSize); |
| EXPECT_EQ(net::OK, cb2.WaitForResult()); |
| EXPECT_EQ(net::OK, cb3.WaitForResult()); |
| EXPECT_EQ(net::OK, cb4.WaitForResult()); |
| |
| rv = entry->GetAvailableRange(offset, kSize, &offset, &cb5); |
| EXPECT_EQ(0, cb5.GetResult(rv)); |
| entry->Close(); |
| } |