| //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a generic engine for intraprocedural, path-sensitive, |
| // dataflow analysis via graph reachability engine. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/PathSensitive/AnalysisManager.h" |
| #include "clang/StaticAnalyzer/PathSensitive/CoreEngine.h" |
| #include "clang/StaticAnalyzer/PathSensitive/ExprEngine.h" |
| #include "clang/Index/TranslationUnit.h" |
| #include "clang/AST/Expr.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include <vector> |
| #include <queue> |
| |
| using llvm::cast; |
| using llvm::isa; |
| using namespace clang; |
| using namespace ento; |
| |
| // This should be removed in the future. |
| namespace clang { |
| namespace ento { |
| TransferFuncs* MakeCFRefCountTF(ASTContext& Ctx, bool GCEnabled, |
| const LangOptions& lopts); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Worklist classes for exploration of reachable states. |
| //===----------------------------------------------------------------------===// |
| |
| WorkList::Visitor::~Visitor() {} |
| |
| namespace { |
| class DFS : public WorkList { |
| llvm::SmallVector<WorkListUnit,20> Stack; |
| public: |
| virtual bool hasWork() const { |
| return !Stack.empty(); |
| } |
| |
| virtual void Enqueue(const WorkListUnit& U) { |
| Stack.push_back(U); |
| } |
| |
| virtual WorkListUnit Dequeue() { |
| assert (!Stack.empty()); |
| const WorkListUnit& U = Stack.back(); |
| Stack.pop_back(); // This technically "invalidates" U, but we are fine. |
| return U; |
| } |
| |
| virtual bool VisitItemsInWorkList(Visitor &V) { |
| for (llvm::SmallVectorImpl<WorkListUnit>::iterator |
| I = Stack.begin(), E = Stack.end(); I != E; ++I) { |
| if (V.Visit(*I)) |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| class BFS : public WorkList { |
| std::deque<WorkListUnit> Queue; |
| public: |
| virtual bool hasWork() const { |
| return !Queue.empty(); |
| } |
| |
| virtual void Enqueue(const WorkListUnit& U) { |
| Queue.push_front(U); |
| } |
| |
| virtual WorkListUnit Dequeue() { |
| WorkListUnit U = Queue.front(); |
| Queue.pop_front(); |
| return U; |
| } |
| |
| virtual bool VisitItemsInWorkList(Visitor &V) { |
| for (std::deque<WorkListUnit>::iterator |
| I = Queue.begin(), E = Queue.end(); I != E; ++I) { |
| if (V.Visit(*I)) |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| // Place the dstor for WorkList here because it contains virtual member |
| // functions, and we the code for the dstor generated in one compilation unit. |
| WorkList::~WorkList() {} |
| |
| WorkList *WorkList::MakeDFS() { return new DFS(); } |
| WorkList *WorkList::MakeBFS() { return new BFS(); } |
| |
| namespace { |
| class BFSBlockDFSContents : public WorkList { |
| std::deque<WorkListUnit> Queue; |
| llvm::SmallVector<WorkListUnit,20> Stack; |
| public: |
| virtual bool hasWork() const { |
| return !Queue.empty() || !Stack.empty(); |
| } |
| |
| virtual void Enqueue(const WorkListUnit& U) { |
| if (isa<BlockEntrance>(U.getNode()->getLocation())) |
| Queue.push_front(U); |
| else |
| Stack.push_back(U); |
| } |
| |
| virtual WorkListUnit Dequeue() { |
| // Process all basic blocks to completion. |
| if (!Stack.empty()) { |
| const WorkListUnit& U = Stack.back(); |
| Stack.pop_back(); // This technically "invalidates" U, but we are fine. |
