| //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This is the internal per-function state used for llvm translation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H |
| #define CLANG_CODEGEN_CODEGENFUNCTION_H |
| |
| #include "CGBuilder.h" |
| #include "CGDebugInfo.h" |
| #include "CGValue.h" |
| #include "CodeGenModule.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Basic/ABI.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ValueHandle.h" |
| |
| namespace llvm { |
| class BasicBlock; |
| class LLVMContext; |
| class MDNode; |
| class Module; |
| class SwitchInst; |
| class Twine; |
| class Value; |
| class CallSite; |
| } |
| |
| namespace clang { |
| class ASTContext; |
| class BlockDecl; |
| class CXXDestructorDecl; |
| class CXXForRangeStmt; |
| class CXXTryStmt; |
| class Decl; |
| class LabelDecl; |
| class EnumConstantDecl; |
| class FunctionDecl; |
| class FunctionProtoType; |
| class LabelStmt; |
| class ObjCContainerDecl; |
| class ObjCInterfaceDecl; |
| class ObjCIvarDecl; |
| class ObjCMethodDecl; |
| class ObjCImplementationDecl; |
| class ObjCPropertyImplDecl; |
| class TargetInfo; |
| class TargetCodeGenInfo; |
| class VarDecl; |
| class ObjCForCollectionStmt; |
| class ObjCAtTryStmt; |
| class ObjCAtThrowStmt; |
| class ObjCAtSynchronizedStmt; |
| class ObjCAutoreleasePoolStmt; |
| |
| namespace CodeGen { |
| class CodeGenTypes; |
| class CGFunctionInfo; |
| class CGRecordLayout; |
| class CGBlockInfo; |
| class CGCXXABI; |
| class BlockFlags; |
| class BlockFieldFlags; |
| |
| /// The kind of evaluation to perform on values of a particular |
| /// type. Basically, is the code in CGExprScalar, CGExprComplex, or |
| /// CGExprAgg? |
| /// |
| /// TODO: should vectors maybe be split out into their own thing? |
| enum TypeEvaluationKind { |
| TEK_Scalar, |
| TEK_Complex, |
| TEK_Aggregate |
| }; |
| |
| /// A branch fixup. These are required when emitting a goto to a |
| /// label which hasn't been emitted yet. The goto is optimistically |
| /// emitted as a branch to the basic block for the label, and (if it |
| /// occurs in a scope with non-trivial cleanups) a fixup is added to |
| /// the innermost cleanup. When a (normal) cleanup is popped, any |
| /// unresolved fixups in that scope are threaded through the cleanup. |
| struct BranchFixup { |
| /// The block containing the terminator which needs to be modified |
| /// into a switch if this fixup is resolved into the current scope. |
| /// If null, LatestBranch points directly to the destination. |
| llvm::BasicBlock *OptimisticBranchBlock; |
| |
| /// The ultimate destination of the branch. |
| /// |
| /// This can be set to null to indicate that this fixup was |
| /// successfully resolved. |
| llvm::BasicBlock *Destination; |
| |
| /// The destination index value. |
| unsigned DestinationIndex; |
| |
| /// The initial branch of the fixup. |
| llvm::BranchInst *InitialBranch; |
| }; |
| |
| template <class T> struct InvariantValue { |
| typedef T type; |
| typedef T saved_type; |
| static bool needsSaving(type value) { return false; } |
| static saved_type save(CodeGenFunction &CGF, type value) { return value; } |
| static type restore(CodeGenFunction &CGF, saved_type value) { return value; } |
| }; |
| |
| /// A metaprogramming class for ensuring that a value will dominate an |
| /// arbitrary position in a function. |
| template <class T> struct DominatingValue : InvariantValue<T> {}; |
| |
| template <class T, bool mightBeInstruction = |
| llvm::is_base_of<llvm::Value, T>::value && |
| !llvm::is_base_of<llvm::Constant, T>::value && |
| !llvm::is_base_of<llvm::BasicBlock, T>::value> |
| struct DominatingPointer; |
| template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; |
| // template <class T> struct DominatingPointer<T,true> at end of file |
| |
| template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; |
| |
| enum CleanupKind { |
| EHCleanup = 0x1, |
| NormalCleanup = 0x2, |
| NormalAndEHCleanup = EHCleanup | NormalCleanup, |
| |
| InactiveCleanup = 0x4, |
| InactiveEHCleanup = EHCleanup | InactiveCleanup, |
| InactiveNormalCleanup = NormalCleanup | InactiveCleanup, |
| InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup |
| }; |
| |
| /// A stack of scopes which respond to exceptions, including cleanups |
| /// and catch blocks. |
| class EHScopeStack { |
| public: |
| /// A saved depth on the scope stack. This is necessary because |
| /// pushing scopes onto the stack invalidates iterators. |
| class stable_iterator { |
| friend class EHScopeStack; |
| |
| /// Offset from StartOfData to EndOfBuffer. |
| ptrdiff_t Size; |
| |
| stable_iterator(ptrdiff_t Size) : Size(Size) {} |
| |
| public: |
| static stable_iterator invalid() { return stable_iterator(-1); } |
| stable_iterator() : Size(-1) {} |
| |
| bool isValid() const { return Size >= 0; } |
| |
| /// Returns true if this scope encloses I. |
| /// Returns false if I is invalid. |
| /// This scope must be valid. |
| bool encloses(stable_iterator I) const { return Size <= I.Size; } |
| |
| /// Returns true if this scope strictly encloses I: that is, |
| /// if it encloses I and is not I. |
| /// Returns false is I is invalid. |
| /// This scope must be valid. |
| bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } |
| |
| friend bool operator==(stable_iterator A, stable_iterator B) { |
| return A.Size == B.Size; |
| } |
| friend bool operator!=(stable_iterator A, stable_iterator B) { |
| return A.Size != B.Size; |
| } |
| }; |
| |
| /// Information for lazily generating a cleanup. Subclasses must be |
| /// POD-like: cleanups will not be destructed, and they will be |
| /// allocated on the cleanup stack and freely copied and moved |
| /// around. |
| /// |
| /// Cleanup implementations should generally be declared in an |
| /// anonymous namespace. |
| class Cleanup { |
| // Anchor the construction vtable. |
| virtual void anchor(); |
| public: |
| /// Generation flags. |
| class Flags { |
| enum { |
| F_IsForEH = 0x1, |
| F_IsNormalCleanupKind = 0x2, |
| F_IsEHCleanupKind = 0x4 |
| }; |
| unsigned flags; |
| |
| public: |
| Flags() : flags(0) {} |
| |
| /// isForEH - true if the current emission is for an EH cleanup. |
| bool isForEHCleanup() const { return flags & F_IsForEH; } |
| bool isForNormalCleanup() const { return !isForEHCleanup(); } |
| void setIsForEHCleanup() { flags |= F_IsForEH; } |
| |
| bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } |
| void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } |
| |
| /// isEHCleanupKind - true if the cleanup was pushed as an EH |
| /// cleanup. |
| bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } |
| void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } |
| }; |
| |
| // Provide a virtual destructor to suppress a very common warning |
| // that unfortunately cannot be suppressed without this. Cleanups |
| // should not rely on this destructor ever being called. |
| virtual ~Cleanup() {} |
| |
| /// Emit the cleanup. For normal cleanups, this is run in the |
| /// same EH context as when the cleanup was pushed, i.e. the |
| /// immediately-enclosing context of the cleanup scope. For |
| /// EH cleanups, this is run in a terminate context. |
| /// |
| // \param flags cleanup kind. |
| virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; |
| }; |
| |
| /// ConditionalCleanupN stores the saved form of its N parameters, |
| /// then restores them and performs the cleanup. |
| template <class T, class A0> |
| class ConditionalCleanup1 : public Cleanup { |
| typedef typename DominatingValue<A0>::saved_type A0_saved; |
| A0_saved a0_saved; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); |
| T(a0).Emit(CGF, flags); |
| } |
| |
| public: |
| ConditionalCleanup1(A0_saved a0) |
| : a0_saved(a0) {} |
| }; |
| |
| template <class T, class A0, class A1> |
| class ConditionalCleanup2 : public Cleanup { |
| typedef typename DominatingValue<A0>::saved_type A0_saved; |
| typedef typename DominatingValue<A1>::saved_type A1_saved; |
| A0_saved a0_saved; |
| A1_saved a1_saved; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); |
| A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); |
| T(a0, a1).Emit(CGF, flags); |
| } |
| |
| public: |
| ConditionalCleanup2(A0_saved a0, A1_saved a1) |
| : a0_saved(a0), a1_saved(a1) {} |
| }; |
| |
| template <class T, class A0, class A1, class A2> |
| class ConditionalCleanup3 : public Cleanup { |
| typedef typename DominatingValue<A0>::saved_type A0_saved; |
| typedef typename DominatingValue<A1>::saved_type A1_saved; |
| typedef typename DominatingValue<A2>::saved_type A2_saved; |
| A0_saved a0_saved; |
| A1_saved a1_saved; |
| A2_saved a2_saved; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); |
| A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); |
| A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); |
| T(a0, a1, a2).Emit(CGF, flags); |
| } |
| |
| public: |
| ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) |
| : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} |
| }; |
| |
| template <class T, class A0, class A1, class A2, class A3> |
| class ConditionalCleanup4 : public Cleanup { |
| typedef typename DominatingValue<A0>::saved_type A0_saved; |
| typedef typename DominatingValue<A1>::saved_type A1_saved; |
| typedef typename DominatingValue<A2>::saved_type A2_saved; |
| typedef typename DominatingValue<A3>::saved_type A3_saved; |
| A0_saved a0_saved; |
| A1_saved a1_saved; |
| A2_saved a2_saved; |
| A3_saved a3_saved; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); |
| A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); |
| A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); |
| A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); |
| T(a0, a1, a2, a3).Emit(CGF, flags); |
| } |
| |
| public: |
| ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) |
| : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} |
| }; |
| |
| private: |
| // The implementation for this class is in CGException.h and |
| // CGException.cpp; the definition is here because it's used as a |
| // member of CodeGenFunction. |
| |
| /// The start of the scope-stack buffer, i.e. the allocated pointer |
| /// for the buffer. All of these pointers are either simultaneously |
| /// null or simultaneously valid. |
| char *StartOfBuffer; |
| |
| /// The end of the buffer. |
| char *EndOfBuffer; |
| |
| /// The first valid entry in the buffer. |
| char *StartOfData; |
| |
| /// The innermost normal cleanup on the stack. |
| stable_iterator InnermostNormalCleanup; |
| |
| /// The innermost EH scope on the stack. |
| stable_iterator InnermostEHScope; |
| |
| /// The current set of branch fixups. A branch fixup is a jump to |
| /// an as-yet unemitted label, i.e. a label for which we don't yet |
| /// know the EH stack depth. Whenever we pop a cleanup, we have |
| /// to thread all the current branch fixups through it. |
| /// |
| /// Fixups are recorded as the Use of the respective branch or |
| /// switch statement. The use points to the final destination. |
| /// When popping out of a cleanup, these uses are threaded through |
| /// the cleanup and adjusted to point to the new cleanup. |
| /// |
| /// Note that branches are allowed to jump into protected scopes |
| /// in certain situations; e.g. the following code is legal: |
| /// struct A { ~A(); }; // trivial ctor, non-trivial dtor |
| /// goto foo; |
| /// A a; |
| /// foo: |
| /// bar(); |
| SmallVector<BranchFixup, 8> BranchFixups; |
| |
| char *allocate(size_t Size); |
| |
| void *pushCleanup(CleanupKind K, size_t DataSize); |
| |
| public: |
| EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), |
| InnermostNormalCleanup(stable_end()), |
| InnermostEHScope(stable_end()) {} |
| ~EHScopeStack() { delete[] StartOfBuffer; } |
| |
| // Variadic templates would make this not terrible. |
| |
| /// Push a lazily-created cleanup on the stack. |
| template <class T> |
| void pushCleanup(CleanupKind Kind) { |
