| //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Builder implementation for CGRecordLayout objects. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGRecordLayout.h" |
| #include "CGCXXABI.h" |
| #include "CodeGenTypes.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| |
| class CGRecordLayoutBuilder { |
| public: |
| /// FieldTypes - Holds the LLVM types that the struct is created from. |
| /// |
| SmallVector<llvm::Type *, 16> FieldTypes; |
| |
| /// BaseSubobjectType - Holds the LLVM type for the non-virtual part |
| /// of the struct. For example, consider: |
| /// |
| /// struct A { int i; }; |
| /// struct B { void *v; }; |
| /// struct C : virtual A, B { }; |
| /// |
| /// The LLVM type of C will be |
| /// %struct.C = type { i32 (...)**, %struct.A, i32, %struct.B } |
| /// |
| /// And the LLVM type of the non-virtual base struct will be |
| /// %struct.C.base = type { i32 (...)**, %struct.A, i32 } |
| /// |
| /// This only gets initialized if the base subobject type is |
| /// different from the complete-object type. |
| llvm::StructType *BaseSubobjectType; |
| |
| /// FieldInfo - Holds a field and its corresponding LLVM field number. |
| llvm::DenseMap<const FieldDecl *, unsigned> Fields; |
| |
| /// BitFieldInfo - Holds location and size information about a bit field. |
| llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; |
| |
| llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; |
| llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases; |
| |
| /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are |
| /// primary base classes for some other direct or indirect base class. |
| CXXIndirectPrimaryBaseSet IndirectPrimaryBases; |
| |
| /// LaidOutVirtualBases - A set of all laid out virtual bases, used to avoid |
| /// avoid laying out virtual bases more than once. |
| llvm::SmallPtrSet<const CXXRecordDecl *, 4> LaidOutVirtualBases; |
| |
| /// IsZeroInitializable - Whether this struct can be C++ |
| /// zero-initialized with an LLVM zeroinitializer. |
| bool IsZeroInitializable; |
| bool IsZeroInitializableAsBase; |
| |
| /// Packed - Whether the resulting LLVM struct will be packed or not. |
| bool Packed; |
| |
| /// IsMsStruct - Whether ms_struct is in effect or not |
| bool IsMsStruct; |
| |
| private: |
| CodeGenTypes &Types; |
| |
| /// LastLaidOutBaseInfo - Contains the offset and non-virtual size of the |
| /// last base laid out. Used so that we can replace the last laid out base |
| /// type with an i8 array if needed. |
| struct LastLaidOutBaseInfo { |
| CharUnits Offset; |
| CharUnits NonVirtualSize; |
| |
| bool isValid() const { return !NonVirtualSize.isZero(); } |
| void invalidate() { NonVirtualSize = CharUnits::Zero(); } |
| |
| } LastLaidOutBase; |
| |
| /// Alignment - Contains the alignment of the RecordDecl. |
| CharUnits Alignment; |
| |
| /// NextFieldOffset - Holds the next field offset. |
| CharUnits NextFieldOffset; |
| |
| /// LayoutUnionField - Will layout a field in an union and return the type |
| /// that the field will have. |
| llvm::Type *LayoutUnionField(const FieldDecl *Field, |
| const ASTRecordLayout &Layout); |
| |
| /// LayoutUnion - Will layout a union RecordDecl. |
| void LayoutUnion(const RecordDecl *D); |
| |
| /// Lay out a sequence of contiguous bitfields. |
| bool LayoutBitfields(const ASTRecordLayout &Layout, |
| unsigned &FirstFieldNo, |
| RecordDecl::field_iterator &FI, |
| RecordDecl::field_iterator FE); |
| |
| /// LayoutField - try to layout all fields in the record decl. |
| /// Returns false if the operation failed because the struct is not packed. |
| bool LayoutFields(const RecordDecl *D); |
| |
| /// Layout a single base, virtual or non-virtual |
| bool LayoutBase(const CXXRecordDecl *base, |
| const CGRecordLayout &baseLayout, |
| CharUnits baseOffset); |
| |
| /// LayoutVirtualBase - layout a single virtual base. |
| bool LayoutVirtualBase(const CXXRecordDecl *base, |
| CharUnits baseOffset); |
| |
| /// LayoutVirtualBases - layout the virtual bases of a record decl. |
| bool LayoutVirtualBases(const CXXRecordDecl *RD, |
| const ASTRecordLayout &Layout); |
| |
| /// MSLayoutVirtualBases - layout the virtual bases of a record decl, |
| /// like MSVC. |
| bool MSLayoutVirtualBases(const CXXRecordDecl *RD, |
| const ASTRecordLayout &Layout); |
| |
| /// LayoutNonVirtualBase - layout a single non-virtual base. |
| bool LayoutNonVirtualBase(const CXXRecordDecl *base, |
| CharUnits baseOffset); |
| |
| /// LayoutNonVirtualBases - layout the virtual bases of a record decl. |
| bool LayoutNonVirtualBases(const CXXRecordDecl *RD, |
| const ASTRecordLayout &Layout); |
| |
| /// ComputeNonVirtualBaseType - Compute the non-virtual base field types. |
| bool ComputeNonVirtualBaseType(const CXXRecordDecl *RD); |
| |
| /// LayoutField - layout a single field. Returns false if the operation failed |