| return U; |
| } |
| |
| assert(!Queue.empty()); |
| // Don't use const reference. The subsequent pop_back() might make it |
| // unsafe. |
| WorkListUnit U = Queue.front(); |
| Queue.pop_front(); |
| return U; |
| } |
| virtual bool VisitItemsInWorkList(Visitor &V) { |
| for (llvm::SmallVectorImpl<WorkListUnit>::iterator |
| I = Stack.begin(), E = Stack.end(); I != E; ++I) { |
| if (V.Visit(*I)) |
| return true; |
| } |
| for (std::deque<WorkListUnit>::iterator |
| I = Queue.begin(), E = Queue.end(); I != E; ++I) { |
| if (V.Visit(*I)) |
| return true; |
| } |
| return false; |
| } |
| |
| }; |
| } // end anonymous namespace |
| |
| WorkList* WorkList::MakeBFSBlockDFSContents() { |
| return new BFSBlockDFSContents(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Core analysis engine. |
| //===----------------------------------------------------------------------===// |
| |
| /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps. |
| bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps, |
| const GRState *InitState) { |
| |
| if (G->num_roots() == 0) { // Initialize the analysis by constructing |
| // the root if none exists. |
| |
| const CFGBlock* Entry = &(L->getCFG()->getEntry()); |
| |
| assert (Entry->empty() && |
| "Entry block must be empty."); |
| |
| assert (Entry->succ_size() == 1 && |
| "Entry block must have 1 successor."); |
| |
| // Get the solitary successor. |
| const CFGBlock* Succ = *(Entry->succ_begin()); |
| |
| // Construct an edge representing the |
| // starting location in the function. |
| BlockEdge StartLoc(Entry, Succ, L); |
| |
| // Set the current block counter to being empty. |
| WList->setBlockCounter(BCounterFactory.GetEmptyCounter()); |
| |
| if (!InitState) |
| // Generate the root. |
| generateNode(StartLoc, getInitialState(L), 0); |
| else |
| generateNode(StartLoc, InitState, 0); |
| } |
| |
| // Check if we have a steps limit |
| bool UnlimitedSteps = Steps == 0; |
| |
| while (WList->hasWork()) { |
| if (!UnlimitedSteps) { |
| if (Steps == 0) |
| break; |
| --Steps; |
| } |
| |
| const WorkListUnit& WU = WList->Dequeue(); |
| |
| // Set the current block counter. |
| WList->setBlockCounter(WU.getBlockCounter()); |
| |
| // Retrieve the node. |
| ExplodedNode* Node = WU.getNode(); |
| |
| // Dispatch on the location type. |
| switch (Node->getLocation().getKind()) { |
| case ProgramPoint::BlockEdgeKind: |
| HandleBlockEdge(cast<BlockEdge>(Node->getLocation()), Node); |
| break; |
| |
| case ProgramPoint::BlockEntranceKind: |
| HandleBlockEntrance(cast<BlockEntrance>(Node->getLocation()), Node); |
| break; |
| |
| case ProgramPoint::BlockExitKind: |
| assert (false && "BlockExit location never occur in forward analysis."); |
| break; |
| |
| case ProgramPoint::CallEnterKind: |
| HandleCallEnter(cast<CallEnter>(Node->getLocation()), WU.getBlock(), |
| WU.getIndex(), Node); |
| break; |
| |
| case ProgramPoint::CallExitKind: |
| HandleCallExit(cast<CallExit>(Node->getLocation()), Node); |
| break; |
| |
| default: |
| assert(isa<PostStmt>(Node->getLocation()) || |
| isa<PostInitializer>(Node->getLocation())); |
| HandlePostStmt(WU.getBlock(), WU.getIndex(), Node); |
| break; |
| } |
| } |
| |
| SubEng.ProcessEndWorklist(hasWorkRemaining()); |
| return WList->hasWork(); |
| } |
| |
