blob: 0649bce9f6c6221006bc29e706b302bbb7a1dcda [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/http/http_stream_parser.h"
#include "base/compiler_specific.h"
#include "base/metrics/histogram.h"
#include "base/string_util.h"
#include "net/base/address_list.h"
#include "net/base/auth.h"
#include "net/base/io_buffer.h"
#include "net/base/ssl_cert_request_info.h"
#include "net/http/http_net_log_params.h"
#include "net/http/http_request_headers.h"
#include "net/http/http_request_info.h"
#include "net/http/http_response_headers.h"
#include "net/http/http_util.h"
#include "net/socket/ssl_client_socket.h"
#include "net/socket/client_socket_handle.h"
namespace net {
HttpStreamParser::HttpStreamParser(ClientSocketHandle* connection,
const HttpRequestInfo* request,
GrowableIOBuffer* read_buffer,
const BoundNetLog& net_log)
: io_state_(STATE_NONE),
request_(request),
request_headers_(NULL),
request_body_(NULL),
read_buf_(read_buffer),
read_buf_unused_offset_(0),
response_header_start_offset_(-1),
response_body_length_(-1),
response_body_read_(0),
chunked_decoder_(NULL),
user_read_buf_(NULL),
user_read_buf_len_(0),
user_callback_(NULL),
connection_(connection),
net_log_(net_log),
ALLOW_THIS_IN_INITIALIZER_LIST(
io_callback_(this, &HttpStreamParser::OnIOComplete)),
chunk_length_(0),
chunk_length_without_encoding_(0),
sent_last_chunk_(false) {
DCHECK_EQ(0, read_buffer->offset());
}
HttpStreamParser::~HttpStreamParser() {
if (request_body_ != NULL && request_body_->is_chunked())
request_body_->set_chunk_callback(NULL);
}
int HttpStreamParser::SendRequest(const std::string& request_line,
const HttpRequestHeaders& headers,
UploadDataStream* request_body,
HttpResponseInfo* response,
CompletionCallback* callback) {
DCHECK_EQ(STATE_NONE, io_state_);
DCHECK(!user_callback_);
DCHECK(callback);
DCHECK(response);
if (net_log_.IsLoggingAllEvents()) {
net_log_.AddEvent(
NetLog::TYPE_HTTP_TRANSACTION_SEND_REQUEST_HEADERS,
make_scoped_refptr(new NetLogHttpRequestParameter(
request_line, headers)));
}
response_ = response;
// Put the peer's IP address and port into the response.
AddressList address;
int result = connection_->socket()->GetPeerAddress(&address);
if (result != OK)
return result;
response_->socket_address = HostPortPair::FromAddrInfo(address.head());
std::string request = request_line + headers.ToString();
scoped_refptr<StringIOBuffer> headers_io_buf(new StringIOBuffer(request));
request_headers_ = new DrainableIOBuffer(headers_io_buf,
headers_io_buf->size());
request_body_.reset(request_body);
if (request_body_ != NULL && request_body_->is_chunked()) {
request_body_->set_chunk_callback(this);
const int kChunkHeaderFooterSize = 12; // 2 CRLFs + max of 8 hex chars.
chunk_buf_ = new IOBuffer(request_body_->GetMaxBufferSize() +
kChunkHeaderFooterSize);
}
io_state_ = STATE_SENDING_HEADERS;
result = DoLoop(OK);
if (result == ERR_IO_PENDING)
user_callback_ = callback;
return result > 0 ? OK : result;
}
int HttpStreamParser::ReadResponseHeaders(CompletionCallback* callback) {
DCHECK(io_state_ == STATE_REQUEST_SENT || io_state_ == STATE_DONE);
DCHECK(!user_callback_);
DCHECK(callback);
// This function can be called with io_state_ == STATE_DONE if the
// connection is closed after seeing just a 1xx response code.
if (io_state_ == STATE_DONE)
return ERR_CONNECTION_CLOSED;
int result = OK;
io_state_ = STATE_READ_HEADERS;
if (read_buf_->offset() > 0) {
// Simulate the state where the data was just read from the socket.