| void *Buffer = pushCleanup(Kind, sizeof(T)); |
| Cleanup *Obj = new(Buffer) T(); |
| (void) Obj; |
| } |
| |
| /// Push a lazily-created cleanup on the stack. |
| template <class T, class A0> |
| void pushCleanup(CleanupKind Kind, A0 a0) { |
| void *Buffer = pushCleanup(Kind, sizeof(T)); |
| Cleanup *Obj = new(Buffer) T(a0); |
| (void) Obj; |
| } |
| |
| /// Push a lazily-created cleanup on the stack. |
| template <class T, class A0, class A1> |
| void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { |
| void *Buffer = pushCleanup(Kind, sizeof(T)); |
| Cleanup *Obj = new(Buffer) T(a0, a1); |
| (void) Obj; |
| } |
| |
| /// Push a lazily-created cleanup on the stack. |
| template <class T, class A0, class A1, class A2> |
| void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { |
| void *Buffer = pushCleanup(Kind, sizeof(T)); |
| Cleanup *Obj = new(Buffer) T(a0, a1, a2); |
| (void) Obj; |
| } |
| |
| /// Push a lazily-created cleanup on the stack. |
| template <class T, class A0, class A1, class A2, class A3> |
| void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { |
| void *Buffer = pushCleanup(Kind, sizeof(T)); |
| Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); |
| (void) Obj; |
| } |
| |
| /// Push a lazily-created cleanup on the stack. |
| template <class T, class A0, class A1, class A2, class A3, class A4> |
| void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { |
| void *Buffer = pushCleanup(Kind, sizeof(T)); |
| Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); |
| (void) Obj; |
| } |
| |
| // Feel free to add more variants of the following: |
| |
| /// Push a cleanup with non-constant storage requirements on the |
| /// stack. The cleanup type must provide an additional static method: |
| /// static size_t getExtraSize(size_t); |
| /// The argument to this method will be the value N, which will also |
| /// be passed as the first argument to the constructor. |
| /// |
| /// The data stored in the extra storage must obey the same |
| /// restrictions as normal cleanup member data. |
| /// |
| /// The pointer returned from this method is valid until the cleanup |
| /// stack is modified. |
| template <class T, class A0, class A1, class A2> |
| T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { |
| void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); |
| return new (Buffer) T(N, a0, a1, a2); |
| } |
| |
| /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. |
| void popCleanup(); |
| |
| /// Push a set of catch handlers on the stack. The catch is |
| /// uninitialized and will need to have the given number of handlers |
| /// set on it. |
| class EHCatchScope *pushCatch(unsigned NumHandlers); |
| |
| /// Pops a catch scope off the stack. This is private to CGException.cpp. |
| void popCatch(); |
| |
| /// Push an exceptions filter on the stack. |
| class EHFilterScope *pushFilter(unsigned NumFilters); |
| |
| /// Pops an exceptions filter off the stack. |
| void popFilter(); |
| |
| /// Push a terminate handler on the stack. |
| void pushTerminate(); |
| |
| /// Pops a terminate handler off the stack. |
| void popTerminate(); |
| |
| /// Determines whether the exception-scopes stack is empty. |
| bool empty() const { return StartOfData == EndOfBuffer; } |
| |
| bool requiresLandingPad() const { |
| return InnermostEHScope != stable_end(); |
| } |
| |
| /// Determines whether there are any normal cleanups on the stack. |
| bool hasNormalCleanups() const { |
| return InnermostNormalCleanup != stable_end(); |
| } |
| |
| /// Returns the innermost normal cleanup on the stack, or |
| /// stable_end() if there are no normal cleanups. |
| stable_iterator getInnermostNormalCleanup() const { |
| return InnermostNormalCleanup; |
| } |
| stable_iterator getInnermostActiveNormalCleanup() const; |
| |
| stable_iterator getInnermostEHScope() const { |
| return InnermostEHScope; |
| } |
| |
| stable_iterator getInnermostActiveEHScope() const; |
| |
| /// An unstable reference to a scope-stack depth. Invalidated by |
| /// pushes but not pops. |
| class iterator; |
| |
| /// Returns an iterator pointing to the innermost EH scope. |
| iterator begin() const; |
| |
| /// Returns an iterator pointing to the outermost EH scope. |
| iterator end() const; |
| |
| /// Create a stable reference to the top of the EH stack. The |
| /// returned reference is valid until that scope is popped off the |
| /// stack. |
| stable_iterator stable_begin() const { |
| return stable_iterator(EndOfBuffer - StartOfData); |
| } |
| |
| /// Create a stable reference to the bottom of the EH stack. |
| static stable_iterator stable_end() { |
| return stable_iterator(0); |
| } |
| |
| /// Translates an iterator into a stable_iterator. |
| stable_iterator stabilize(iterator it) const; |
| |
| /// Turn a stable reference to a scope depth into a unstable pointer |
| /// to the EH stack. |
| iterator find(stable_iterator save) const; |
| |
| /// Removes the cleanup pointed to by the given stable_iterator. |
| void removeCleanup(stable_iterator save); |
| |
| /// Add a branch fixup to the current cleanup scope. |
| BranchFixup &addBranchFixup() { |
| assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); |
| BranchFixups.push_back(BranchFixup()); |
| return BranchFixups.back(); |
| } |
| |
| unsigned getNumBranchFixups() const { return BranchFixups.size(); } |
| BranchFixup &getBranchFixup(unsigned I) { |
| assert(I < getNumBranchFixups()); |
| return BranchFixups[I]; |
| } |
| |
| /// Pops lazily-removed fixups from the end of the list. This |
| /// should only be called by procedures which have just popped a |
| /// cleanup or resolved one or more fixups. |
| void popNullFixups(); |
| |
| /// Clears the branch-fixups list. This should only be called by |
| /// ResolveAllBranchFixups. |
| void clearFixups() { BranchFixups.clear(); } |
| }; |
| |
| /// CodeGenFunction - This class organizes the per-function state that is used |
| /// while generating LLVM code. |
| class CodeGenFunction : public CodeGenTypeCache { |
| CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; |
| void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; |
| |
| friend class CGCXXABI; |
| public: |
| /// A jump destination is an abstract label, branching to which may |
| /// require a jump out through normal cleanups. |
| struct JumpDest { |
| JumpDest() : Block(0), ScopeDepth(), Index(0) {} |
| JumpDest(llvm::BasicBlock *Block, |
| EHScopeStack::stable_iterator Depth, |
| unsigned Index) |
| : Block(Block), ScopeDepth(Depth), Index(Index) {} |
| |
| bool isValid() const { return Block != 0; } |
| llvm::BasicBlock *getBlock() const { return Block; } |
| EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } |
| unsigned getDestIndex() const { return Index; } |
| |
| private: |
| llvm::BasicBlock *Block; |
| EHScopeStack::stable_iterator ScopeDepth; |
| unsigned Index; |
| }; |
| |
| CodeGenModule &CGM; // Per-module state. |
| const TargetInfo &Target; |
| |
| typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; |
| CGBuilderTy Builder; |
| |
| /// CurFuncDecl - Holds the Decl for the current function or ObjC method. |
| /// This excludes BlockDecls. |
| const Decl *CurFuncDecl; |
| /// CurCodeDecl - This is the inner-most code context, which includes blocks. |
| const Decl *CurCodeDecl; |
| const CGFunctionInfo *CurFnInfo; |
| QualType FnRetTy; |
| llvm::Function *CurFn; |
| |
| /// CurGD - The GlobalDecl for the current function being compiled. |
| GlobalDecl CurGD; |
| |
| /// PrologueCleanupDepth - The cleanup depth enclosing all the |
| /// cleanups associated with the parameters. |
| EHScopeStack::stable_iterator PrologueCleanupDepth; |
| |
| /// ReturnBlock - Unified return block. |
| JumpDest ReturnBlock; |
| |
| /// ReturnValue - The temporary alloca to hold the return value. This is null |
| /// iff the function has no return value. |
| llvm::Value *ReturnValue; |
| |
| /// AllocaInsertPoint - This is an instruction in the entry block before which |
| /// we prefer to insert allocas. |
| llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; |
| |
| /// BoundsChecking - Emit run-time bounds checks. Higher values mean |
| /// potentially higher performance penalties. |
| unsigned char BoundsChecking; |
| |
| /// \brief Whether any type-checking sanitizers are enabled. If \c false, |
| /// calls to EmitTypeCheck can be skipped. |
| bool SanitizePerformTypeCheck; |
| |
| /// \brief Sanitizer options to use for this function. |
| const SanitizerOptions *SanOpts; |
| |
| /// In ARC, whether we should autorelease the return value. |
| bool AutoreleaseResult; |
| |
| const CodeGen::CGBlockInfo *BlockInfo; |
| llvm::Value *BlockPointer; |
| |
| llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; |
| FieldDecl *LambdaThisCaptureField; |
| |
| /// \brief A mapping from NRVO variables to the flags used to indicate |
| /// when the NRVO has been applied to this variable. |
| llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; |
| |
| EHScopeStack EHStack; |
| |
| /// i32s containing the indexes of the cleanup destinations. |
| llvm::AllocaInst *NormalCleanupDest; |
| |
| unsigned NextCleanupDestIndex; |
| |
| /// FirstBlockInfo - The head of a singly-linked-list of block layouts. |
| CGBlockInfo *FirstBlockInfo; |
| |
| /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. |
| llvm::BasicBlock *EHResumeBlock; |
| |
| /// The exception slot. All landing pads write the current exception pointer |
| /// into this alloca. |
| llvm::Value *ExceptionSlot; |
| |
| /// The selector slot. Under the MandatoryCleanup model, all landing pads |
| /// write the current selector value into this alloca. |
| llvm::AllocaInst *EHSelectorSlot; |
| |
| /// Emits a landing pad for the current EH stack. |
| llvm::BasicBlock *EmitLandingPad(); |
| |
| llvm::BasicBlock *getInvokeDestImpl(); |
| |
| template <class T> |
| typename DominatingValue<T>::saved_type saveValueInCond(T value) { |
| return DominatingValue<T>::save(*this, value); |
| } |
| |
| public: |
| /// ObjCEHValueStack - Stack of Objective-C exception values, used for |
| /// rethrows. |
| SmallVector<llvm::Value*, 8> ObjCEHValueStack; |
| |
| /// A class controlling the emission of a finally block. |
| class FinallyInfo { |
| /// Where the catchall's edge through the cleanup should go. |
| JumpDest RethrowDest; |
| |
| /// A function to call to enter the catch. |
| llvm::Constant *BeginCatchFn; |
| |
| /// An i1 variable indicating whether or not the @finally is |
| /// running for an exception. |
| llvm::AllocaInst *ForEHVar; |
| |
| /// An i8* variable into which the exception pointer to rethrow |
| /// has been saved. |
| llvm::AllocaInst *SavedExnVar; |
| |
| public: |
| void enter(CodeGenFunction &CGF, const Stmt *Finally, |
| llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, |
| llvm::Constant *rethrowFn); |
| void exit(CodeGenFunction &CGF); |
| }; |
| |
| /// pushFullExprCleanup - Push a cleanup to be run at the end of the |
| /// current full-expression. Safe against the possibility that |
| /// we're currently inside a conditionally-evaluated expression. |
| template <class T, class A0> |
| void pushFullExprCleanup(CleanupKind kind, A0 a0) { |
| // If we're not in a conditional branch, or if none of the |
| // arguments requires saving, then use the unconditional cleanup. |
| if (!isInConditionalBranch()) |
| return EHStack.pushCleanup<T>(kind, a0); |
| |
| typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); |
| |
| typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; |
| EHStack.pushCleanup<CleanupType>(kind, a0_saved); |
| initFullExprCleanup(); |
| } |
| |
| /// pushFullExprCleanup - Push a cleanup to be run at the end of the |
| /// current full-expression. Safe against the possibility that |
| /// we're currently inside a conditionally-evaluated expression. |
| template <class T, class A0, class A1> |
| void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { |
| // If we're not in a conditional branch, or if none of the |