| /// because the current struct is not packed. |
| bool LayoutField(const FieldDecl *D, uint64_t FieldOffset); |
| |
| /// LayoutBitField - layout a single bit field. |
| void LayoutBitField(const FieldDecl *D, uint64_t FieldOffset); |
| |
| /// AppendField - Appends a field with the given offset and type. |
| void AppendField(CharUnits fieldOffset, llvm::Type *FieldTy); |
| |
| /// AppendPadding - Appends enough padding bytes so that the total |
| /// struct size is a multiple of the field alignment. |
| void AppendPadding(CharUnits fieldOffset, CharUnits fieldAlignment); |
| |
| /// ResizeLastBaseFieldIfNecessary - Fields and bases can be laid out in the |
| /// tail padding of a previous base. If this happens, the type of the previous |
| /// base needs to be changed to an array of i8. Returns true if the last |
| /// laid out base was resized. |
| bool ResizeLastBaseFieldIfNecessary(CharUnits offset); |
| |
| /// getByteArrayType - Returns a byte array type with the given number of |
| /// elements. |
| llvm::Type *getByteArrayType(CharUnits NumBytes); |
| |
| /// AppendBytes - Append a given number of bytes to the record. |
| void AppendBytes(CharUnits numBytes); |
| |
| /// AppendTailPadding - Append enough tail padding so that the type will have |
| /// the passed size. |
| void AppendTailPadding(CharUnits RecordSize); |
| |
| CharUnits getTypeAlignment(llvm::Type *Ty) const; |
| |
| /// getAlignmentAsLLVMStruct - Returns the maximum alignment of all the |
| /// LLVM element types. |
| CharUnits getAlignmentAsLLVMStruct() const; |
| |
| /// CheckZeroInitializable - Check if the given type contains a pointer |
| /// to data member. |
| void CheckZeroInitializable(QualType T); |
| |
| public: |
| CGRecordLayoutBuilder(CodeGenTypes &Types) |
| : BaseSubobjectType(0), |
| IsZeroInitializable(true), IsZeroInitializableAsBase(true), |
| Packed(false), IsMsStruct(false), |
| Types(Types) { } |
| |
| /// Layout - Will layout a RecordDecl. |
| void Layout(const RecordDecl *D); |
| }; |
| |
| } |
| |
| void CGRecordLayoutBuilder::Layout(const RecordDecl *D) { |
| Alignment = Types.getContext().getASTRecordLayout(D).getAlignment(); |
| Packed = D->hasAttr<PackedAttr>(); |
| |
| IsMsStruct = D->isMsStruct(Types.getContext()); |
| |
| if (D->isUnion()) { |
| LayoutUnion(D); |
| return; |
| } |
| |
| if (LayoutFields(D)) |
| return; |
| |
| // We weren't able to layout the struct. Try again with a packed struct |
| Packed = true; |
| LastLaidOutBase.invalidate(); |
| NextFieldOffset = CharUnits::Zero(); |
| FieldTypes.clear(); |
| Fields.clear(); |
| BitFields.clear(); |
| NonVirtualBases.clear(); |
| VirtualBases.clear(); |
| |
| LayoutFields(D); |
| } |
| |
| CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types, |
| const FieldDecl *FD, |
| uint64_t Offset, uint64_t Size, |
| uint64_t StorageSize, |
| uint64_t StorageAlignment) { |
| llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType()); |
| CharUnits TypeSizeInBytes = |
| CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty)); |
| uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes); |
| |
| bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); |
| |
| if (Size > TypeSizeInBits) { |
| // We have a wide bit-field. The extra bits are only used for padding, so |
| // if we have a bitfield of type T, with size N: |
| // |
| // T t : N; |
| // |
| // We can just assume that it's: |
| // |
| // T t : sizeof(T); |
| // |
| Size = TypeSizeInBits; |
| } |
| |
| // Reverse the bit offsets for big endian machines. Because we represent |
| // a bitfield as a single large integer load, we can imagine the bits |
| // counting from the most-significant-bit instead of the |
| // least-significant-bit. |
| if (Types.getDataLayout().isBigEndian()) { |
| Offset = StorageSize - (Offset + Size); |
| } |
| |
| return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment); |
| } |
| |
| /// \brief Layout the range of bitfields from BFI to BFE as contiguous storage. |
| bool CGRecordLayoutBuilder::LayoutBitfields(const ASTRecordLayout &Layout, |
| unsigned &FirstFieldNo, |
| RecordDecl::field_iterator &FI, |
| RecordDecl::field_iterator FE) { |
| assert(FI != FE); |
| uint64_t FirstFieldOffset = Layout.getFieldOffset(FirstFieldNo); |
| uint64_t NextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset); |
| |
| unsigned CharAlign = Types.getContext().getTargetInfo().getCharAlign(); |
| assert(FirstFieldOffset % CharAlign == 0 && |
| "First field offset is misaligned"); |
| CharUnits FirstFieldOffsetInBytes |
| = Types.getContext().toCharUnitsFromBits(FirstFieldOffset); |
| |
| unsigned StorageAlignment |
| = llvm::MinAlign(Alignment.getQuantity(), |
| FirstFieldOffsetInBytes.getQuantity()); |
| |
| if (FirstFieldOffset < NextFieldOffsetInBits) { |
| CharUnits FieldOffsetInCharUnits = |
| Types.getContext().toCharUnitsFromBits(FirstFieldOffset); |