result = read_buf_->offset() - read_buf_unused_offset_;
read_buf_->set_offset(read_buf_unused_offset_);
}
if (result > 0)
io_state_ = STATE_READ_HEADERS_COMPLETE;
result = DoLoop(result);
if (result == ERR_IO_PENDING)
user_callback_ = callback;
return result > 0 ? OK : result;
}
void HttpStreamParser::Close(bool not_reusable) {
if (not_reusable && connection_->socket())
connection_->socket()->Disconnect();
connection_->Reset();
}
int HttpStreamParser::ReadResponseBody(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
DCHECK(io_state_ == STATE_BODY_PENDING || io_state_ == STATE_DONE);
DCHECK(!user_callback_);
DCHECK(callback);
DCHECK_LE(buf_len, kMaxBufSize);
if (io_state_ == STATE_DONE)
return OK;
user_read_buf_ = buf;
user_read_buf_len_ = buf_len;
io_state_ = STATE_READ_BODY;
int result = DoLoop(OK);
if (result == ERR_IO_PENDING)
user_callback_ = callback;
return result;
}
void HttpStreamParser::OnIOComplete(int result) {
result = DoLoop(result);
// The client callback can do anything, including destroying this class,
// so any pending callback must be issued after everything else is done.
if (result != ERR_IO_PENDING && user_callback_) {
CompletionCallback* c = user_callback_;
user_callback_ = NULL;
c->Run(result);
}
}
void HttpStreamParser::OnChunkAvailable() {
// This method may get called while sending the headers or body, so check
// before processing the new data. If we were still initializing or sending
// headers, we will automatically start reading the chunks once we get into
// STATE_SENDING_BODY so nothing to do here.
DCHECK(io_state_ == STATE_SENDING_HEADERS || io_state_ == STATE_SENDING_BODY);
if (io_state_ == STATE_SENDING_BODY)
OnIOComplete(0);
}
int HttpStreamParser::DoLoop(int result) {
bool can_do_more = true;
do {
switch (io_state_) {
case STATE_SENDING_HEADERS:
if (result < 0)
can_do_more = false;
else
result = DoSendHeaders(result);
break;
case STATE_SENDING_BODY:
if (result < 0)
can_do_more = false;
else
result = DoSendBody(result);
break;
case STATE_REQUEST_SENT:
DCHECK(result != ERR_IO_PENDING);
can_do_more = false;
break;
case STATE_READ_HEADERS:
net_log_.BeginEvent(NetLog::TYPE_HTTP_STREAM_PARSER_READ_HEADERS, NULL);
result = DoReadHeaders();
break;
case STATE_READ_HEADERS_COMPLETE:
result = DoReadHeadersComplete(result);
net_log_.EndEventWithNetErrorCode(
NetLog::TYPE_HTTP_STREAM_PARSER_READ_HEADERS, result);
break;
case STATE_BODY_PENDING:
DCHECK(result != ERR_IO_PENDING);
can_do_more = false;
break;
case STATE_READ_BODY:
result = DoReadBody();
// DoReadBodyComplete handles error conditions.
break;
case STATE_READ_BODY_COMPLETE:
result = DoReadBodyComplete(result);
break;
case STATE_DONE:
DCHECK(result != ERR_IO_PENDING);
can_do_more = false;
break;
default:
NOTREACHED();
can_do_more = false;
break;
}
} while (result != ERR_IO_PENDING && can_do_more);
return result;
}
int HttpStreamParser::DoSendHeaders(int result) {
request_headers_->DidConsume(result);
int bytes_remaining = request_headers_->BytesRemaining();
if (bytes_remaining > 0) {
// Record our best estimate of the 'request time' as the time when we send
// out the first bytes of the request headers.
if (bytes_remaining == request_headers_->size()) {
response_->request_time = base::Time::Now();
// We'll record the count of uncoalesced packets IFF coalescing will help,
// and otherwise we'll use an enum to tell why it won't help.
enum COALESCE_POTENTIAL {
// Coalescing won't reduce packet count.
NO_ADVANTAGE = 0,
// There is only a header packet or we have a request body but the
// request body isn't available yet (can't coalesce).
HEADER_ONLY = 1,
// Various cases of coalasced savings.