| // arguments requires saving, then use the unconditional cleanup. |
| if (!isInConditionalBranch()) |
| return EHStack.pushCleanup<T>(kind, a0, a1); |
| |
| typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); |
| typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); |
| |
| typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; |
| EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); |
| initFullExprCleanup(); |
| } |
| |
| /// pushFullExprCleanup - Push a cleanup to be run at the end of the |
| /// current full-expression. Safe against the possibility that |
| /// we're currently inside a conditionally-evaluated expression. |
| template <class T, class A0, class A1, class A2> |
| void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { |
| // If we're not in a conditional branch, or if none of the |
| // arguments requires saving, then use the unconditional cleanup. |
| if (!isInConditionalBranch()) { |
| return EHStack.pushCleanup<T>(kind, a0, a1, a2); |
| } |
| |
| typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); |
| typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); |
| typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); |
| |
| typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; |
| EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); |
| initFullExprCleanup(); |
| } |
| |
| /// pushFullExprCleanup - Push a cleanup to be run at the end of the |
| /// current full-expression. Safe against the possibility that |
| /// we're currently inside a conditionally-evaluated expression. |
| template <class T, class A0, class A1, class A2, class A3> |
| void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { |
| // If we're not in a conditional branch, or if none of the |
| // arguments requires saving, then use the unconditional cleanup. |
| if (!isInConditionalBranch()) { |
| return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); |
| } |
| |
| typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); |
| typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); |
| typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); |
| typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); |
| |
| typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; |
| EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, |
| a2_saved, a3_saved); |
| initFullExprCleanup(); |
| } |
| |
| /// Set up the last cleaup that was pushed as a conditional |
| /// full-expression cleanup. |
| void initFullExprCleanup(); |
| |
| /// PushDestructorCleanup - Push a cleanup to call the |
| /// complete-object destructor of an object of the given type at the |
| /// given address. Does nothing if T is not a C++ class type with a |
| /// non-trivial destructor. |
| void PushDestructorCleanup(QualType T, llvm::Value *Addr); |
| |
| /// PushDestructorCleanup - Push a cleanup to call the |
| /// complete-object variant of the given destructor on the object at |
| /// the given address. |
| void PushDestructorCleanup(const CXXDestructorDecl *Dtor, |
| llvm::Value *Addr); |
| |
| /// PopCleanupBlock - Will pop the cleanup entry on the stack and |
| /// process all branch fixups. |
| void PopCleanupBlock(bool FallThroughIsBranchThrough = false); |
| |
| /// DeactivateCleanupBlock - Deactivates the given cleanup block. |
| /// The block cannot be reactivated. Pops it if it's the top of the |
| /// stack. |
| /// |
| /// \param DominatingIP - An instruction which is known to |
| /// dominate the current IP (if set) and which lies along |
| /// all paths of execution between the current IP and the |
| /// the point at which the cleanup comes into scope. |
| void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
| llvm::Instruction *DominatingIP); |
| |
| /// ActivateCleanupBlock - Activates an initially-inactive cleanup. |
| /// Cannot be used to resurrect a deactivated cleanup. |
| /// |
| /// \param DominatingIP - An instruction which is known to |
| /// dominate the current IP (if set) and which lies along |
| /// all paths of execution between the current IP and the |
| /// the point at which the cleanup comes into scope. |
| void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
| llvm::Instruction *DominatingIP); |
| |
| /// \brief Enters a new scope for capturing cleanups, all of which |
| /// will be executed once the scope is exited. |
| class RunCleanupsScope { |
| EHScopeStack::stable_iterator CleanupStackDepth; |
| bool OldDidCallStackSave; |
| protected: |
| bool PerformCleanup; |
| private: |
| |
| RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; |
| void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; |
| |
| protected: |
| CodeGenFunction& CGF; |
| |
| public: |
| /// \brief Enter a new cleanup scope. |
| explicit RunCleanupsScope(CodeGenFunction &CGF) |
| : PerformCleanup(true), CGF(CGF) |
| { |
| CleanupStackDepth = CGF.EHStack.stable_begin(); |
| OldDidCallStackSave = CGF.DidCallStackSave; |
| CGF.DidCallStackSave = false; |
| } |
| |
| /// \brief Exit this cleanup scope, emitting any accumulated |
| /// cleanups. |
| ~RunCleanupsScope() { |
| if (PerformCleanup) { |
| CGF.DidCallStackSave = OldDidCallStackSave; |
| CGF.PopCleanupBlocks(CleanupStackDepth); |
| } |
| } |
| |
| /// \brief Determine whether this scope requires any cleanups. |
| bool requiresCleanups() const { |
| return CGF.EHStack.stable_begin() != CleanupStackDepth; |
| } |
| |
| /// \brief Force the emission of cleanups now, instead of waiting |
| /// until this object is destroyed. |
| void ForceCleanup() { |
| assert(PerformCleanup && "Already forced cleanup"); |
| CGF.DidCallStackSave = OldDidCallStackSave; |
| CGF.PopCleanupBlocks(CleanupStackDepth); |
| PerformCleanup = false; |
| } |
| }; |
| |
| class LexicalScope: protected RunCleanupsScope { |
| SourceRange Range; |
| |
| LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; |
| void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; |
| |
| public: |
| /// \brief Enter a new cleanup scope. |
| explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) |
| : RunCleanupsScope(CGF), Range(Range) { |
| if (CGDebugInfo *DI = CGF.getDebugInfo()) |
| DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); |
| } |
| |
| /// \brief Exit this cleanup scope, emitting any accumulated |
| /// cleanups. |
| ~LexicalScope() { |
| if (PerformCleanup) endLexicalScope(); |
| } |
| |
| /// \brief Force the emission of cleanups now, instead of waiting |
| /// until this object is destroyed. |
| void ForceCleanup() { |
| RunCleanupsScope::ForceCleanup(); |
| endLexicalScope(); |
| } |
| |
| private: |
| void endLexicalScope() { |
| if (CGDebugInfo *DI = CGF.getDebugInfo()) |
| DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); |
| } |
| }; |
| |
| |
| /// PopCleanupBlocks - Takes the old cleanup stack size and emits |
| /// the cleanup blocks that have been added. |
| void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); |
| |
| void ResolveBranchFixups(llvm::BasicBlock *Target); |
| |
| /// The given basic block lies in the current EH scope, but may be a |
| /// target of a potentially scope-crossing jump; get a stable handle |
| /// to which we can perform this jump later. |
| JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { |
| return JumpDest(Target, |
| EHStack.getInnermostNormalCleanup(), |
| NextCleanupDestIndex++); |
| } |
| |
| /// The given basic block lies in the current EH scope, but may be a |
| /// target of a potentially scope-crossing jump; get a stable handle |
| /// to which we can perform this jump later. |
| JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { |
| return getJumpDestInCurrentScope(createBasicBlock(Name)); |
| } |
| |
| /// EmitBranchThroughCleanup - Emit a branch from the current insert |
| /// block through the normal cleanup handling code (if any) and then |
| /// on to \arg Dest. |
| void EmitBranchThroughCleanup(JumpDest Dest); |
| |
| /// isObviouslyBranchWithoutCleanups - Return true if a branch to the |
| /// specified destination obviously has no cleanups to run. 'false' is always |
| /// a conservatively correct answer for this method. |
| bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; |
| |
| /// popCatchScope - Pops the catch scope at the top of the EHScope |
| /// stack, emitting any required code (other than the catch handlers |
| /// themselves). |
| void popCatchScope(); |
| |
| llvm::BasicBlock *getEHResumeBlock(bool isCleanup); |
| llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); |
| |
| /// An object to manage conditionally-evaluated expressions. |
| class ConditionalEvaluation { |
| llvm::BasicBlock *StartBB; |
| |
| public: |
| ConditionalEvaluation(CodeGenFunction &CGF) |
| : StartBB(CGF.Builder.GetInsertBlock()) {} |
| |
| void begin(CodeGenFunction &CGF) { |
| assert(CGF.OutermostConditional != this); |
| if (!CGF.OutermostConditional) |
| CGF.OutermostConditional = this; |
| } |
| |
| void end(CodeGenFunction &CGF) { |
| assert(CGF.OutermostConditional != 0); |
| if (CGF.OutermostConditional == this) |
| CGF.OutermostConditional = 0; |
| } |
| |
| /// Returns a block which will be executed prior to each |
| /// evaluation of the conditional code. |
| llvm::BasicBlock *getStartingBlock() const { |
| return StartBB; |
| } |
| }; |
| |
| /// isInConditionalBranch - Return true if we're currently emitting |
| /// one branch or the other of a conditional expression. |
| bool isInConditionalBranch() const { return OutermostConditional != 0; } |
| |
| void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { |
| assert(isInConditionalBranch()); |
| llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); |
| new llvm::StoreInst(value, addr, &block->back()); |
| } |
| |
| /// An RAII object to record that we're evaluating a statement |
| /// expression. |
| class StmtExprEvaluation { |
| CodeGenFunction &CGF; |
| |
| /// We have to save the outermost conditional: cleanups in a |
| /// statement expression aren't conditional just because the |
| /// StmtExpr is. |
| ConditionalEvaluation *SavedOutermostConditional; |
| |
| public: |
| StmtExprEvaluation(CodeGenFunction &CGF) |
| : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { |
| CGF.OutermostConditional = 0; |
| } |
| |
| ~StmtExprEvaluation() { |
| CGF.OutermostConditional = SavedOutermostConditional; |
| CGF.EnsureInsertPoint(); |
| } |
| }; |
| |
| /// An object which temporarily prevents a value from being |
| /// destroyed by aggressive peephole optimizations that assume that |
| /// all uses of a value have been realized in the IR. |
| class PeepholeProtection { |
| llvm::Instruction *Inst; |
| friend class CodeGenFunction; |
| |
| public: |
| PeepholeProtection() : Inst(0) {} |
| }; |
| |
| /// A non-RAII class containing all the information about a bound |
| /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for |
| /// this which makes individual mappings very simple; using this |
| /// class directly is useful when you have a variable number of |
| /// opaque values or don't want the RAII functionality for some |
| /// reason. |
| class OpaqueValueMappingData { |
| const OpaqueValueExpr *OpaqueValue; |
| bool BoundLValue; |
| CodeGenFunction::PeepholeProtection Protection; |
| |
| OpaqueValueMappingData(const OpaqueValueExpr *ov, |
| bool boundLValue) |
| : OpaqueValue(ov), BoundLValue(boundLValue) {} |
| public: |
| OpaqueValueMappingData() : OpaqueValue(0) {} |
| |
| static bool shouldBindAsLValue(const Expr *expr) { |
| // gl-values should be bound as l-values for obvious reasons. |
| // Records should be bound as l-values because IR generation |
| // always keeps them in memory. Expressions of function type |
| // act exactly like l-values but are formally required to be |
| // r-values in C. |
| return expr->isGLValue() || |
| expr->getType()->isRecordType() || |
| expr->getType()->isFunctionType(); |
| } |
| |
| static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
| const OpaqueValueExpr *ov, |