| |
| // Try to resize the last base field. |
| if (!ResizeLastBaseFieldIfNecessary(FieldOffsetInCharUnits)) |
| llvm_unreachable("We must be able to resize the last base if we need to " |
| "pack bits into it."); |
| |
| NextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset); |
| assert(FirstFieldOffset >= NextFieldOffsetInBits); |
| } |
| |
| // Append padding if necessary. |
| AppendPadding(Types.getContext().toCharUnitsFromBits(FirstFieldOffset), |
| CharUnits::One()); |
| |
| // Find the last bitfield in a contiguous run of bitfields. |
| RecordDecl::field_iterator BFI = FI; |
| unsigned LastFieldNo = FirstFieldNo; |
| uint64_t NextContiguousFieldOffset = FirstFieldOffset; |
| for (RecordDecl::field_iterator FJ = FI; |
| (FJ != FE && (*FJ)->isBitField() && |
| NextContiguousFieldOffset == Layout.getFieldOffset(LastFieldNo) && |
| (*FJ)->getBitWidthValue(Types.getContext()) != 0); FI = FJ++) { |
| NextContiguousFieldOffset += (*FJ)->getBitWidthValue(Types.getContext()); |
| ++LastFieldNo; |
| |
| // We must use packed structs for packed fields, and also unnamed bit |
| // fields since they don't affect the struct alignment. |
| if (!Packed && ((*FJ)->hasAttr<PackedAttr>() || !(*FJ)->getDeclName())) |
| return false; |
| } |
| RecordDecl::field_iterator BFE = llvm::next(FI); |
| --LastFieldNo; |
| assert(LastFieldNo >= FirstFieldNo && "Empty run of contiguous bitfields"); |
| FieldDecl *LastFD = *FI; |
| |
| // Find the last bitfield's offset, add its size, and round it up to the |
| // character alignment to compute the storage required. |
| uint64_t LastFieldOffset = Layout.getFieldOffset(LastFieldNo); |
| uint64_t LastFieldSize = LastFD->getBitWidthValue(Types.getContext()); |
| uint64_t TotalBits = (LastFieldOffset + LastFieldSize) - FirstFieldOffset; |
| CharUnits StorageBytes = Types.getContext().toCharUnitsFromBits( |
| llvm::RoundUpToAlignment(TotalBits, CharAlign)); |
| uint64_t StorageBits = Types.getContext().toBits(StorageBytes); |
| |
| // Grow the storage to encompass any known padding in the layout when doing |
| // so will make the storage a power-of-two. There are two cases when we can |
| // do this. The first is when we have a subsequent field and can widen up to |
| // its offset. The second is when the data size of the AST record layout is |
| // past the end of the current storage. The latter is true when there is tail |
| // padding on a struct and no members of a super class can be packed into it. |
| // |
| // Note that we widen the storage as much as possible here to express the |
| // maximum latitude the language provides, and rely on the backend to lower |
| // these in conjunction with shifts and masks to narrower operations where |
| // beneficial. |
| uint64_t EndOffset = Types.getContext().toBits(Layout.getDataSize()); |
| if (BFE != FE) |
| // If there are more fields to be laid out, the offset at the end of the |
| // bitfield is the offset of the next field in the record. |
| EndOffset = Layout.getFieldOffset(LastFieldNo + 1); |
| assert(EndOffset >= (FirstFieldOffset + TotalBits) && |
| "End offset is not past the end of the known storage bits."); |
| uint64_t SpaceBits = EndOffset - FirstFieldOffset; |
| uint64_t LongBits = Types.getContext().getTargetInfo().getLongWidth(); |
| uint64_t WidenedBits = (StorageBits / LongBits) * LongBits + |
| llvm::NextPowerOf2(StorageBits % LongBits - 1); |
| assert(WidenedBits >= StorageBits && "Widening shrunk the bits!"); |
| if (WidenedBits <= SpaceBits) { |
| StorageBits = WidenedBits; |
| StorageBytes = Types.getContext().toCharUnitsFromBits(StorageBits); |
| assert(StorageBits == (uint64_t)Types.getContext().toBits(StorageBytes)); |
| } |
| |
| unsigned FieldIndex = FieldTypes.size(); |
| AppendBytes(StorageBytes); |
| |
| // Now walk the bitfields associating them with this field of storage and |
| // building up the bitfield specific info. |
| unsigned FieldNo = FirstFieldNo; |
| for (; BFI != BFE; ++BFI, ++FieldNo) { |
| FieldDecl *FD = *BFI; |
| uint64_t FieldOffset = Layout.getFieldOffset(FieldNo) - FirstFieldOffset; |
| uint64_t FieldSize = FD->getBitWidthValue(Types.getContext()); |
| Fields[FD] = FieldIndex; |
| BitFields[FD] = CGBitFieldInfo::MakeInfo(Types, FD, FieldOffset, FieldSize, |
| StorageBits, StorageAlignment); |
| } |
| FirstFieldNo = LastFieldNo; |
| return true; |
| } |
| |
| bool CGRecordLayoutBuilder::LayoutField(const FieldDecl *D, |
| uint64_t fieldOffset) { |
| // If the field is packed, then we need a packed struct. |
| if (!Packed && D->hasAttr<PackedAttr>()) |
| return false; |
| |
| assert(!D->isBitField() && "Bitfields should be laid out seperately."); |
| |
| CheckZeroInitializable(D->getType()); |
| |
| assert(fieldOffset % Types.getTarget().getCharWidth() == 0 |
| && "field offset is not on a byte boundary!"); |
| CharUnits fieldOffsetInBytes |
| = Types.getContext().toCharUnitsFromBits(fieldOffset); |