COALESCE_POTENTIAL_MAX = 30
};
size_t coalesce = HEADER_ONLY;
if (request_body_ != NULL && !request_body_->is_chunked()) {
const size_t kBytesPerPacket = 1430;
uint64 body_packets = (request_body_->size() + kBytesPerPacket - 1) /
kBytesPerPacket;
uint64 header_packets = (bytes_remaining + kBytesPerPacket - 1) /
kBytesPerPacket;
uint64 coalesced_packets = (request_body_->size() + bytes_remaining +
kBytesPerPacket - 1) / kBytesPerPacket;
if (coalesced_packets < header_packets + body_packets) {
if (coalesced_packets > COALESCE_POTENTIAL_MAX)
coalesce = COALESCE_POTENTIAL_MAX;
else
coalesce = static_cast<size_t>(header_packets + body_packets);
} else {
coalesce = NO_ADVANTAGE;
}
}
UMA_HISTOGRAM_ENUMERATION("Net.CoalescePotential", coalesce,
COALESCE_POTENTIAL_MAX);
}
result = connection_->socket()->Write(request_headers_,
bytes_remaining,
&io_callback_);
} else if (request_body_ != NULL &&
(request_body_->is_chunked() || request_body_->size())) {
io_state_ = STATE_SENDING_BODY;
result = OK;
} else {
io_state_ = STATE_REQUEST_SENT;
}
return result;
}
int HttpStreamParser::DoSendBody(int result) {
if (request_body_->is_chunked()) {
chunk_length_ -= result;
if (chunk_length_) {
memmove(chunk_buf_->data(), chunk_buf_->data() + result, chunk_length_);
return connection_->socket()->Write(chunk_buf_, chunk_length_,
&io_callback_);
}
if (sent_last_chunk_) {
io_state_ = STATE_REQUEST_SENT;
return OK;
}
request_body_->MarkConsumedAndFillBuffer(chunk_length_without_encoding_);
chunk_length_without_encoding_ = 0;
chunk_length_ = 0;
int buf_len = static_cast<int>(request_body_->buf_len());
if (request_body_->eof()) {
static const char kLastChunk[] = "0\r\n\r\n";
chunk_length_ = strlen(kLastChunk);
memcpy(chunk_buf_->data(), kLastChunk, chunk_length_);
sent_last_chunk_ = true;
} else if (buf_len) {
// Encode and send the buffer as 1 chunk.
std::string chunk_header = StringPrintf("%X\r\n", buf_len);
char* chunk_ptr = chunk_buf_->data();
memcpy(chunk_ptr, chunk_header.data(), chunk_header.length());
chunk_ptr += chunk_header.length();
memcpy(chunk_ptr, request_body_->buf()->data(), buf_len);
chunk_ptr += buf_len;
memcpy(chunk_ptr, "\r\n", 2);
chunk_length_without_encoding_ = buf_len;
chunk_length_ = chunk_header.length() + buf_len + 2;
}
if (!chunk_length_) // More POST data is yet to come?
return ERR_IO_PENDING;
return connection_->socket()->Write(chunk_buf_, chunk_length_,
&io_callback_);
}
// Non-chunked request body.
request_body_->MarkConsumedAndFillBuffer(result);
if (!request_body_->eof()) {
int buf_len = static_cast<int>(request_body_->buf_len());
result = connection_->socket()->Write(request_body_->buf(), buf_len,
&io_callback_);
} else {
io_state_ = STATE_REQUEST_SENT;
}
return result;
}
int HttpStreamParser::DoReadHeaders() {
io_state_ = STATE_READ_HEADERS_COMPLETE;
// Grow the read buffer if necessary.
if (read_buf_->RemainingCapacity() == 0)
read_buf_->SetCapacity(read_buf_->capacity() + kHeaderBufInitialSize);
// http://crbug.com/16371: We're seeing |user_buf_->data()| return NULL.
// See if the user is passing in an IOBuffer with a NULL |data_|.