| const Expr *e) { |
| if (shouldBindAsLValue(ov)) |
| return bind(CGF, ov, CGF.EmitLValue(e)); |
| return bind(CGF, ov, CGF.EmitAnyExpr(e)); |
| } |
| |
| static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
| const OpaqueValueExpr *ov, |
| const LValue &lv) { |
| assert(shouldBindAsLValue(ov)); |
| CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); |
| return OpaqueValueMappingData(ov, true); |
| } |
| |
| static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
| const OpaqueValueExpr *ov, |
| const RValue &rv) { |
| assert(!shouldBindAsLValue(ov)); |
| CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); |
| |
| OpaqueValueMappingData data(ov, false); |
| |
| // Work around an extremely aggressive peephole optimization in |
| // EmitScalarConversion which assumes that all other uses of a |
| // value are extant. |
| data.Protection = CGF.protectFromPeepholes(rv); |
| |
| return data; |
| } |
| |
| bool isValid() const { return OpaqueValue != 0; } |
| void clear() { OpaqueValue = 0; } |
| |
| void unbind(CodeGenFunction &CGF) { |
| assert(OpaqueValue && "no data to unbind!"); |
| |
| if (BoundLValue) { |
| CGF.OpaqueLValues.erase(OpaqueValue); |
| } else { |
| CGF.OpaqueRValues.erase(OpaqueValue); |
| CGF.unprotectFromPeepholes(Protection); |
| } |
| } |
| }; |
| |
| /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. |
| class OpaqueValueMapping { |
| CodeGenFunction &CGF; |
| OpaqueValueMappingData Data; |
| |
| public: |
| static bool shouldBindAsLValue(const Expr *expr) { |
| return OpaqueValueMappingData::shouldBindAsLValue(expr); |
| } |
| |
| /// Build the opaque value mapping for the given conditional |
| /// operator if it's the GNU ?: extension. This is a common |
| /// enough pattern that the convenience operator is really |
| /// helpful. |
| /// |
| OpaqueValueMapping(CodeGenFunction &CGF, |
| const AbstractConditionalOperator *op) : CGF(CGF) { |
| if (isa<ConditionalOperator>(op)) |
| // Leave Data empty. |
| return; |
| |
| const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); |
| Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), |
| e->getCommon()); |
| } |
| |
| OpaqueValueMapping(CodeGenFunction &CGF, |
| const OpaqueValueExpr *opaqueValue, |
| LValue lvalue) |
| : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { |
| } |
| |
| OpaqueValueMapping(CodeGenFunction &CGF, |
| const OpaqueValueExpr *opaqueValue, |
| RValue rvalue) |
| : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { |
| } |
| |
| void pop() { |
| Data.unbind(CGF); |
| Data.clear(); |
| } |
| |
| ~OpaqueValueMapping() { |
| if (Data.isValid()) Data.unbind(CGF); |
| } |
| }; |
| |
| /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field |
| /// number that holds the value. |
| unsigned getByRefValueLLVMField(const ValueDecl *VD) const; |
| |
| /// BuildBlockByrefAddress - Computes address location of the |
| /// variable which is declared as __block. |
| llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, |
| const VarDecl *V); |
| private: |
| CGDebugInfo *DebugInfo; |
| bool DisableDebugInfo; |
| |
| /// If the current function returns 'this', use the field to keep track of |
| /// the callee that returns 'this'. |
| llvm::Value *CalleeWithThisReturn; |
| |
| /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid |
| /// calling llvm.stacksave for multiple VLAs in the same scope. |
| bool DidCallStackSave; |
| |
| /// IndirectBranch - The first time an indirect goto is seen we create a block |
| /// with an indirect branch. Every time we see the address of a label taken, |
| /// we add the label to the indirect goto. Every subsequent indirect goto is |
| /// codegen'd as a jump to the IndirectBranch's basic block. |
| llvm::IndirectBrInst *IndirectBranch; |
| |
| /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C |
| /// decls. |
| typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; |
| DeclMapTy LocalDeclMap; |
| |
| /// LabelMap - This keeps track of the LLVM basic block for each C label. |
| llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; |
| |
| // BreakContinueStack - This keeps track of where break and continue |
| // statements should jump to. |
| struct BreakContinue { |
| BreakContinue(JumpDest Break, JumpDest Continue) |
| : BreakBlock(Break), ContinueBlock(Continue) {} |
| |
| JumpDest BreakBlock; |
| JumpDest ContinueBlock; |
| }; |
| SmallVector<BreakContinue, 8> BreakContinueStack; |
| |
| /// SwitchInsn - This is nearest current switch instruction. It is null if |
| /// current context is not in a switch. |
| llvm::SwitchInst *SwitchInsn; |
| |
| /// CaseRangeBlock - This block holds if condition check for last case |
| /// statement range in current switch instruction. |
| llvm::BasicBlock *CaseRangeBlock; |
| |
| /// OpaqueLValues - Keeps track of the current set of opaque value |
| /// expressions. |
| llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; |
| llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; |
| |
| // VLASizeMap - This keeps track of the associated size for each VLA type. |
| // We track this by the size expression rather than the type itself because |
| // in certain situations, like a const qualifier applied to an VLA typedef, |
| // multiple VLA types can share the same size expression. |
| // FIXME: Maybe this could be a stack of maps that is pushed/popped as we |
| // enter/leave scopes. |
| llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; |
| |
| /// A block containing a single 'unreachable' instruction. Created |
| /// lazily by getUnreachableBlock(). |
| llvm::BasicBlock *UnreachableBlock; |
| |
| /// CXXThisDecl - When generating code for a C++ member function, |
| /// this will hold the implicit 'this' declaration. |
| ImplicitParamDecl *CXXABIThisDecl; |
| llvm::Value *CXXABIThisValue; |
| llvm::Value *CXXThisValue; |
| |
| /// CXXStructorImplicitParamDecl - When generating code for a constructor or |
| /// destructor, this will hold the implicit argument (e.g. VTT). |
| ImplicitParamDecl *CXXStructorImplicitParamDecl; |
| llvm::Value *CXXStructorImplicitParamValue; |
| |
| /// OutermostConditional - Points to the outermost active |
| /// conditional control. This is used so that we know if a |
| /// temporary should be destroyed conditionally. |
| ConditionalEvaluation *OutermostConditional; |
| |
| |
| /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM |
| /// type as well as the field number that contains the actual data. |
| llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, |
| unsigned> > ByRefValueInfo; |
| |
| llvm::BasicBlock *TerminateLandingPad; |
| llvm::BasicBlock *TerminateHandler; |
| llvm::BasicBlock *TrapBB; |
| |
| /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. |
| /// In the kernel metadata node, reference the kernel function and metadata |
| /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): |
| /// - A node for the vec_type_hint(<type>) qualifier contains string |
| /// "vec_type_hint", an undefined value of the <type> data type, |
| /// and a Boolean that is true if the <type> is integer and signed. |
| /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string |
| /// "work_group_size_hint", and three 32-bit integers X, Y and Z. |
| /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string |
| /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. |
| void EmitOpenCLKernelMetadata(const FunctionDecl *FD, |
| llvm::Function *Fn); |
| |
| public: |
| CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); |
| ~CodeGenFunction(); |
| |
| CodeGenTypes &getTypes() const { return CGM.getTypes(); } |
| ASTContext &getContext() const { return CGM.getContext(); } |
| /// Returns true if DebugInfo is actually initialized. |
| bool maybeInitializeDebugInfo() { |
| if (CGM.getModuleDebugInfo()) { |
| DebugInfo = CGM.getModuleDebugInfo(); |
| return true; |
| } |
| return false; |
| } |
| CGDebugInfo *getDebugInfo() { |
| if (DisableDebugInfo) |
| return NULL; |
| return DebugInfo; |
| } |
| void disableDebugInfo() { DisableDebugInfo = true; } |
| void enableDebugInfo() { DisableDebugInfo = false; } |
| |
| bool shouldUseFusedARCCalls() { |
| return CGM.getCodeGenOpts().OptimizationLevel == 0; |
| } |
| |
| const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } |
| |
| /// Returns a pointer to the function's exception object and selector slot, |
| /// which is assigned in every landing pad. |
| llvm::Value *getExceptionSlot(); |
| llvm::Value *getEHSelectorSlot(); |
| |
| /// Returns the contents of the function's exception object and selector |
| /// slots. |
| llvm::Value *getExceptionFromSlot(); |
| llvm::Value *getSelectorFromSlot(); |
| |
| llvm::Value *getNormalCleanupDestSlot(); |
| |
| llvm::BasicBlock *getUnreachableBlock() { |
| if (!UnreachableBlock) { |
| UnreachableBlock = createBasicBlock("unreachable"); |
| new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); |
| } |
| return UnreachableBlock; |
| } |
| |
| llvm::BasicBlock *getInvokeDest() { |
| if (!EHStack.requiresLandingPad()) return 0; |
| return getInvokeDestImpl(); |
| } |
| |
| llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } |
| |
| //===--------------------------------------------------------------------===// |
| // Cleanups |
| //===--------------------------------------------------------------------===// |
| |
| typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); |
| |
| void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, |
| llvm::Value *arrayEndPointer, |
| QualType elementType, |
| Destroyer *destroyer); |
| void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, |
| llvm::Value *arrayEnd, |
| QualType elementType, |
| Destroyer *destroyer); |
| |
| void pushDestroy(QualType::DestructionKind dtorKind, |
| llvm::Value *addr, QualType type); |
| void pushEHDestroy(QualType::DestructionKind dtorKind, |
| llvm::Value *addr, QualType type); |
| void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, |
| Destroyer *destroyer, bool useEHCleanupForArray); |
| void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, |
| bool useEHCleanupForArray); |
| llvm::Function *generateDestroyHelper(llvm::Constant *addr, |
| QualType type, |
| Destroyer *destroyer, |
| bool useEHCleanupForArray); |
| void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, |
| QualType type, Destroyer *destroyer, |
| bool checkZeroLength, bool useEHCleanup); |
| |
| Destroyer *getDestroyer(QualType::DestructionKind destructionKind); |
| |
| /// Determines whether an EH cleanup is required to destroy a type |
| /// with the given destruction kind. |
| bool needsEHCleanup(QualType::DestructionKind kind) { |
| switch (kind) { |
| case QualType::DK_none: |
| return false; |
| case QualType::DK_cxx_destructor: |
| case QualType::DK_objc_weak_lifetime: |
| return getLangOpts().Exceptions; |
| case QualType::DK_objc_strong_lifetime: |
| return getLangOpts().Exceptions && |
| CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; |
| } |
| llvm_unreachable("bad destruction kind"); |
| } |
| |
| CleanupKind getCleanupKind(QualType::DestructionKind kind) { |
| return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Objective-C |
| //===--------------------------------------------------------------------===// |
| |
| void GenerateObjCMethod(const ObjCMethodDecl *OMD); |
| |
| void StartObjCMethod(const ObjCMethodDecl *MD, |
| const ObjCContainerDecl *CD, |
| SourceLocation StartLoc); |
| |
| /// GenerateObjCGetter - Synthesize an Objective-C property getter function. |
| void GenerateObjCGetter(ObjCImplementationDecl *IMP, |
| const ObjCPropertyImplDecl *PID); |
| void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, |
| const ObjCPropertyImplDecl *propImpl, |
| const ObjCMethodDecl *GetterMothodDecl, |
| llvm::Constant *AtomicHelperFn); |
| |
| void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, |
| ObjCMethodDecl *MD, bool ctor); |
| |
| /// GenerateObjCSetter - Synthesize an Objective-C property setter function |