| |
| llvm::Type *Ty = Types.ConvertTypeForMem(D->getType()); |
| CharUnits typeAlignment = getTypeAlignment(Ty); |
| |
| // If the type alignment is larger then the struct alignment, we must use |
| // a packed struct. |
| if (typeAlignment > Alignment) { |
| assert(!Packed && "Alignment is wrong even with packed struct!"); |
| return false; |
| } |
| |
| if (!Packed) { |
| if (const RecordType *RT = D->getType()->getAs<RecordType>()) { |
| const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); |
| if (const MaxFieldAlignmentAttr *MFAA = |
| RD->getAttr<MaxFieldAlignmentAttr>()) { |
| if (MFAA->getAlignment() != Types.getContext().toBits(typeAlignment)) |
| return false; |
| } |
| } |
| } |
| |
| // Round up the field offset to the alignment of the field type. |
| CharUnits alignedNextFieldOffsetInBytes = |
| NextFieldOffset.RoundUpToAlignment(typeAlignment); |
| |
| if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) { |
| // Try to resize the last base field. |
| if (ResizeLastBaseFieldIfNecessary(fieldOffsetInBytes)) { |
| alignedNextFieldOffsetInBytes = |
| NextFieldOffset.RoundUpToAlignment(typeAlignment); |
| } |
| } |
| |
| if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) { |
| assert(!Packed && "Could not place field even with packed struct!"); |
| return false; |
| } |
| |
| AppendPadding(fieldOffsetInBytes, typeAlignment); |
| |
| // Now append the field. |
| Fields[D] = FieldTypes.size(); |
| AppendField(fieldOffsetInBytes, Ty); |
| |
| LastLaidOutBase.invalidate(); |
| return true; |
| } |
| |
| llvm::Type * |
| CGRecordLayoutBuilder::LayoutUnionField(const FieldDecl *Field, |
| const ASTRecordLayout &Layout) { |
| Fields[Field] = 0; |
| if (Field->isBitField()) { |
| uint64_t FieldSize = Field->getBitWidthValue(Types.getContext()); |
| |
| // Ignore zero sized bit fields. |
| if (FieldSize == 0) |
| return 0; |
| |
| unsigned StorageBits = llvm::RoundUpToAlignment( |
| FieldSize, Types.getContext().getTargetInfo().getCharAlign()); |
| CharUnits NumBytesToAppend |
| = Types.getContext().toCharUnitsFromBits(StorageBits); |
| |
| llvm::Type *FieldTy = llvm::Type::getInt8Ty(Types.getLLVMContext()); |
| if (NumBytesToAppend > CharUnits::One()) |
| FieldTy = llvm::ArrayType::get(FieldTy, NumBytesToAppend.getQuantity()); |
| |
| // Add the bit field info. |
| BitFields[Field] = CGBitFieldInfo::MakeInfo(Types, Field, 0, FieldSize, |
| StorageBits, |
| Alignment.getQuantity()); |
| return FieldTy; |
| } |
| |
| // This is a regular union field. |
| return Types.ConvertTypeForMem(Field->getType()); |
| } |
| |
| void CGRecordLayoutBuilder::LayoutUnion(const RecordDecl *D) { |
| assert(D->isUnion() && "Can't call LayoutUnion on a non-union record!"); |
| |
| const ASTRecordLayout &layout = Types.getContext().getASTRecordLayout(D); |
| |
| llvm::Type *unionType = 0; |
| CharUnits unionSize = CharUnits::Zero(); |
| CharUnits unionAlign = CharUnits::Zero(); |
| |
| bool hasOnlyZeroSizedBitFields = true; |
| bool checkedFirstFieldZeroInit = false; |
| |
| unsigned fieldNo = 0; |
| for (RecordDecl::field_iterator field = D->field_begin(), |
| fieldEnd = D->field_end(); field != fieldEnd; ++field, ++fieldNo) { |
| assert(layout.getFieldOffset(fieldNo) == 0 && |
| "Union field offset did not start at the beginning of record!"); |
| llvm::Type *fieldType = LayoutUnionField(*field, layout); |
| |
| if (!fieldType) |
| continue; |
| |
| if (field->getDeclName() && !checkedFirstFieldZeroInit) { |
| CheckZeroInitializable(field->getType()); |
| checkedFirstFieldZeroInit = true; |
| } |
| |
| hasOnlyZeroSizedBitFields = false; |
| |
| CharUnits fieldAlign = CharUnits::fromQuantity( |
| Types.getDataLayout().getABITypeAlignment(fieldType)); |
| CharUnits fieldSize = CharUnits::fromQuantity( |
| Types.getDataLayout().getTypeAllocSize(fieldType)); |
| |
| if (fieldAlign < unionAlign) |
| continue; |
| |
| if (fieldAlign > unionAlign || fieldSize > unionSize) { |
| unionType = fieldType; |
| unionAlign = fieldAlign; |
| unionSize = fieldSize; |
| } |
| } |
| |
| // Now add our field. |
| if (unionType) { |
| AppendField(CharUnits::Zero(), unionType); |
| |
| if (getTypeAlignment(unionType) > layout.getAlignment()) { |
| // We need a packed struct. |
| Packed = true; |
| unionAlign = CharUnits::One(); |
| } |
| } |
| if (unionAlign.isZero()) { |
| (void)hasOnlyZeroSizedBitFields; |
| assert(hasOnlyZeroSizedBitFields && |
| "0-align record did not have all zero-sized bit-fields!"); |
| unionAlign = CharUnits::One(); |
| } |
| |
| // Append tail padding. |
| CharUnits recordSize = layout.getSize(); |
| if (recordSize > unionSize) |
| AppendPadding(recordSize, unionAlign); |
| } |
| |
| bool CGRecordLayoutBuilder::LayoutBase(const CXXRecordDecl *base, |
| const CGRecordLayout &baseLayout, |
| CharUnits baseOffset) { |
| ResizeLastBaseFieldIfNecessary(baseOffset); |