| void CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L, |
| unsigned Steps, |
| const GRState *InitState, |
| ExplodedNodeSet &Dst) { |
| ExecuteWorkList(L, Steps, InitState); |
| for (llvm::SmallVectorImpl<ExplodedNode*>::iterator I = G->EndNodes.begin(), |
| E = G->EndNodes.end(); I != E; ++I) { |
| Dst.Add(*I); |
| } |
| } |
| |
| void CoreEngine::HandleCallEnter(const CallEnter &L, const CFGBlock *Block, |
| unsigned Index, ExplodedNode *Pred) { |
| CallEnterNodeBuilder Builder(*this, Pred, L.getCallExpr(), |
| L.getCalleeContext(), Block, Index); |
| ProcessCallEnter(Builder); |
| } |
| |
| void CoreEngine::HandleCallExit(const CallExit &L, ExplodedNode *Pred) { |
| CallExitNodeBuilder Builder(*this, Pred); |
| ProcessCallExit(Builder); |
| } |
| |
| void CoreEngine::HandleBlockEdge(const BlockEdge& L, ExplodedNode* Pred) { |
| |
| const CFGBlock* Blk = L.getDst(); |
| |
| // Check if we are entering the EXIT block. |
| if (Blk == &(L.getLocationContext()->getCFG()->getExit())) { |
| |
| assert (L.getLocationContext()->getCFG()->getExit().size() == 0 |
| && "EXIT block cannot contain Stmts."); |
| |
| // Process the final state transition. |
| EndPathNodeBuilder Builder(Blk, Pred, this); |
| ProcessEndPath(Builder); |
| |
| // This path is done. Don't enqueue any more nodes. |
| return; |
| } |
| |
| // FIXME: Should we allow ProcessBlockEntrance to also manipulate state? |
| |
| if (ProcessBlockEntrance(Blk, Pred, WList->getBlockCounter())) |
| generateNode(BlockEntrance(Blk, Pred->getLocationContext()), |
| Pred->State, Pred); |
| else { |
| blocksAborted.push_back(std::make_pair(L, Pred)); |
| } |
| } |
| |
| void CoreEngine::HandleBlockEntrance(const BlockEntrance& L, |
| ExplodedNode* Pred) { |
| |
| // Increment the block counter. |
| BlockCounter Counter = WList->getBlockCounter(); |
| Counter = BCounterFactory.IncrementCount(Counter, |
| Pred->getLocationContext()->getCurrentStackFrame(), |
| L.getBlock()->getBlockID()); |
| WList->setBlockCounter(Counter); |
| |
| // Process the entrance of the block. |
| if (CFGElement E = L.getFirstElement()) { |
| StmtNodeBuilder Builder(L.getBlock(), 0, Pred, this, |
| SubEng.getStateManager()); |
| ProcessElement(E, Builder); |
| } |
| else |
| HandleBlockExit(L.getBlock(), Pred); |
| } |
| |
| void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode* Pred) { |
| |
| if (const Stmt* Term = B->getTerminator()) { |
| switch (Term->getStmtClass()) { |
| default: |
| assert(false && "Analysis for this terminator not implemented."); |
| break; |
| |
| case Stmt::BinaryOperatorClass: // '&&' and '||' |
| HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred); |
| return; |
| |
| case Stmt::ConditionalOperatorClass: |
| HandleBranch(cast<ConditionalOperator>(Term)->getCond(), Term, B, Pred); |
| return; |
| |
| // FIXME: Use constant-folding in CFG construction to simplify this |
| // case. |
| |
| case Stmt::ChooseExprClass: |
| HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred); |
| return; |
| |
| case Stmt::DoStmtClass: |
| HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred); |
| return; |
| |
| case Stmt::ForStmtClass: |
| HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred); |
| return; |
| |
| case Stmt::ContinueStmtClass: |
| case Stmt::BreakStmtClass: |
| case Stmt::GotoStmtClass: |
| break; |