| /// for the given property. |
| void GenerateObjCSetter(ObjCImplementationDecl *IMP, |
| const ObjCPropertyImplDecl *PID); |
| void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, |
| const ObjCPropertyImplDecl *propImpl, |
| llvm::Constant *AtomicHelperFn); |
| bool IndirectObjCSetterArg(const CGFunctionInfo &FI); |
| bool IvarTypeWithAggrGCObjects(QualType Ty); |
| |
| //===--------------------------------------------------------------------===// |
| // Block Bits |
| //===--------------------------------------------------------------------===// |
| |
| llvm::Value *EmitBlockLiteral(const BlockExpr *); |
| llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); |
| static void destroyBlockInfos(CGBlockInfo *info); |
| llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, |
| const CGBlockInfo &Info, |
| llvm::StructType *, |
| llvm::Constant *BlockVarLayout); |
| |
| llvm::Function *GenerateBlockFunction(GlobalDecl GD, |
| const CGBlockInfo &Info, |
| const Decl *OuterFuncDecl, |
| const DeclMapTy &ldm, |
| bool IsLambdaConversionToBlock); |
| |
| llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); |
| llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); |
| llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( |
| const ObjCPropertyImplDecl *PID); |
| llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( |
| const ObjCPropertyImplDecl *PID); |
| llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); |
| |
| void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); |
| |
| class AutoVarEmission; |
| |
| void emitByrefStructureInit(const AutoVarEmission &emission); |
| void enterByrefCleanup(const AutoVarEmission &emission); |
| |
| llvm::Value *LoadBlockStruct() { |
| assert(BlockPointer && "no block pointer set!"); |
| return BlockPointer; |
| } |
| |
| void AllocateBlockCXXThisPointer(const CXXThisExpr *E); |
| void AllocateBlockDecl(const DeclRefExpr *E); |
| llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); |
| llvm::Type *BuildByRefType(const VarDecl *var); |
| |
| void GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
| const CGFunctionInfo &FnInfo); |
| void StartFunction(GlobalDecl GD, QualType RetTy, |
| llvm::Function *Fn, |
| const CGFunctionInfo &FnInfo, |
| const FunctionArgList &Args, |
| SourceLocation StartLoc); |
| |
| void EmitConstructorBody(FunctionArgList &Args); |
| void EmitDestructorBody(FunctionArgList &Args); |
| void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); |
| void EmitFunctionBody(FunctionArgList &Args); |
| |
| void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, |
| CallArgList &CallArgs); |
| void EmitLambdaToBlockPointerBody(FunctionArgList &Args); |
| void EmitLambdaBlockInvokeBody(); |
| void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); |
| void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); |
| |
| /// EmitReturnBlock - Emit the unified return block, trying to avoid its |
| /// emission when possible. |
| void EmitReturnBlock(); |
| |
| /// FinishFunction - Complete IR generation of the current function. It is |
| /// legal to call this function even if there is no current insertion point. |
| void FinishFunction(SourceLocation EndLoc=SourceLocation()); |
| |
| /// GenerateThunk - Generate a thunk for the given method. |
| void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, |
| GlobalDecl GD, const ThunkInfo &Thunk); |
| |
| void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, |
| GlobalDecl GD, const ThunkInfo &Thunk); |
| |
| void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, |
| FunctionArgList &Args); |
| |
| void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, |
| ArrayRef<VarDecl *> ArrayIndexes); |
| |
| /// InitializeVTablePointer - Initialize the vtable pointer of the given |
| /// subobject. |
| /// |
| void InitializeVTablePointer(BaseSubobject Base, |
| const CXXRecordDecl *NearestVBase, |
| CharUnits OffsetFromNearestVBase, |
| llvm::Constant *VTable, |
| const CXXRecordDecl *VTableClass); |
| |
| typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; |
| void InitializeVTablePointers(BaseSubobject Base, |
| const CXXRecordDecl *NearestVBase, |
| CharUnits OffsetFromNearestVBase, |
| bool BaseIsNonVirtualPrimaryBase, |
| llvm::Constant *VTable, |
| const CXXRecordDecl *VTableClass, |
| VisitedVirtualBasesSetTy& VBases); |
| |
| void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); |
| |
| /// GetVTablePtr - Return the Value of the vtable pointer member pointed |
| /// to by This. |
| llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); |
| |
| /// EnterDtorCleanups - Enter the cleanups necessary to complete the |
| /// given phase of destruction for a destructor. The end result |
| /// should call destructors on members and base classes in reverse |
| /// order of their construction. |
| void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); |
| |
| /// ShouldInstrumentFunction - Return true if the current function should be |
| /// instrumented with __cyg_profile_func_* calls |
| bool ShouldInstrumentFunction(); |
| |
| /// EmitFunctionInstrumentation - Emit LLVM code to call the specified |
| /// instrumentation function with the current function and the call site, if |
| /// function instrumentation is enabled. |
| void EmitFunctionInstrumentation(const char *Fn); |
| |
| /// EmitMCountInstrumentation - Emit call to .mcount. |
| void EmitMCountInstrumentation(); |
| |
| /// EmitFunctionProlog - Emit the target specific LLVM code to load the |
| /// arguments for the given function. This is also responsible for naming the |
| /// LLVM function arguments. |
| void EmitFunctionProlog(const CGFunctionInfo &FI, |
| llvm::Function *Fn, |
| const FunctionArgList &Args); |
| |
| /// EmitFunctionEpilog - Emit the target specific LLVM code to return the |
| /// given temporary. |
| void EmitFunctionEpilog(const CGFunctionInfo &FI); |
| |
| /// EmitStartEHSpec - Emit the start of the exception spec. |
| void EmitStartEHSpec(const Decl *D); |
| |
| /// EmitEndEHSpec - Emit the end of the exception spec. |
| void EmitEndEHSpec(const Decl *D); |
| |
| /// getTerminateLandingPad - Return a landing pad that just calls terminate. |
| llvm::BasicBlock *getTerminateLandingPad(); |
| |
| /// getTerminateHandler - Return a handler (not a landing pad, just |
| /// a catch handler) that just calls terminate. This is used when |
| /// a terminate scope encloses a try. |
| llvm::BasicBlock *getTerminateHandler(); |
| |
| llvm::Type *ConvertTypeForMem(QualType T); |
| llvm::Type *ConvertType(QualType T); |
| llvm::Type *ConvertType(const TypeDecl *T) { |
| return ConvertType(getContext().getTypeDeclType(T)); |
| } |
| |
| /// LoadObjCSelf - Load the value of self. This function is only valid while |
| /// generating code for an Objective-C method. |
| llvm::Value *LoadObjCSelf(); |
| |
| /// TypeOfSelfObject - Return type of object that this self represents. |
| QualType TypeOfSelfObject(); |
| |
| /// hasAggregateLLVMType - Return true if the specified AST type will map into |
| /// an aggregate LLVM type or is void. |
| static TypeEvaluationKind getEvaluationKind(QualType T); |
| |
| static bool hasScalarEvaluationKind(QualType T) { |
| return getEvaluationKind(T) == TEK_Scalar; |
| } |
| |
| static bool hasAggregateEvaluationKind(QualType T) { |
| return getEvaluationKind(T) == TEK_Aggregate; |
| } |
| |
| /// createBasicBlock - Create an LLVM basic block. |
| llvm::BasicBlock *createBasicBlock(const Twine &name = "", |
| llvm::Function *parent = 0, |
| llvm::BasicBlock *before = 0) { |
| #ifdef NDEBUG |
| return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); |
| #else |
| return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); |
| #endif |
| } |
| |
| /// getBasicBlockForLabel - Return the LLVM basicblock that the specified |
| /// label maps to. |
| JumpDest getJumpDestForLabel(const LabelDecl *S); |
| |
| /// SimplifyForwardingBlocks - If the given basic block is only a branch to |
| /// another basic block, simplify it. This assumes that no other code could |
| /// potentially reference the basic block. |
| void SimplifyForwardingBlocks(llvm::BasicBlock *BB); |
| |
| /// EmitBlock - Emit the given block \arg BB and set it as the insert point, |
| /// adding a fall-through branch from the current insert block if |
| /// necessary. It is legal to call this function even if there is no current |
| /// insertion point. |
| /// |
| /// IsFinished - If true, indicates that the caller has finished emitting |
| /// branches to the given block and does not expect to emit code into it. This |
| /// means the block can be ignored if it is unreachable. |
| void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); |
| |
| /// EmitBlockAfterUses - Emit the given block somewhere hopefully |
| /// near its uses, and leave the insertion point in it. |
| void EmitBlockAfterUses(llvm::BasicBlock *BB); |
| |
| /// EmitBranch - Emit a branch to the specified basic block from the current |
| /// insert block, taking care to avoid creation of branches from dummy |
| /// blocks. It is legal to call this function even if there is no current |
| /// insertion point. |
| /// |
| /// This function clears the current insertion point. The caller should follow |
| /// calls to this function with calls to Emit*Block prior to generation new |
| /// code. |
| void EmitBranch(llvm::BasicBlock *Block); |
| |
| /// HaveInsertPoint - True if an insertion point is defined. If not, this |
| /// indicates that the current code being emitted is unreachable. |
| bool HaveInsertPoint() const { |
| return Builder.GetInsertBlock() != 0; |
| } |
| |
| /// EnsureInsertPoint - Ensure that an insertion point is defined so that |
| /// emitted IR has a place to go. Note that by definition, if this function |
| /// creates a block then that block is unreachable; callers may do better to |
| /// detect when no insertion point is defined and simply skip IR generation. |
| void EnsureInsertPoint() { |
| if (!HaveInsertPoint()) |
| EmitBlock(createBasicBlock()); |
| } |
| |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the |
| /// specified stmt yet. |
| void ErrorUnsupported(const Stmt *S, const char *Type, |
| bool OmitOnError=false); |
| |
| //===--------------------------------------------------------------------===// |
| // Helpers |
| //===--------------------------------------------------------------------===// |
| |
| LValue MakeAddrLValue(llvm::Value *V, QualType T, |
| CharUnits Alignment = CharUnits()) { |
| return LValue::MakeAddr(V, T, Alignment, getContext(), |
| CGM.getTBAAInfo(T)); |
| } |
| |
| LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { |
| CharUnits Alignment; |
| if (!T->isIncompleteType()) |
| Alignment = getContext().getTypeAlignInChars(T); |
| return LValue::MakeAddr(V, T, Alignment, getContext(), |
| CGM.getTBAAInfo(T)); |
| } |
| |
| /// CreateTempAlloca - This creates a alloca and inserts it into the entry |
| /// block. The caller is responsible for setting an appropriate alignment on |
| /// the alloca. |
| llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, |
| const Twine &Name = "tmp"); |
| |
| /// InitTempAlloca - Provide an initial value for the given alloca. |
| void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); |
| |
| /// CreateIRTemp - Create a temporary IR object of the given type, with |
| /// appropriate alignment. This routine should only be used when an temporary |
| /// value needs to be stored into an alloca (for example, to avoid explicit |
| /// PHI construction), but the type is the IR type, not the type appropriate |
| /// for storing in memory. |
| llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); |
| |
| /// CreateMemTemp - Create a temporary memory object of the given type, with |
| /// appropriate alignment. |
| llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); |
| |
| /// CreateAggTemp - Create a temporary memory object for the given |
| /// aggregate type. |
| AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { |
| CharUnits Alignment = getContext().getTypeAlignInChars(T); |
| return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, |
| T.getQualifiers(), |
| AggValueSlot::IsNotDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased); |
| } |
| |
| /// Emit a cast to void* in the appropriate address space. |
| llvm::Value *EmitCastToVoidPtr(llvm::Value *value); |
| |
| /// EvaluateExprAsBool - Perform the usual unary conversions on the specified |
| /// expression and compare the result against zero, returning an Int1Ty value. |
| llvm::Value *EvaluateExprAsBool(const Expr *E); |
| |
| /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. |
| void EmitIgnoredExpr(const Expr *E); |
| |
| /// EmitAnyExpr - Emit code to compute the specified expression which can have |
| /// any type. The result is returned as an RValue struct. If this is an |
| /// aggregate expression, the aggloc/agglocvolatile arguments indicate where |
| /// the result should be returned. |
| /// |
| /// \param ignoreResult True if the resulting value isn't used. |
| RValue EmitAnyExpr(const Expr *E, |
| AggValueSlot aggSlot = AggValueSlot::ignored(), |
| bool ignoreResult = false); |
| |
| // EmitVAListRef - Emit a "reference" to a va_list; this is either the address |
| // or the value of the expression, depending on how va_list is defined. |
| llvm::Value *EmitVAListRef(const Expr *E); |
| |
| /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will |
| /// always be accessible even if no aggregate location is provided. |
| RValue EmitAnyExprToTemp(const Expr *E); |
| |
| /// EmitAnyExprToMem - Emits the code necessary to evaluate an |
| /// arbitrary expression into the given memory location. |
| void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, |
| Qualifiers Quals, bool IsInitializer); |
| |
| /// EmitExprAsInit - Emits the code necessary to initialize a |
| /// location in memory with the given initializer. |
| void EmitExprAsInit(const Expr *init, const ValueDecl *D, |
| LValue lvalue, bool capturedByInit); |
| |
| /// hasVolatileMember - returns true if aggregate type has a volatile |
| /// member. |
| bool hasVolatileMember(QualType T) { |
| if (const RecordType *RT = T->getAs<RecordType>()) { |
| const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); |
| return RD->hasVolatileMember(); |
| } |
| return false; |
| } |
| /// EmitAggregateCopy - Emit an aggregate assignment. |
| /// |
| /// The difference to EmitAggregateCopy is that tail padding is not copied. |
| /// This is required for correctness when assigning non-POD structures in C++. |
| void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, |
| QualType EltTy) { |
| bool IsVolatile = hasVolatileMember(EltTy); |
| EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), |
| true); |
| } |
| |
| /// EmitAggregateCopy - Emit an aggregate copy. |
| /// |
| /// \param isVolatile - True iff either the source or the destination is |
| /// volatile. |
| /// \param isAssignment - If false, allow padding to be copied. This often |
| /// yields more efficient. |
| void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, |
| QualType EltTy, bool isVolatile=false, |
| CharUnits Alignment = CharUnits::Zero(), |
| bool isAssignment = false); |
| |
| /// StartBlock - Start new block named N. If insert block is a dummy block |
| /// then reuse it. |
| void StartBlock(const char *N); |
| |
| /// GetAddrOfLocalVar - Return the address of a local variable. |
| llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { |
| llvm::Value *Res = LocalDeclMap[VD]; |
| assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); |
| return Res; |
| } |
| |
| /// getOpaqueLValueMapping - Given an opaque value expression (which |
| /// must be mapped to an l-value), return its mapping. |
| const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { |
| assert(OpaqueValueMapping::shouldBindAsLValue(e)); |
| |
| llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator |
| it = OpaqueLValues.find(e); |
| assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); |
| return it->second; |
| } |
| |
| /// getOpaqueRValueMapping - Given an opaque value expression (which |
| /// must be mapped to an r-value), return its mapping. |
| const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { |
| assert(!OpaqueValueMapping::shouldBindAsLValue(e)); |
| |
| llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator |
| it = OpaqueRValues.find(e); |
| assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); |
| return it->second; |
| } |
| |
| /// getAccessedFieldNo - Given an encoded value and a result number, return |
| /// the input field number being accessed. |
| static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); |
| |
| llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); |
| llvm::BasicBlock *GetIndirectGotoBlock(); |
| |
| /// EmitNullInitialization - Generate code to set a value of the given type to |
| /// null, If the type contains data member pointers, they will be initialized |
| /// to -1 in accordance with the Itanium C++ ABI. |
| void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); |
| |
| // EmitVAArg - Generate code to get an argument from the passed in pointer |
| // and update it accordingly. The return value is a pointer to the argument. |
| // FIXME: We should be able to get rid of this method and use the va_arg |
| // instruction in LLVM instead once it works well enough. |
| llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); |
| |
| /// emitArrayLength - Compute the length of an array, even if it's a |
| /// VLA, and drill down to the base element type. |
| llvm::Value *emitArrayLength(const ArrayType *arrayType, |
| QualType &baseType, |
| llvm::Value *&addr); |
| |
| /// EmitVLASize - Capture all the sizes for the VLA expressions in |
| /// the given variably-modified type and store them in the VLASizeMap. |
| /// |
| /// This function can be called with a null (unreachable) insert point. |
| void EmitVariablyModifiedType(QualType Ty); |
| |
| /// getVLASize - Returns an LLVM value that corresponds to the size, |
| /// in non-variably-sized elements, of a variable length array type, |
| /// plus that largest non-variably-sized element type. Assumes that |
| /// the type has already been emitted with EmitVariablyModifiedType. |
| std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); |
| std::pair<llvm::Value*,QualType> getVLASize(QualType vla); |
| |
| /// LoadCXXThis - Load the value of 'this'. This function is only valid while |
| /// generating code for an C++ member function. |
| llvm::Value *LoadCXXThis() { |
| assert(CXXThisValue && "no 'this' value for this function"); |
| return CXXThisValue; |
| } |
| |
| /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have |
| /// virtual bases. |
| // FIXME: Every place that calls LoadCXXVTT is something |
| // that needs to be abstracted properly. |
| llvm::Value *LoadCXXVTT() { |
| assert(CXXStructorImplicitParamValue && "no VTT value for this function"); |
| return CXXStructorImplicitParamValue; |
| } |
| |
| /// LoadCXXStructorImplicitParam - Load the implicit parameter |
| /// for a constructor/destructor. |
| llvm::Value *LoadCXXStructorImplicitParam() { |
| assert(CXXStructorImplicitParamValue && |
| "no implicit argument value for this function"); |
| return CXXStructorImplicitParamValue; |
| } |
| |
| /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a |
| /// complete class to the given direct base. |
| llvm::Value * |
| GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, |
| const CXXRecordDecl *Derived, |
| const CXXRecordDecl *Base, |
| bool BaseIsVirtual); |
| |
| /// GetAddressOfBaseClass - This function will add the necessary delta to the |
| /// load of 'this' and returns address of the base class. |
| llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, |
| const CXXRecordDecl *Derived, |
| CastExpr::path_const_iterator PathBegin, |
| CastExpr::path_const_iterator PathEnd, |
| bool NullCheckValue); |
| |
| llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, |
| const CXXRecordDecl *Derived, |
| CastExpr::path_const_iterator PathBegin, |
| CastExpr::path_const_iterator PathEnd, |
| bool NullCheckValue); |
| |
| llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, |
| const CXXRecordDecl *ClassDecl, |
| const CXXRecordDecl *BaseClassDecl); |
| |
| /// GetVTTParameter - Return the VTT parameter that should be passed to a |
| /// base constructor/destructor with virtual bases. |
| /// FIXME: VTTs are Itanium ABI-specific, so the definition should move |
| /// to ItaniumCXXABI.cpp together with all the references to VTT. |
| llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, |
| bool Delegating); |
| |
| void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, |
| CXXCtorType CtorType, |
| const FunctionArgList &Args); |
| // It's important not to confuse this and the previous function. Delegating |
| // constructors are the C++0x feature. The constructor delegate optimization |
| // is used to reduce duplication in the base and complete consturctors where |
| // they are substantially the same. |
| void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
| const FunctionArgList &Args); |
| void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
| bool ForVirtualBase, bool Delegating, |
| llvm::Value *This, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd); |
| |
| void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, |
| llvm::Value *This, llvm::Value *Src, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd); |
| |
| void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
| const ConstantArrayType *ArrayTy, |
| llvm::Value *ArrayPtr, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd, |
| bool ZeroInitialization = false); |
| |
| void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
| llvm::Value *NumElements, |
| llvm::Value *ArrayPtr, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd, |
| bool ZeroInitialization = false); |
| |
| static Destroyer destroyCXXObject; |
| |
| void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, |
| bool ForVirtualBase, bool Delegating, |
| llvm::Value *This); |
| |
| void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, |
| llvm::Value *NewPtr, llvm::Value *NumElements); |
| |
| void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, |
| llvm::Value *Ptr); |
| |
| llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); |
| void EmitCXXDeleteExpr(const CXXDeleteExpr *E); |
| |
| void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, |
| QualType DeleteTy); |
| |
| llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); |
| llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); |
| llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); |
| |
| void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); |
| void EmitStdInitializerListCleanup(llvm::Value *loc, |
| const InitListExpr *init); |
| |
| /// \brief Situations in which we might emit a check for the suitability of a |
| /// pointer or glvalue. |
| enum TypeCheckKind { |
| /// Checking the operand of a load. Must be suitably sized and aligned. |
| TCK_Load, |
| /// Checking the destination of a store. Must be suitably sized and aligned. |
| TCK_Store, |
| /// Checking the bound value in a reference binding. Must be suitably sized |
| /// and aligned, but is not required to refer to an object (until the |
| /// reference is used), per core issue 453. |
| TCK_ReferenceBinding, |
| /// Checking the object expression in a non-static data member access. Must |
| /// be an object within its lifetime. |
| TCK_MemberAccess, |
| /// Checking the 'this' pointer for a call to a non-static member function. |
| /// Must be an object within its lifetime. |
| TCK_MemberCall, |
| /// Checking the 'this' pointer for a constructor call. |
| TCK_ConstructorCall, |
| /// Checking the operand of a static_cast to a derived pointer type. Must be |