| |
| AppendPadding(baseOffset, CharUnits::One()); |
| |
| const ASTRecordLayout &baseASTLayout |
| = Types.getContext().getASTRecordLayout(base); |
| |
| LastLaidOutBase.Offset = NextFieldOffset; |
| LastLaidOutBase.NonVirtualSize = baseASTLayout.getNonVirtualSize(); |
| |
| llvm::StructType *subobjectType = baseLayout.getBaseSubobjectLLVMType(); |
| if (getTypeAlignment(subobjectType) > Alignment) |
| return false; |
| |
| AppendField(baseOffset, subobjectType); |
| return true; |
| } |
| |
| bool CGRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *base, |
| CharUnits baseOffset) { |
| // Ignore empty bases. |
| if (base->isEmpty()) return true; |
| |
| const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base); |
| if (IsZeroInitializableAsBase) { |
| assert(IsZeroInitializable && |
| "class zero-initializable as base but not as complete object"); |
| |
| IsZeroInitializable = IsZeroInitializableAsBase = |
| baseLayout.isZeroInitializableAsBase(); |
| } |
| |
| if (!LayoutBase(base, baseLayout, baseOffset)) |
| return false; |
| NonVirtualBases[base] = (FieldTypes.size() - 1); |
| return true; |
| } |
| |
| bool |
| CGRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *base, |
| CharUnits baseOffset) { |
| // Ignore empty bases. |
| if (base->isEmpty()) return true; |
| |
| const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base); |
| if (IsZeroInitializable) |
| IsZeroInitializable = baseLayout.isZeroInitializableAsBase(); |
| |
| if (!LayoutBase(base, baseLayout, baseOffset)) |
| return false; |
| VirtualBases[base] = (FieldTypes.size() - 1); |
| return true; |
| } |
| |
| bool |
| CGRecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD, |
| const ASTRecordLayout &Layout) { |
| if (!RD->getNumVBases()) |
| return true; |
| |
| // The vbases list is uniqued and ordered by a depth-first |
| // traversal, which is what we need here. |
| for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), |
| E = RD->vbases_end(); I != E; ++I) { |
| |
| const CXXRecordDecl *BaseDecl = |
| cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl()); |
| |
| CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl); |
| if (!LayoutVirtualBase(BaseDecl, vbaseOffset)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// LayoutVirtualBases - layout the non-virtual bases of a record decl. |
| bool |
| CGRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD, |
| const ASTRecordLayout &Layout) { |
| for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), |
| E = RD->bases_end(); I != E; ++I) { |
| const CXXRecordDecl *BaseDecl = |
| cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl()); |
| |
| // We only want to lay out virtual bases that aren't indirect primary bases |
| // of some other base. |
| if (I->isVirtual() && !IndirectPrimaryBases.count(BaseDecl)) { |
| // Only lay out the base once. |
| if (!LaidOutVirtualBases.insert(BaseDecl)) |
| continue; |
| |
| CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl); |
| if (!LayoutVirtualBase(BaseDecl, vbaseOffset)) |
| return false; |
| } |
| |
| if (!BaseDecl->getNumVBases()) { |
| // This base isn't interesting since it doesn't have any virtual bases. |
| continue; |
| } |
| |
| if (!LayoutVirtualBases(BaseDecl, Layout)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool |
| CGRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD, |
| const ASTRecordLayout &Layout) { |
| const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
| |
| // If we have a primary base, lay it out first. |
| if (PrimaryBase) { |
| if (!Layout.isPrimaryBaseVirtual()) { |
| if (!LayoutNonVirtualBase(PrimaryBase, CharUnits::Zero())) |
| return false; |
| } else { |
| if (!LayoutVirtualBase(PrimaryBase, CharUnits::Zero())) |
| return false; |
| } |
| |
| // Otherwise, add a vtable / vf-table if the layout says to do so. |
| } else if (Layout.hasOwnVFPtr()) { |
| llvm::Type *FunctionType = |
| llvm::FunctionType::get(llvm::Type::getInt32Ty(Types.getLLVMContext()), |
| /*isVarArg=*/true); |
| llvm::Type *VTableTy = FunctionType->getPointerTo(); |
| |
| if (getTypeAlignment(VTableTy) > Alignment) { |
| // FIXME: Should we allow this to happen in Sema? |
| assert(!Packed && "Alignment is wrong even with packed struct!"); |
| return false; |
| } |
| |
| assert(NextFieldOffset.isZero() && |
| "VTable pointer must come first!"); |
| AppendField(CharUnits::Zero(), VTableTy->getPointerTo()); |
| } |
| |
| // Layout the non-virtual bases. |
| for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), |
| E = RD->bases_end(); I != E; ++I) { |
| if (I->isVirtual()) |
| continue; |
| |
| const CXXRecordDecl *BaseDecl = |
| cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl()); |
| |
| // We've already laid out the primary base. |
| if (BaseDecl == PrimaryBase && !Layout.isPrimaryBaseVirtual()) |
| continue; |
| |
| if (!LayoutNonVirtualBase(BaseDecl, Layout.getBaseClassOffset(BaseDecl))) |