| |
| case Stmt::IfStmtClass: |
| HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred); |
| return; |
| |
| case Stmt::IndirectGotoStmtClass: { |
| // Only 1 successor: the indirect goto dispatch block. |
| assert (B->succ_size() == 1); |
| |
| IndirectGotoNodeBuilder |
| builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(), |
| *(B->succ_begin()), this); |
| |
| ProcessIndirectGoto(builder); |
| return; |
| } |
| |
| case Stmt::ObjCForCollectionStmtClass: { |
| // In the case of ObjCForCollectionStmt, it appears twice in a CFG: |
| // |
| // (1) inside a basic block, which represents the binding of the |
| // 'element' variable to a value. |
| // (2) in a terminator, which represents the branch. |
| // |
| // For (1), subengines will bind a value (i.e., 0 or 1) indicating |
| // whether or not collection contains any more elements. We cannot |
| // just test to see if the element is nil because a container can |
| // contain nil elements. |
| HandleBranch(Term, Term, B, Pred); |
| return; |
| } |
| |
| case Stmt::SwitchStmtClass: { |
| SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(), |
| this); |
| |
| ProcessSwitch(builder); |
| return; |
| } |
| |
| case Stmt::WhileStmtClass: |
| HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred); |
| return; |
| } |
| } |
| |
| assert (B->succ_size() == 1 && |
| "Blocks with no terminator should have at most 1 successor."); |
| |
| generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()), |
| Pred->State, Pred); |
| } |
| |
| void CoreEngine::HandleBranch(const Stmt* Cond, const Stmt* Term, |
| const CFGBlock * B, ExplodedNode* Pred) { |
| assert (B->succ_size() == 2); |
| |
| BranchNodeBuilder Builder(B, *(B->succ_begin()), *(B->succ_begin()+1), |
| Pred, this); |
| |
| ProcessBranch(Cond, Term, Builder); |
| } |
| |
| void CoreEngine::HandlePostStmt(const CFGBlock* B, unsigned StmtIdx, |
| ExplodedNode* Pred) { |
| assert (!B->empty()); |
| |
| if (StmtIdx == B->size()) |
| HandleBlockExit(B, Pred); |
| else { |
| StmtNodeBuilder Builder(B, StmtIdx, Pred, this, |
| SubEng.getStateManager()); |
| ProcessElement((*B)[StmtIdx], Builder); |
| } |
| } |
| |
| /// generateNode - Utility method to generate nodes, hook up successors, |
| /// and add nodes to the worklist. |
| void CoreEngine::generateNode(const ProgramPoint& Loc, |
| const GRState* State, ExplodedNode* Pred) { |
| |
| bool IsNew; |
| ExplodedNode* Node = G->getNode(Loc, State, &IsNew); |
| |
| if (Pred) |
| Node->addPredecessor(Pred, *G); // Link 'Node' with its predecessor. |
| else { |
| assert (IsNew); |
| G->addRoot(Node); // 'Node' has no predecessor. Make it a root. |
| } |
| |
| // Only add 'Node' to the worklist if it was freshly generated. |
| if (IsNew) WList->Enqueue(Node); |
| } |
| |
| StmtNodeBuilder::StmtNodeBuilder(const CFGBlock* b, unsigned idx, |
| ExplodedNode* N, CoreEngine* e, |
| GRStateManager &mgr) |
| : Eng(*e), B(*b), Idx(idx), Pred(N), Mgr(mgr), |
| PurgingDeadSymbols(false), BuildSinks(false), HasGeneratedNode(false), |
| PointKind(ProgramPoint::PostStmtKind), Tag(0) { |
| Deferred.insert(N); |
| CleanedState = Pred->getState(); |
| } |
| |
| StmtNodeBuilder::~StmtNodeBuilder() { |
| for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I) |
| if (!(*I)->isSink()) |
| GenerateAutoTransition(*I); |