CHECK(read_buf_->data());
return connection_->socket()->Read(read_buf_,
read_buf_->RemainingCapacity(),
&io_callback_);
}
int HttpStreamParser::DoReadHeadersComplete(int result) {
if (result == 0)
result = ERR_CONNECTION_CLOSED;
if (result < 0 && result != ERR_CONNECTION_CLOSED) {
io_state_ = STATE_DONE;
return result;
}
// If we've used the connection before, then we know it is not a HTTP/0.9
// response and return ERR_CONNECTION_CLOSED.
if (result == ERR_CONNECTION_CLOSED && read_buf_->offset() == 0 &&
connection_->is_reused()) {
io_state_ = STATE_DONE;
return result;
}
// Record our best estimate of the 'response time' as the time when we read
// the first bytes of the response headers.
if (read_buf_->offset() == 0 && result != ERR_CONNECTION_CLOSED)
response_->response_time = base::Time::Now();
if (result == ERR_CONNECTION_CLOSED) {
// The connection closed before we detected the end of the headers.
// parse things as well as we can and let the caller decide what to do.
if (read_buf_->offset() == 0) {
// The connection was closed before any data was sent. Likely an error
// rather than empty HTTP/0.9 response.
io_state_ = STATE_DONE;
return ERR_EMPTY_RESPONSE;
} else {
int end_offset;
if (response_header_start_offset_ >= 0) {
io_state_ = STATE_READ_BODY_COMPLETE;
end_offset = read_buf_->offset();
} else {
io_state_ = STATE_BODY_PENDING;
end_offset = 0;
}
int rv = DoParseResponseHeaders(end_offset);
if (rv < 0)
return rv;
return result;
}
}
read_buf_->set_offset(read_buf_->offset() + result);
DCHECK_LE(read_buf_->offset(), read_buf_->capacity());
DCHECK_GE(result, 0);
int end_of_header_offset = ParseResponseHeaders();
// Note: -1 is special, it indicates we haven't found the end of headers.
// Anything less than -1 is a net::Error, so we bail out.
if (end_of_header_offset < -1)
return end_of_header_offset;
if (end_of_header_offset == -1) {
io_state_ = STATE_READ_HEADERS;
// Prevent growing the headers buffer indefinitely.
if (read_buf_->offset() - read_buf_unused_offset_ >= kMaxHeaderBufSize) {
io_state_ = STATE_DONE;
return ERR_RESPONSE_HEADERS_TOO_BIG;
}
} else {
// Note where the headers stop.
read_buf_unused_offset_ = end_of_header_offset;
if (response_->headers->response_code() / 100 == 1) {
// After processing a 1xx response, the caller will ask for the next
// header, so reset state to support that. We don't just skip these
// completely because 1xx codes aren't acceptable when establishing a
// tunnel.
io_state_ = STATE_REQUEST_SENT;
response_header_start_offset_ = -1;
} else {
io_state_ = STATE_BODY_PENDING;
CalculateResponseBodySize();
// If the body is 0, the caller may not call ReadResponseBody, which
// is where any extra data is copied to read_buf_, so we move the
// data here and transition to DONE.
if (response_body_length_ == 0) {
io_state_ = STATE_DONE;
int extra_bytes = read_buf_->offset() - read_buf_unused_offset_;
if (extra_bytes) {
CHECK_GT(extra_bytes, 0);
memmove(read_buf_->StartOfBuffer(),
read_buf_->StartOfBuffer() + read_buf_unused_offset_,
extra_bytes);
}
read_buf_->SetCapacity(extra_bytes);
read_buf_unused_offset_ = 0;
return OK;
}
}
}
return result;
}
int HttpStreamParser::DoReadBody() {
io_state_ = STATE_READ_BODY_COMPLETE;
// There may be some data left over from reading the response headers.
if (read_buf_->offset()) {
int available = read_buf_->offset() - read_buf_unused_offset_;
if (available) {
CHECK_GT(available, 0);
int bytes_from_buffer = std::min(available, user_read_buf_len_);
memcpy(user_read_buf_->data(),
read_buf_->StartOfBuffer() + read_buf_unused_offset_,
bytes_from_buffer);
read_buf_unused_offset_ += bytes_from_buffer;
if (bytes_from_buffer == available) {
read_buf_->SetCapacity(0);
read_buf_unused_offset_ = 0;
}
return bytes_from_buffer;
} else {
read_buf_->SetCapacity(0);
read_buf_unused_offset_ = 0;
}
}
// Check to see if we're done reading.