| return false; |
| } |
| |
| // Add a vb-table pointer if the layout insists. |
| if (Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1)) { |
| CharUnits VBPtrOffset = Layout.getVBPtrOffset(); |
| llvm::Type *Vbptr = llvm::Type::getInt32PtrTy(Types.getLLVMContext()); |
| AppendPadding(VBPtrOffset, getTypeAlignment(Vbptr)); |
| AppendField(VBPtrOffset, Vbptr); |
| } |
| |
| return true; |
| } |
| |
| bool |
| CGRecordLayoutBuilder::ComputeNonVirtualBaseType(const CXXRecordDecl *RD) { |
| const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(RD); |
| |
| CharUnits NonVirtualSize = Layout.getNonVirtualSize(); |
| CharUnits NonVirtualAlign = Layout.getNonVirtualAlign(); |
| CharUnits AlignedNonVirtualTypeSize = |
| NonVirtualSize.RoundUpToAlignment(NonVirtualAlign); |
| |
| // First check if we can use the same fields as for the complete class. |
| CharUnits RecordSize = Layout.getSize(); |
| if (AlignedNonVirtualTypeSize == RecordSize) |
| return true; |
| |
| // Check if we need padding. |
| CharUnits AlignedNextFieldOffset = |
| NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct()); |
| |
| if (AlignedNextFieldOffset > AlignedNonVirtualTypeSize) { |
| assert(!Packed && "cannot layout even as packed struct"); |
| return false; // Needs packing. |
| } |
| |
| bool needsPadding = (AlignedNonVirtualTypeSize != AlignedNextFieldOffset); |
| if (needsPadding) { |
| CharUnits NumBytes = AlignedNonVirtualTypeSize - AlignedNextFieldOffset; |
| FieldTypes.push_back(getByteArrayType(NumBytes)); |
| } |
| |
| BaseSubobjectType = llvm::StructType::create(Types.getLLVMContext(), |
| FieldTypes, "", Packed); |
| Types.addRecordTypeName(RD, BaseSubobjectType, ".base"); |
| |
| // Pull the padding back off. |
| if (needsPadding) |
| FieldTypes.pop_back(); |
| |
| return true; |
| } |
| |
| bool CGRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { |
| assert(!D->isUnion() && "Can't call LayoutFields on a union!"); |
| assert(!Alignment.isZero() && "Did not set alignment!"); |
| |
| const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D); |
| |
| const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D); |
| if (RD) |
| if (!LayoutNonVirtualBases(RD, Layout)) |
| return false; |
| |
| unsigned FieldNo = 0; |
| const FieldDecl *LastFD = 0; |
| |
| for (RecordDecl::field_iterator FI = D->field_begin(), FE = D->field_end(); |
| FI != FE; ++FI, ++FieldNo) { |
| FieldDecl *FD = *FI; |
| if (IsMsStruct) { |
| // Zero-length bitfields following non-bitfield members are |
| // ignored: |
| if (Types.getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) { |
| --FieldNo; |
| continue; |
| } |
| LastFD = FD; |
| } |
| |
| // If this field is a bitfield, layout all of the consecutive |
| // non-zero-length bitfields and the last zero-length bitfield; these will |
| // all share storage. |
| if (FD->isBitField()) { |
| // If all we have is a zero-width bitfield, skip it. |
| if (FD->getBitWidthValue(Types.getContext()) == 0) |
| continue; |
| |
| // Layout this range of bitfields. |
| if (!LayoutBitfields(Layout, FieldNo, FI, FE)) { |
| assert(!Packed && |
| "Could not layout bitfields even with a packed LLVM struct!"); |
| return false; |
| } |
| assert(FI != FE && "Advanced past the last bitfield"); |
| continue; |
| } |
| |
| if (!LayoutField(FD, Layout.getFieldOffset(FieldNo))) { |
| assert(!Packed && |
| "Could not layout fields even with a packed LLVM struct!"); |
| return false; |
| } |
| } |
| |
| if (RD) { |
| // We've laid out the non-virtual bases and the fields, now compute the |
| // non-virtual base field types. |
| if (!ComputeNonVirtualBaseType(RD)) { |
| assert(!Packed && "Could not layout even with a packed LLVM struct!"); |
| return false; |
| } |
| |
| // Lay out the virtual bases. The MS ABI uses a different |
| // algorithm here due to the lack of primary virtual bases. |
| if (Types.getContext().getTargetInfo().getCXXABI().hasPrimaryVBases()) { |
| RD->getIndirectPrimaryBases(IndirectPrimaryBases); |
| if (Layout.isPrimaryBaseVirtual()) |
| IndirectPrimaryBases.insert(Layout.getPrimaryBase()); |
| |
| if (!LayoutVirtualBases(RD, Layout)) |
| return false; |
| } else { |
| if (!MSLayoutVirtualBases(RD, Layout)) |
| return false; |
| } |
| } |
| |
| // Append tail padding if necessary. |
| AppendTailPadding(Layout.getSize()); |
| |
| return true; |
| } |
| |
| void CGRecordLayoutBuilder::AppendTailPadding(CharUnits RecordSize) { |
| ResizeLastBaseFieldIfNecessary(RecordSize); |
| |
| assert(NextFieldOffset <= RecordSize && "Size mismatch!"); |
| |
| CharUnits AlignedNextFieldOffset = |
| NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct()); |
| |
| if (AlignedNextFieldOffset == RecordSize) { |
| // We don't need any padding. |
| return; |
| } |
| |
| CharUnits NumPadBytes = RecordSize - NextFieldOffset; |
| AppendBytes(NumPadBytes); |