| } |
| |
| void StmtNodeBuilder::GenerateAutoTransition(ExplodedNode* N) { |
| assert (!N->isSink()); |
| |
| // Check if this node entered a callee. |
| if (isa<CallEnter>(N->getLocation())) { |
| // Still use the index of the CallExpr. It's needed to create the callee |
| // StackFrameContext. |
| Eng.WList->Enqueue(N, &B, Idx); |
| return; |
| } |
| |
| // Do not create extra nodes. Move to the next CFG element. |
| if (isa<PostInitializer>(N->getLocation())) { |
| Eng.WList->Enqueue(N, &B, Idx+1); |
| return; |
| } |
| |
| PostStmt Loc(getStmt(), N->getLocationContext()); |
| |
| if (Loc == N->getLocation()) { |
| // Note: 'N' should be a fresh node because otherwise it shouldn't be |
| // a member of Deferred. |
| Eng.WList->Enqueue(N, &B, Idx+1); |
| return; |
| } |
| |
| bool IsNew; |
| ExplodedNode* Succ = Eng.G->getNode(Loc, N->State, &IsNew); |
| Succ->addPredecessor(N, *Eng.G); |
| |
| if (IsNew) |
| Eng.WList->Enqueue(Succ, &B, Idx+1); |
| } |
| |
| ExplodedNode* StmtNodeBuilder::MakeNode(ExplodedNodeSet& Dst, const Stmt* S, |
| ExplodedNode* Pred, const GRState* St, |
| ProgramPoint::Kind K) { |
| |
| ExplodedNode* N = generateNode(S, St, Pred, K); |
| |
| if (N) { |
| if (BuildSinks) |
| N->markAsSink(); |
| else |
| Dst.Add(N); |
| } |
| |
| return N; |
| } |
| |
| static ProgramPoint GetProgramPoint(const Stmt *S, ProgramPoint::Kind K, |
| const LocationContext *LC, const void *tag){ |
| switch (K) { |
| default: |
| assert(false && "Unhandled ProgramPoint kind"); |
| case ProgramPoint::PreStmtKind: |
| return PreStmt(S, LC, tag); |
| case ProgramPoint::PostStmtKind: |
| return PostStmt(S, LC, tag); |
| case ProgramPoint::PreLoadKind: |
| return PreLoad(S, LC, tag); |
| case ProgramPoint::PostLoadKind: |
| return PostLoad(S, LC, tag); |
| case ProgramPoint::PreStoreKind: |
| return PreStore(S, LC, tag); |
| case ProgramPoint::PostStoreKind: |
| return PostStore(S, LC, tag); |
| case ProgramPoint::PostLValueKind: |
| return PostLValue(S, LC, tag); |
| case ProgramPoint::PostPurgeDeadSymbolsKind: |
| return PostPurgeDeadSymbols(S, LC, tag); |
| } |
| } |
| |
| ExplodedNode* |
| StmtNodeBuilder::generateNodeInternal(const Stmt* S, const GRState* state, |
| ExplodedNode* Pred, |
| ProgramPoint::Kind K, |
| const void *tag) { |
| |
| const ProgramPoint &L = GetProgramPoint(S, K, Pred->getLocationContext(),tag); |
| return generateNodeInternal(L, state, Pred); |
| } |
| |
| ExplodedNode* |
| StmtNodeBuilder::generateNodeInternal(const ProgramPoint &Loc, |
| const GRState* State, |
| ExplodedNode* Pred) { |
| bool IsNew; |
| ExplodedNode* N = Eng.G->getNode(Loc, State, &IsNew); |
| N->addPredecessor(Pred, *Eng.G); |
| Deferred.erase(Pred); |
| |
| if (IsNew) { |
| Deferred.insert(N); |
| return N; |
| } |
| |
| return NULL; |
| } |
| |
| ExplodedNode* BranchNodeBuilder::generateNode(const GRState* State, |
| bool branch) { |
| |
| // If the branch has been marked infeasible we should not generate a node. |
| if (!isFeasible(branch)) |
| return NULL; |
| |
| bool IsNew; |
| |
| ExplodedNode* Succ = |
| Eng.G->getNode(BlockEdge(Src,branch ? DstT:DstF,Pred->getLocationContext()), |
| State, &IsNew); |
| |
| Succ->addPredecessor(Pred, *Eng.G); |
| |
| if (branch) |
| GeneratedTrue = true; |
| else |
| GeneratedFalse = true; |
| |
| if (IsNew) { |