| /// null or an object within its lifetime. |
| TCK_DowncastPointer, |
| /// Checking the operand of a static_cast to a derived reference type. Must |
| /// be an object within its lifetime. |
| TCK_DowncastReference |
| }; |
| |
| /// \brief Emit a check that \p V is the address of storage of the |
| /// appropriate size and alignment for an object of type \p Type. |
| void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, |
| QualType Type, CharUnits Alignment = CharUnits::Zero()); |
| |
| /// \brief Emit a check that \p Base points into an array object, which |
| /// we can access at index \p Index. \p Accessed should be \c false if we |
| /// this expression is used as an lvalue, for instance in "&Arr[Idx]". |
| void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, |
| QualType IndexType, bool Accessed); |
| |
| llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
| bool isInc, bool isPre); |
| ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, |
| bool isInc, bool isPre); |
| //===--------------------------------------------------------------------===// |
| // Declaration Emission |
| //===--------------------------------------------------------------------===// |
| |
| /// EmitDecl - Emit a declaration. |
| /// |
| /// This function can be called with a null (unreachable) insert point. |
| void EmitDecl(const Decl &D); |
| |
| /// EmitVarDecl - Emit a local variable declaration. |
| /// |
| /// This function can be called with a null (unreachable) insert point. |
| void EmitVarDecl(const VarDecl &D); |
| |
| void EmitScalarInit(const Expr *init, const ValueDecl *D, |
| LValue lvalue, bool capturedByInit); |
| void EmitScalarInit(llvm::Value *init, LValue lvalue); |
| |
| typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, |
| llvm::Value *Address); |
| |
| /// EmitAutoVarDecl - Emit an auto variable declaration. |
| /// |
| /// This function can be called with a null (unreachable) insert point. |
| void EmitAutoVarDecl(const VarDecl &D); |
| |
| class AutoVarEmission { |
| friend class CodeGenFunction; |
| |
| const VarDecl *Variable; |
| |
| /// The alignment of the variable. |
| CharUnits Alignment; |
| |
| /// The address of the alloca. Null if the variable was emitted |
| /// as a global constant. |
| llvm::Value *Address; |
| |
| llvm::Value *NRVOFlag; |
| |
| /// True if the variable is a __block variable. |
| bool IsByRef; |
| |
| /// True if the variable is of aggregate type and has a constant |
| /// initializer. |
| bool IsConstantAggregate; |
| |
| struct Invalid {}; |
| AutoVarEmission(Invalid) : Variable(0) {} |
| |
| AutoVarEmission(const VarDecl &variable) |
| : Variable(&variable), Address(0), NRVOFlag(0), |
| IsByRef(false), IsConstantAggregate(false) {} |
| |
| bool wasEmittedAsGlobal() const { return Address == 0; } |
| |
| public: |
| static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } |
| |
| /// Returns the address of the object within this declaration. |
| /// Note that this does not chase the forwarding pointer for |
| /// __block decls. |
| llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { |
| if (!IsByRef) return Address; |
| |
| return CGF.Builder.CreateStructGEP(Address, |
| CGF.getByRefValueLLVMField(Variable), |
| Variable->getNameAsString()); |
| } |
| }; |
| AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); |
| void EmitAutoVarInit(const AutoVarEmission &emission); |
| void EmitAutoVarCleanups(const AutoVarEmission &emission); |
| void emitAutoVarTypeCleanup(const AutoVarEmission &emission, |
| QualType::DestructionKind dtorKind); |
| |
| void EmitStaticVarDecl(const VarDecl &D, |
| llvm::GlobalValue::LinkageTypes Linkage); |
| |
| /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. |
| void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); |
| |
| /// protectFromPeepholes - Protect a value that we're intending to |
| /// store to the side, but which will probably be used later, from |
| /// aggressive peepholing optimizations that might delete it. |
| /// |
| /// Pass the result to unprotectFromPeepholes to declare that |
| /// protection is no longer required. |
| /// |
| /// There's no particular reason why this shouldn't apply to |
| /// l-values, it's just that no existing peepholes work on pointers. |
| PeepholeProtection protectFromPeepholes(RValue rvalue); |
| void unprotectFromPeepholes(PeepholeProtection protection); |
| |
| //===--------------------------------------------------------------------===// |
| // Statement Emission |
| //===--------------------------------------------------------------------===// |
| |
| /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. |
| void EmitStopPoint(const Stmt *S); |
| |
| /// EmitStmt - Emit the code for the statement \arg S. It is legal to call |
| /// this function even if there is no current insertion point. |
| /// |
| /// This function may clear the current insertion point; callers should use |
| /// EnsureInsertPoint if they wish to subsequently generate code without first |
| /// calling EmitBlock, EmitBranch, or EmitStmt. |
| void EmitStmt(const Stmt *S); |
| |
| /// EmitSimpleStmt - Try to emit a "simple" statement which does not |
| /// necessarily require an insertion point or debug information; typically |
| /// because the statement amounts to a jump or a container of other |
| /// statements. |
| /// |
| /// \return True if the statement was handled. |
| bool EmitSimpleStmt(const Stmt *S); |
| |
| RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, |
| AggValueSlot AVS = AggValueSlot::ignored()); |
| RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S, |
| bool GetLast = false, AggValueSlot AVS = |
| AggValueSlot::ignored()); |
| |
| /// EmitLabel - Emit the block for the given label. It is legal to call this |
| /// function even if there is no current insertion point. |
| void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. |
| |
| void EmitLabelStmt(const LabelStmt &S); |
| void EmitAttributedStmt(const AttributedStmt &S); |
| void EmitGotoStmt(const GotoStmt &S); |
| void EmitIndirectGotoStmt(const IndirectGotoStmt &S); |
| void EmitIfStmt(const IfStmt &S); |
| void EmitWhileStmt(const WhileStmt &S); |
| void EmitDoStmt(const DoStmt &S); |
| void EmitForStmt(const ForStmt &S); |
| void EmitReturnStmt(const ReturnStmt &S); |
| void EmitDeclStmt(const DeclStmt &S); |
| void EmitBreakStmt(const BreakStmt &S); |
| void EmitContinueStmt(const ContinueStmt &S); |
| void EmitSwitchStmt(const SwitchStmt &S); |
| void EmitDefaultStmt(const DefaultStmt &S); |
| void EmitCaseStmt(const CaseStmt &S); |
| void EmitCaseStmtRange(const CaseStmt &S); |
| void EmitAsmStmt(const AsmStmt &S); |
| |
| void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); |
| void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); |
| void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); |
| void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); |
| void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); |
| |
| llvm::Constant *getUnwindResumeFn(); |
| llvm::Constant *getUnwindResumeOrRethrowFn(); |
| void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
| void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
| |
| void EmitCXXTryStmt(const CXXTryStmt &S); |
| void EmitCXXForRangeStmt(const CXXForRangeStmt &S); |
| |
| //===--------------------------------------------------------------------===// |
| // LValue Expression Emission |
| //===--------------------------------------------------------------------===// |
| |
| /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. |
| RValue GetUndefRValue(QualType Ty); |
| |
| /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E |
| /// and issue an ErrorUnsupported style diagnostic (using the |
| /// provided Name). |
| RValue EmitUnsupportedRValue(const Expr *E, |
| const char *Name); |
| |
| /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue |
| /// an ErrorUnsupported style diagnostic (using the provided Name). |
| LValue EmitUnsupportedLValue(const Expr *E, |
| const char *Name); |
| |
| /// EmitLValue - Emit code to compute a designator that specifies the location |
| /// of the expression. |
| /// |
| /// This can return one of two things: a simple address or a bitfield |
| /// reference. In either case, the LLVM Value* in the LValue structure is |
| /// guaranteed to be an LLVM pointer type. |
| /// |
| /// If this returns a bitfield reference, nothing about the pointee type of |
| /// the LLVM value is known: For example, it may not be a pointer to an |
| /// integer. |
| /// |
| /// If this returns a normal address, and if the lvalue's C type is fixed |
| /// size, this method guarantees that the returned pointer type will point to |
| /// an LLVM type of the same size of the lvalue's type. If the lvalue has a |
| /// variable length type, this is not possible. |
| /// |
| LValue EmitLValue(const Expr *E); |
| |
| /// \brief Same as EmitLValue but additionally we generate checking code to |
| /// guard against undefined behavior. This is only suitable when we know |
| /// that the address will be used to access the object. |
| LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); |
| |
| RValue convertTempToRValue(llvm::Value *addr, QualType type); |
| |
| void EmitAtomicInit(Expr *E, LValue lvalue); |
| |
| RValue EmitAtomicLoad(LValue lvalue, |
| AggValueSlot slot = AggValueSlot::ignored()); |
| |
| void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); |
| |
| /// EmitToMemory - Change a scalar value from its value |
| /// representation to its in-memory representation. |
| llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); |
| |
| /// EmitFromMemory - Change a scalar value from its memory |
| /// representation to its value representation. |
| llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); |
| |
| /// EmitLoadOfScalar - Load a scalar value from an address, taking |
| /// care to appropriately convert from the memory representation to |
| /// the LLVM value representation. |
| llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, |
| unsigned Alignment, QualType Ty, |
| llvm::MDNode *TBAAInfo = 0); |
| |
| /// EmitLoadOfScalar - Load a scalar value from an address, taking |
| /// care to appropriately convert from the memory representation to |
| /// the LLVM value representation. The l-value must be a simple |
| /// l-value. |
| llvm::Value *EmitLoadOfScalar(LValue lvalue); |
| |
| /// EmitStoreOfScalar - Store a scalar value to an address, taking |
| /// care to appropriately convert from the memory representation to |
| /// the LLVM value representation. |
| void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, |
| bool Volatile, unsigned Alignment, QualType Ty, |
| llvm::MDNode *TBAAInfo = 0, bool isInit=false); |
| |
| /// EmitStoreOfScalar - Store a scalar value to an address, taking |
| /// care to appropriately convert from the memory representation to |
| /// the LLVM value representation. The l-value must be a simple |
| /// l-value. The isInit flag indicates whether this is an initialization. |
| /// If so, atomic qualifiers are ignored and the store is always non-atomic. |
| void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); |
| |
| /// EmitLoadOfLValue - Given an expression that represents a value lvalue, |
| /// this method emits the address of the lvalue, then loads the result as an |
| /// rvalue, returning the rvalue. |
| RValue EmitLoadOfLValue(LValue V); |
| RValue EmitLoadOfExtVectorElementLValue(LValue V); |
| RValue EmitLoadOfBitfieldLValue(LValue LV); |
| |
| /// EmitStoreThroughLValue - Store the specified rvalue into the specified |
| /// lvalue, where both are guaranteed to the have the same type, and that type |
| /// is 'Ty'. |
| void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); |
| void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); |
| |
| /// EmitStoreThroughLValue - Store Src into Dst with same constraints as |