| } |
| |
| void CGRecordLayoutBuilder::AppendField(CharUnits fieldOffset, |
| llvm::Type *fieldType) { |
| CharUnits fieldSize = |
| CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(fieldType)); |
| |
| FieldTypes.push_back(fieldType); |
| |
| NextFieldOffset = fieldOffset + fieldSize; |
| } |
| |
| void CGRecordLayoutBuilder::AppendPadding(CharUnits fieldOffset, |
| CharUnits fieldAlignment) { |
| assert(NextFieldOffset <= fieldOffset && |
| "Incorrect field layout!"); |
| |
| // Do nothing if we're already at the right offset. |
| if (fieldOffset == NextFieldOffset) return; |
| |
| // If we're not emitting a packed LLVM type, try to avoid adding |
| // unnecessary padding fields. |
| if (!Packed) { |
| // Round up the field offset to the alignment of the field type. |
| CharUnits alignedNextFieldOffset = |
| NextFieldOffset.RoundUpToAlignment(fieldAlignment); |
| assert(alignedNextFieldOffset <= fieldOffset); |
| |
| // If that's the right offset, we're done. |
| if (alignedNextFieldOffset == fieldOffset) return; |
| } |
| |
| // Otherwise we need explicit padding. |
| CharUnits padding = fieldOffset - NextFieldOffset; |
| AppendBytes(padding); |
| } |
| |
| bool CGRecordLayoutBuilder::ResizeLastBaseFieldIfNecessary(CharUnits offset) { |
| // Check if we have a base to resize. |
| if (!LastLaidOutBase.isValid()) |
| return false; |
| |
| // This offset does not overlap with the tail padding. |
| if (offset >= NextFieldOffset) |
| return false; |
| |
| // Restore the field offset and append an i8 array instead. |
| FieldTypes.pop_back(); |
| NextFieldOffset = LastLaidOutBase.Offset; |
| AppendBytes(LastLaidOutBase.NonVirtualSize); |
| LastLaidOutBase.invalidate(); |
| |
| return true; |
| } |
| |
| llvm::Type *CGRecordLayoutBuilder::getByteArrayType(CharUnits numBytes) { |
| assert(!numBytes.isZero() && "Empty byte arrays aren't allowed."); |
| |
| llvm::Type *Ty = llvm::Type::getInt8Ty(Types.getLLVMContext()); |
| if (numBytes > CharUnits::One()) |
| Ty = llvm::ArrayType::get(Ty, numBytes.getQuantity()); |
| |
| return Ty; |
| } |
| |
| void CGRecordLayoutBuilder::AppendBytes(CharUnits numBytes) { |
| if (numBytes.isZero()) |
| return; |
| |
| // Append the padding field |
| AppendField(NextFieldOffset, getByteArrayType(numBytes)); |
| } |
| |
| CharUnits CGRecordLayoutBuilder::getTypeAlignment(llvm::Type *Ty) const { |
| if (Packed) |
| return CharUnits::One(); |
| |
| return CharUnits::fromQuantity(Types.getDataLayout().getABITypeAlignment(Ty)); |
| } |
| |
| CharUnits CGRecordLayoutBuilder::getAlignmentAsLLVMStruct() const { |
| if (Packed) |
| return CharUnits::One(); |
| |
| CharUnits maxAlignment = CharUnits::One(); |
| for (size_t i = 0; i != FieldTypes.size(); ++i) |
| maxAlignment = std::max(maxAlignment, getTypeAlignment(FieldTypes[i])); |
| |
| return maxAlignment; |
| } |
| |
| /// Merge in whether a field of the given type is zero-initializable. |
| void CGRecordLayoutBuilder::CheckZeroInitializable(QualType T) { |
| // This record already contains a member pointer. |
| if (!IsZeroInitializableAsBase) |
| return; |
| |
| // Can only have member pointers if we're compiling C++. |
| if (!Types.getContext().getLangOpts().CPlusPlus) |
| return; |
| |
| const Type *elementType = T->getBaseElementTypeUnsafe(); |
| |
| if (const MemberPointerType *MPT = elementType->getAs<MemberPointerType>()) { |
| if (!Types.getCXXABI().isZeroInitializable(MPT)) |
| IsZeroInitializable = IsZeroInitializableAsBase = false; |
| } else if (const RecordType *RT = elementType->getAs<RecordType>()) { |
| const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| const CGRecordLayout &Layout = Types.getCGRecordLayout(RD); |
| if (!Layout.isZeroInitializable()) |
| IsZeroInitializable = IsZeroInitializableAsBase = false; |
| } |
| } |
| |
| CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, |
| llvm::StructType *Ty) { |
| CGRecordLayoutBuilder Builder(*this); |
| |
| Builder.Layout(D); |
| |
| Ty->setBody(Builder.FieldTypes, Builder.Packed); |
| |
| // If we're in C++, compute the base subobject type. |
| llvm::StructType *BaseTy = 0; |
| if (isa<CXXRecordDecl>(D) && !D->isUnion()) { |
| BaseTy = Builder.BaseSubobjectType; |
| if (!BaseTy) BaseTy = Ty; |
| } |
| |
| CGRecordLayout *RL = |
| new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable, |
| Builder.IsZeroInitializableAsBase); |
| |
| RL->NonVirtualBases.swap(Builder.NonVirtualBases); |
| RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases); |
| |
| // Add all the field numbers. |
| RL->FieldInfo.swap(Builder.Fields); |
| |
| // Add bitfield info. |
| RL->BitFields.swap(Builder.BitFields); |
| |
| // Dump the layout, if requested. |
| if (getContext().getLangOpts().DumpRecordLayouts) { |
| llvm::errs() << "\n*** Dumping IRgen Record Layout\n"; |
| llvm::errs() << "Record: "; |
| D->dump(); |
| llvm::errs() << "\nLayout: "; |