| Deferred.push_back(Succ); |
| return Succ; |
| } |
| |
| return NULL; |
| } |
| |
| BranchNodeBuilder::~BranchNodeBuilder() { |
| if (!GeneratedTrue) generateNode(Pred->State, true); |
| if (!GeneratedFalse) generateNode(Pred->State, false); |
| |
| for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I) |
| if (!(*I)->isSink()) Eng.WList->Enqueue(*I); |
| } |
| |
| |
| ExplodedNode* |
| IndirectGotoNodeBuilder::generateNode(const iterator& I, const GRState* St, |
| bool isSink) { |
| bool IsNew; |
| |
| ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(), |
| Pred->getLocationContext()), St, &IsNew); |
| |
| Succ->addPredecessor(Pred, *Eng.G); |
| |
| if (IsNew) { |
| |
| if (isSink) |
| Succ->markAsSink(); |
| else |
| Eng.WList->Enqueue(Succ); |
| |
| return Succ; |
| } |
| |
| return NULL; |
| } |
| |
| |
| ExplodedNode* |
| SwitchNodeBuilder::generateCaseStmtNode(const iterator& I, const GRState* St){ |
| |
| bool IsNew; |
| |
| ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(), |
| Pred->getLocationContext()), St, &IsNew); |
| Succ->addPredecessor(Pred, *Eng.G); |
| |
| if (IsNew) { |
| Eng.WList->Enqueue(Succ); |
| return Succ; |
| } |
| |
| return NULL; |
| } |
| |
| |
| ExplodedNode* |
| SwitchNodeBuilder::generateDefaultCaseNode(const GRState* St, bool isSink) { |
| |
| // Get the block for the default case. |
| assert (Src->succ_rbegin() != Src->succ_rend()); |
| CFGBlock* DefaultBlock = *Src->succ_rbegin(); |
| |
| bool IsNew; |
| |
| ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock, |
| Pred->getLocationContext()), St, &IsNew); |
| Succ->addPredecessor(Pred, *Eng.G); |
| |
| if (IsNew) { |
| if (isSink) |
| Succ->markAsSink(); |
| else |
| Eng.WList->Enqueue(Succ); |
| |
| return Succ; |
| } |
| |
| return NULL; |
| } |
| |
| EndPathNodeBuilder::~EndPathNodeBuilder() { |
| // Auto-generate an EOP node if one has not been generated. |
| if (!HasGeneratedNode) { |
| // If we are in an inlined call, generate CallExit node. |
| if (Pred->getLocationContext()->getParent()) |
| GenerateCallExitNode(Pred->State); |
| else |
| generateNode(Pred->State); |
| } |
| } |
| |
| ExplodedNode* |
| EndPathNodeBuilder::generateNode(const GRState* State, const void *tag, |
| ExplodedNode* P) { |
| HasGeneratedNode = true; |
| bool IsNew; |
| |
| ExplodedNode* Node = Eng.G->getNode(BlockEntrance(&B, |
| Pred->getLocationContext(), tag), State, &IsNew); |
| |
| Node->addPredecessor(P ? P : Pred, *Eng.G); |
| |
| if (IsNew) { |
| Eng.G->addEndOfPath(Node); |
| return Node; |
| } |
| |
| return NULL; |
| } |
| |
| void EndPathNodeBuilder::GenerateCallExitNode(const GRState *state) { |
| HasGeneratedNode = true; |
| // Create a CallExit node and enqueue it. |
| const StackFrameContext *LocCtx |
| = cast<StackFrameContext>(Pred->getLocationContext()); |
| const Stmt *CE = LocCtx->getCallSite(); |
| |
| // Use the the callee location context. |
| CallExit Loc(CE, LocCtx); |
| |
| bool isNew; |
| ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew); |
| Node->addPredecessor(Pred, *Eng.G); |
| |
| if (isNew) |
| Eng.WList->Enqueue(Node); |
| } |
| |
| |
| void CallEnterNodeBuilder::generateNode(const GRState *state) { |
| // Check if the callee is in the same translation unit. |
| if (CalleeCtx->getTranslationUnit() != |
| Pred->getLocationContext()->getTranslationUnit()) { |