if (IsResponseBodyComplete())
return 0;
DCHECK_EQ(0, read_buf_->offset());
return connection_->socket()->Read(user_read_buf_, user_read_buf_len_,
&io_callback_);
}
int HttpStreamParser::DoReadBodyComplete(int result) {
// If we didn't get a content-length and aren't using a chunked encoding,
// the only way to signal the end of a stream is to close the connection,
// so we don't treat that as an error, though in some cases we may not
// have completely received the resource.
if (result == 0 && !IsResponseBodyComplete() && CanFindEndOfResponse())
result = ERR_CONNECTION_CLOSED;
// Filter incoming data if appropriate. FilterBuf may return an error.
if (result > 0 && chunked_decoder_.get()) {
result = chunked_decoder_->FilterBuf(user_read_buf_->data(), result);
if (result == 0 && !chunked_decoder_->reached_eof()) {
// Don't signal completion of the Read call yet or else it'll look like
// we received end-of-file. Wait for more data.
io_state_ = STATE_READ_BODY;
return OK;
}
}
if (result > 0)
response_body_read_ += result;
if (result <= 0 || IsResponseBodyComplete()) {
io_state_ = STATE_DONE;
// Save the overflow data, which can be in two places. There may be
// some left over in |user_read_buf_|, plus there may be more
// in |read_buf_|. But the part left over in |user_read_buf_| must have
// come from the |read_buf_|, so there's room to put it back at the
// start first.
int additional_save_amount = read_buf_->offset() - read_buf_unused_offset_;
int save_amount = 0;
if (chunked_decoder_.get()) {
save_amount = chunked_decoder_->bytes_after_eof();
} else if (response_body_length_ >= 0) {
int64 extra_data_read = response_body_read_ - response_body_length_;
if (extra_data_read > 0) {
save_amount = static_cast<int>(extra_data_read);
if (result > 0)
result -= save_amount;
}
}
CHECK_LE(save_amount + additional_save_amount, kMaxBufSize);
if (read_buf_->capacity() < save_amount + additional_save_amount) {
read_buf_->SetCapacity(save_amount + additional_save_amount);
}
if (save_amount) {
memcpy(read_buf_->StartOfBuffer(), user_read_buf_->data() + result,
save_amount);
}
read_buf_->set_offset(save_amount);
if (additional_save_amount) {
memmove(read_buf_->data(),
read_buf_->StartOfBuffer() + read_buf_unused_offset_,
additional_save_amount);
read_buf_->set_offset(save_amount + additional_save_amount);
}
read_buf_unused_offset_ = 0;
} else {
io_state_ = STATE_BODY_PENDING;
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
}
return result;
}
int HttpStreamParser::ParseResponseHeaders() {
int end_offset = -1;
// Look for the start of the status line, if it hasn't been found yet.
if (response_header_start_offset_ < 0) {
response_header_start_offset_ = HttpUtil::LocateStartOfStatusLine(
read_buf_->StartOfBuffer() + read_buf_unused_offset_,
read_buf_->offset() - read_buf_unused_offset_);
}
if (response_header_start_offset_ >= 0) {
end_offset = HttpUtil::LocateEndOfHeaders(
read_buf_->StartOfBuffer() + read_buf_unused_offset_,
read_buf_->offset() - read_buf_unused_offset_,
response_header_start_offset_);
} else if (read_buf_->offset() - read_buf_unused_offset_ >= 8) {
// Enough data to decide that this is an HTTP/0.9 response.
// 8 bytes = (4 bytes of junk) + "http".length()
end_offset = 0;
}
if (end_offset == -1)
return -1;
int rv = DoParseResponseHeaders(end_offset);
if (rv < 0)
return rv;
return end_offset + read_buf_unused_offset_;
}
int HttpStreamParser::DoParseResponseHeaders(int end_offset) {
scoped_refptr<HttpResponseHeaders> headers;
if (response_header_start_offset_ >= 0) {
headers = new HttpResponseHeaders(HttpUtil::AssembleRawHeaders(
read_buf_->StartOfBuffer() + read_buf_unused_offset_, end_offset));
} else {
// Enough data was read -- there is no status line.
headers = new HttpResponseHeaders(std::string("HTTP/0.9 200 OK"));
}
// Check for multiple Content-Length headers with a Transfer-Encoding header.