| RL->dump(); |
| } |
| |
| #ifndef NDEBUG |
| // Verify that the computed LLVM struct size matches the AST layout size. |
| const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D); |
| |
| uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize()); |
| assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) && |
| "Type size mismatch!"); |
| |
| if (BaseTy) { |
| CharUnits NonVirtualSize = Layout.getNonVirtualSize(); |
| CharUnits NonVirtualAlign = Layout.getNonVirtualAlign(); |
| CharUnits AlignedNonVirtualTypeSize = |
| NonVirtualSize.RoundUpToAlignment(NonVirtualAlign); |
| |
| uint64_t AlignedNonVirtualTypeSizeInBits = |
| getContext().toBits(AlignedNonVirtualTypeSize); |
| |
| assert(AlignedNonVirtualTypeSizeInBits == |
| getDataLayout().getTypeAllocSizeInBits(BaseTy) && |
| "Type size mismatch!"); |
| } |
| |
| // Verify that the LLVM and AST field offsets agree. |
| llvm::StructType *ST = |
| dyn_cast<llvm::StructType>(RL->getLLVMType()); |
| const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST); |
| |
| const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D); |
| RecordDecl::field_iterator it = D->field_begin(); |
| const FieldDecl *LastFD = 0; |
| bool IsMsStruct = D->isMsStruct(getContext()); |
| for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) { |
| const FieldDecl *FD = *it; |
| |
| // For non-bit-fields, just check that the LLVM struct offset matches the |
| // AST offset. |
| if (!FD->isBitField()) { |
| unsigned FieldNo = RL->getLLVMFieldNo(FD); |
| assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) && |
| "Invalid field offset!"); |
| LastFD = FD; |
| continue; |
| } |
| |
| if (IsMsStruct) { |
| // Zero-length bitfields following non-bitfield members are |
| // ignored: |
| if (getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) { |
| --i; |
| continue; |
| } |
| LastFD = FD; |
| } |
| |
| // Ignore unnamed bit-fields. |
| if (!FD->getDeclName()) { |
| LastFD = FD; |
| continue; |
| } |
| |
| // Don't inspect zero-length bitfields. |
| if (FD->getBitWidthValue(getContext()) == 0) |
| continue; |
| |
| const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD); |
| llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD)); |
| |
| // Unions have overlapping elements dictating their layout, but for |
| // non-unions we can verify that this section of the layout is the exact |
| // expected size. |
| if (D->isUnion()) { |
| // For unions we verify that the start is zero and the size |
| // is in-bounds. However, on BE systems, the offset may be non-zero, but |
| // the size + offset should match the storage size in that case as it |
| // "starts" at the back. |
| if (getDataLayout().isBigEndian()) |
| assert(static_cast<unsigned>(Info.Offset + Info.Size) == |
| Info.StorageSize && |
| "Big endian union bitfield does not end at the back"); |
| else |
| assert(Info.Offset == 0 && |
| "Little endian union bitfield with a non-zero offset"); |
| assert(Info.StorageSize <= SL->getSizeInBits() && |
| "Union not large enough for bitfield storage"); |
| } else { |
| assert(Info.StorageSize == |
| getDataLayout().getTypeAllocSizeInBits(ElementTy) && |
| "Storage size does not match the element type size"); |
| } |
| assert(Info.Size > 0 && "Empty bitfield!"); |
| assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize && |
| "Bitfield outside of its allocated storage"); |
| } |
| #endif |
| |
| return RL; |
| } |
| |
| void CGRecordLayout::print(raw_ostream &OS) const { |
| OS << "<CGRecordLayout\n"; |
| OS << " LLVMType:" << *CompleteObjectType << "\n"; |
| if (BaseSubobjectType) |
| OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; |
| OS << " IsZeroInitializable:" << IsZeroInitializable << "\n"; |
| OS << " BitFields:[\n"; |
| |
| // Print bit-field infos in declaration order. |
| std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs; |
| for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator |
| it = BitFields.begin(), ie = BitFields.end(); |
| it != ie; ++it) { |
| const RecordDecl *RD = it->first->getParent(); |
| unsigned Index = 0; |
| for (RecordDecl::field_iterator |
| it2 = RD->field_begin(); *it2 != it->first; ++it2) |
| ++Index; |
| BFIs.push_back(std::make_pair(Index, &it->second)); |
| } |
| llvm::array_pod_sort(BFIs.begin(), BFIs.end()); |
| for (unsigned i = 0, e = BFIs.size(); i != e; ++i) { |
| OS.indent(4); |
| BFIs[i].second->print(OS); |
| OS << "\n"; |
| } |
| |
| OS << "]>\n"; |
| } |
| |
| void CGRecordLayout::dump() const { |
| print(llvm::errs()); |
| } |
| |
| void CGBitFieldInfo::print(raw_ostream &OS) const { |
| OS << "<CGBitFieldInfo" |
| << " Offset:" << Offset |
| << " Size:" << Size |
| << " IsSigned:" << IsSigned |
| << " StorageSize:" << StorageSize |
| << " StorageAlignment:" << StorageAlignment << ">"; |
| } |
| |
| void CGBitFieldInfo::dump() const { |
| print(llvm::errs()); |
| } |