| // Create a new engine. We must be careful that the new engine should not |
| // reference data structures owned by the old engine. |
| |
| AnalysisManager &OldMgr = Eng.SubEng.getAnalysisManager(); |
| |
| // Get the callee's translation unit. |
| idx::TranslationUnit *TU = CalleeCtx->getTranslationUnit(); |
| |
| // Create a new AnalysisManager with components of the callee's |
| // TranslationUnit. |
| // The Diagnostic is actually shared when we create ASTUnits from AST files. |
| AnalysisManager AMgr(TU->getASTContext(), TU->getDiagnostic(), |
| OldMgr.getLangOptions(), |
| OldMgr.getPathDiagnosticClient(), |
| OldMgr.getStoreManagerCreator(), |
| OldMgr.getConstraintManagerCreator(), |
| OldMgr.getIndexer(), |
| OldMgr.getMaxNodes(), OldMgr.getMaxVisit(), |
| OldMgr.shouldVisualizeGraphviz(), |
| OldMgr.shouldVisualizeUbigraph(), |
| OldMgr.shouldPurgeDead(), |
| OldMgr.shouldEagerlyAssume(), |
| OldMgr.shouldTrimGraph(), |
| OldMgr.shouldInlineCall(), |
| OldMgr.getAnalysisContextManager().getUseUnoptimizedCFG(), |
| OldMgr.getAnalysisContextManager().getAddImplicitDtors(), |
| OldMgr.getAnalysisContextManager().getAddInitializers()); |
| llvm::OwningPtr<TransferFuncs> TF(MakeCFRefCountTF(AMgr.getASTContext(), |
| /* GCEnabled */ false, |
| AMgr.getLangOptions())); |
| // Create the new engine. |
| ExprEngine NewEng(AMgr, TF.take()); |
| |
| // Create the new LocationContext. |
| AnalysisContext *NewAnaCtx = AMgr.getAnalysisContext(CalleeCtx->getDecl(), |
| CalleeCtx->getTranslationUnit()); |
| const StackFrameContext *OldLocCtx = CalleeCtx; |
| const StackFrameContext *NewLocCtx = AMgr.getStackFrame(NewAnaCtx, |
| OldLocCtx->getParent(), |
| OldLocCtx->getCallSite(), |
| OldLocCtx->getCallSiteBlock(), |
| OldLocCtx->getIndex()); |
| |
| // Now create an initial state for the new engine. |
| const GRState *NewState = NewEng.getStateManager().MarshalState(state, |
| NewLocCtx); |
| ExplodedNodeSet ReturnNodes; |
| NewEng.ExecuteWorkListWithInitialState(NewLocCtx, AMgr.getMaxNodes(), |
| NewState, ReturnNodes); |
| return; |
| } |
| |
| // Get the callee entry block. |
| const CFGBlock *Entry = &(CalleeCtx->getCFG()->getEntry()); |
| assert(Entry->empty()); |
| assert(Entry->succ_size() == 1); |
| |
| // Get the solitary successor. |
| const CFGBlock *SuccB = *(Entry->succ_begin()); |
| |
| // Construct an edge representing the starting location in the callee. |
| BlockEdge Loc(Entry, SuccB, CalleeCtx); |
| |
| bool isNew; |
| ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew); |
| Node->addPredecessor(const_cast<ExplodedNode*>(Pred), *Eng.G); |
| |
| if (isNew) |
| Eng.WList->Enqueue(Node); |
| } |
| |
| void CallExitNodeBuilder::generateNode(const GRState *state) { |
| // Get the callee's location context. |
| const StackFrameContext *LocCtx |
| = cast<StackFrameContext>(Pred->getLocationContext()); |
| // When exiting an implicit automatic obj dtor call, the callsite is the Stmt |
| // that triggers the dtor. |
| PostStmt Loc(LocCtx->getCallSite(), LocCtx->getParent()); |
| bool isNew; |
| ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew); |
| Node->addPredecessor(const_cast<ExplodedNode*>(Pred), *Eng.G); |
| if (isNew) |
| Eng.WList->Enqueue(Node, LocCtx->getCallSiteBlock(), |
| LocCtx->getIndex() + 1); |
| } |