// If they exist, it's a potential response smuggling attack.
void* it = NULL;
const std::string content_length_header("Content-Length");
std::string content_length_value;
if (!headers->HasHeader("Transfer-Encoding") &&
headers->EnumerateHeader(
&it, content_length_header, &content_length_value)) {
// Ok, there's no Transfer-Encoding header and there's at least one
// Content-Length header. Check if there are any more Content-Length
// headers, and if so, make sure they have the same value. Otherwise, it's
// a possible response smuggling attack.
std::string content_length_value2;
while (headers->EnumerateHeader(
&it, content_length_header, &content_length_value2)) {
if (content_length_value != content_length_value2)
return ERR_RESPONSE_HEADERS_MULTIPLE_CONTENT_LENGTH;
}
}
response_->headers = headers;
response_->vary_data.Init(*request_, *response_->headers);
return OK;
}
void HttpStreamParser::CalculateResponseBodySize() {
// Figure how to determine EOF:
// For certain responses, we know the content length is always 0. From
// RFC 2616 Section 4.3 Message Body:
//
// For response messages, whether or not a message-body is included with
// a message is dependent on both the request method and the response
// status code (section 6.1.1). All responses to the HEAD request method
// MUST NOT include a message-body, even though the presence of entity-
// header fields might lead one to believe they do. All 1xx
// (informational), 204 (no content), and 304 (not modified) responses
// MUST NOT include a message-body. All other responses do include a
// message-body, although it MAY be of zero length.
switch (response_->headers->response_code()) {
// Note that 1xx was already handled earlier.
case 204: // No Content
case 205: // Reset Content
case 304: // Not Modified
response_body_length_ = 0;
break;
}
if (request_->method == "HEAD")
response_body_length_ = 0;
if (response_body_length_ == -1) {
// Ignore spurious chunked responses from HTTP/1.0 servers and
// proxies. Otherwise "Transfer-Encoding: chunked" trumps
// "Content-Length: N"
if (response_->headers->GetHttpVersion() >= HttpVersion(1, 1) &&
response_->headers->HasHeaderValue("Transfer-Encoding", "chunked")) {
chunked_decoder_.reset(new HttpChunkedDecoder());
} else {
response_body_length_ = response_->headers->GetContentLength();
// If response_body_length_ is still -1, then we have to wait
// for the server to close the connection.
}
}
}
uint64 HttpStreamParser::GetUploadProgress() const {
if (!request_body_.get())
return 0;
return request_body_->position();
}
HttpResponseInfo* HttpStreamParser::GetResponseInfo() {
return response_;
}
bool HttpStreamParser::IsResponseBodyComplete() const {
if (chunked_decoder_.get())
return chunked_decoder_->reached_eof();
if (response_body_length_ != -1)
return response_body_read_ >= response_body_length_;
return false; // Must read to EOF.
}
bool HttpStreamParser::CanFindEndOfResponse() const {
return chunked_decoder_.get() || response_body_length_ >= 0;
}
bool HttpStreamParser::IsMoreDataBuffered() const {
return read_buf_->offset() > read_buf_unused_offset_;
}
bool HttpStreamParser::IsConnectionReused() const {
ClientSocketHandle::SocketReuseType reuse_type = connection_->reuse_type();
return connection_->is_reused() ||
reuse_type == ClientSocketHandle::UNUSED_IDLE;
}
void HttpStreamParser::SetConnectionReused() {
connection_->set_is_reused(true);
}
bool HttpStreamParser::IsConnectionReusable() const {
return connection_->socket() && connection_->socket()->IsConnectedAndIdle();
}
void HttpStreamParser::GetSSLInfo(SSLInfo* ssl_info) {
if (request_->url.SchemeIs("https") && connection_->socket()) {
SSLClientSocket* ssl_socket =
static_cast<SSLClientSocket*>(connection_->socket());
ssl_socket->GetSSLInfo(ssl_info);
}
}
void HttpStreamParser::GetSSLCertRequestInfo(
SSLCertRequestInfo* cert_request_info) {
if (request_->url.SchemeIs("https") && connection_->socket()) {
SSLClientSocket* ssl_socket =
static_cast<SSLClientSocket*>(connection_->socket());
ssl_socket->GetSSLCertRequestInfo(cert_request_info);
}
}
} // namespace net