| /// EmitStoreThroughLValue. |
| /// |
| /// \param Result [out] - If non-null, this will be set to a Value* for the |
| /// bit-field contents after the store, appropriate for use as the result of |
| /// an assignment to the bit-field. |
| void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, |
| llvm::Value **Result=0); |
| |
| /// Emit an l-value for an assignment (simple or compound) of complex type. |
| LValue EmitComplexAssignmentLValue(const BinaryOperator *E); |
| LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); |
| |
| // Note: only available for agg return types |
| LValue EmitBinaryOperatorLValue(const BinaryOperator *E); |
| LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); |
| // Note: only available for agg return types |
| LValue EmitCallExprLValue(const CallExpr *E); |
| // Note: only available for agg return types |
| LValue EmitVAArgExprLValue(const VAArgExpr *E); |
| LValue EmitDeclRefLValue(const DeclRefExpr *E); |
| LValue EmitStringLiteralLValue(const StringLiteral *E); |
| LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); |
| LValue EmitPredefinedLValue(const PredefinedExpr *E); |
| LValue EmitUnaryOpLValue(const UnaryOperator *E); |
| LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, |
| bool Accessed = false); |
| LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); |
| LValue EmitMemberExpr(const MemberExpr *E); |
| LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); |
| LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); |
| LValue EmitInitListLValue(const InitListExpr *E); |
| LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); |
| LValue EmitCastLValue(const CastExpr *E); |
| LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); |
| LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
| LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); |
| |
| RValue EmitRValueForField(LValue LV, const FieldDecl *FD); |
| |
| class ConstantEmission { |
| llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; |
| ConstantEmission(llvm::Constant *C, bool isReference) |
| : ValueAndIsReference(C, isReference) {} |
| public: |
| ConstantEmission() {} |
| static ConstantEmission forReference(llvm::Constant *C) { |
| return ConstantEmission(C, true); |
| } |
| static ConstantEmission forValue(llvm::Constant *C) { |
| return ConstantEmission(C, false); |
| } |
| |
| operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } |
| |
| bool isReference() const { return ValueAndIsReference.getInt(); } |
| LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { |
| assert(isReference()); |
| return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), |
| refExpr->getType()); |
| } |
| |
| llvm::Constant *getValue() const { |
| assert(!isReference()); |
| return ValueAndIsReference.getPointer(); |
| } |
| }; |
| |
| ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); |
| |
| RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, |
| AggValueSlot slot = AggValueSlot::ignored()); |
| LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); |
| |
| llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, |
| const ObjCIvarDecl *Ivar); |
| LValue EmitLValueForField(LValue Base, const FieldDecl* Field); |
| |
| /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that |
| /// if the Field is a reference, this will return the address of the reference |
| /// and not the address of the value stored in the reference. |
| LValue EmitLValueForFieldInitialization(LValue Base, |
| const FieldDecl* Field); |
| |
| LValue EmitLValueForIvar(QualType ObjectTy, |
| llvm::Value* Base, const ObjCIvarDecl *Ivar, |
| unsigned CVRQualifiers); |
| |
| LValue EmitCXXConstructLValue(const CXXConstructExpr *E); |
| LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); |
| LValue EmitLambdaLValue(const LambdaExpr *E); |
| LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); |
| LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); |
| |
| LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); |
| LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); |
| LValue EmitStmtExprLValue(const StmtExpr *E); |
| LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); |
| LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); |
| void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); |
| |
| //===--------------------------------------------------------------------===// |
| // Scalar Expression Emission |
| //===--------------------------------------------------------------------===// |
| |
| /// EmitCall - Generate a call of the given function, expecting the given |
| /// result type, and using the given argument list which specifies both the |
| /// LLVM arguments and the types they were derived from. |
| /// |
| /// \param TargetDecl - If given, the decl of the function in a direct call; |
| /// used to set attributes on the call (noreturn, etc.). |
| RValue EmitCall(const CGFunctionInfo &FnInfo, |
| llvm::Value *Callee, |
| ReturnValueSlot ReturnValue, |
| const CallArgList &Args, |
| const Decl *TargetDecl = 0, |
| llvm::Instruction **callOrInvoke = 0); |
| |
| RValue EmitCall(QualType FnType, llvm::Value *Callee, |
| ReturnValueSlot ReturnValue, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd, |
| const Decl *TargetDecl = 0); |
| RValue EmitCallExpr(const CallExpr *E, |
| ReturnValueSlot ReturnValue = ReturnValueSlot()); |
| |
| llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, |
| const Twine &name = ""); |
| llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args, |
| const Twine &name = ""); |
| llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, |
| const Twine &name = ""); |
| llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args, |
| const Twine &name = ""); |
| |
| llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, |
| ArrayRef<llvm::Value *> Args, |
| const Twine &Name = ""); |
| llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, |
| const Twine &Name = ""); |
| llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args, |
| const Twine &name = ""); |
| llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, |
| const Twine &name = ""); |
| void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args); |
| |
| llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, |
| llvm::Type *Ty); |
| llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, |
| llvm::Value *This, llvm::Type *Ty); |
| llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, |
| NestedNameSpecifier *Qual, |
| llvm::Type *Ty); |
| |
| llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, |
| CXXDtorType Type, |
| const CXXRecordDecl *RD); |
| |
| RValue EmitCXXMemberCall(const CXXMethodDecl *MD, |
| SourceLocation CallLoc, |
| llvm::Value *Callee, |
| ReturnValueSlot ReturnValue, |
| llvm::Value *This, |
| llvm::Value *ImplicitParam, |
| QualType ImplicitParamTy, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd); |
| RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, |
| ReturnValueSlot ReturnValue); |
| RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, |
| ReturnValueSlot ReturnValue); |
| |
| llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, |
| const CXXMethodDecl *MD, |
| llvm::Value *This); |
| RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, |
| const CXXMethodDecl *MD, |
| ReturnValueSlot ReturnValue); |
| |
| RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, |
| ReturnValueSlot ReturnValue); |
| |
| |
| RValue EmitBuiltinExpr(const FunctionDecl *FD, |
| unsigned BuiltinID, const CallExpr *E); |
| |
| RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); |
| |
| /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call |
| /// is unhandled by the current target. |
| llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| |
| llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| llvm::Value *EmitNeonCall(llvm::Function *F, |
| SmallVectorImpl<llvm::Value*> &O, |
| const char *name, |
| unsigned shift = 0, bool rightshift = false); |
| llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); |
| llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, |
| bool negateForRightShift); |
| |
| llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); |
| llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
| |
| llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); |
| llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); |
| llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); |
| llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); |
| llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); |
| llvm::Value *EmitObjCCollectionLiteral(const Expr *E, |
| const ObjCMethodDecl *MethodWithObjects); |
| llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); |
| RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, |
| ReturnValueSlot Return = ReturnValueSlot()); |
| |
| /// Retrieves the default cleanup kind for an ARC cleanup. |
| /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. |
| CleanupKind getARCCleanupKind() { |
| return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions |
| ? NormalAndEHCleanup : NormalCleanup; |
| } |
| |
| // ARC primitives. |
| void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); |
| void EmitARCDestroyWeak(llvm::Value *addr); |
| llvm::Value *EmitARCLoadWeak(llvm::Value *addr); |
| llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); |
| llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, |
| bool ignored); |
| void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); |
| void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); |
| llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); |
| llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); |
| llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, |
| bool resultIgnored); |
| llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, |
| bool resultIgnored); |
| llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); |
| llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); |
| llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); |
| void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); |
| void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); |
| llvm::Value *EmitARCAutorelease(llvm::Value *value); |
| llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); |
| llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); |
| llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); |
| |
| std::pair<LValue,llvm::Value*> |
| EmitARCStoreAutoreleasing(const BinaryOperator *e); |
| std::pair<LValue,llvm::Value*> |
| EmitARCStoreStrong(const BinaryOperator *e, bool ignored); |
| |
| llvm::Value *EmitObjCThrowOperand(const Expr *expr); |
| |
| llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); |
| llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); |
| llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); |
| |
| llvm::Value *EmitARCExtendBlockObject(const Expr *expr); |
| llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); |
| llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); |
| |
| static Destroyer destroyARCStrongImprecise; |
| static Destroyer destroyARCStrongPrecise; |
| static Destroyer destroyARCWeak; |
| |
| void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); |
| llvm::Value *EmitObjCAutoreleasePoolPush(); |
| llvm::Value *EmitObjCMRRAutoreleasePoolPush(); |
| void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); |
| void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); |
| |
| /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in |
| /// expression. Will emit a temporary variable if E is not an LValue. |
| RValue EmitReferenceBindingToExpr(const Expr* E, |
| const NamedDecl *InitializedDecl); |
| |
| //===--------------------------------------------------------------------===// |
| // Expression Emission |
| //===--------------------------------------------------------------------===// |
| |
| // Expressions are broken into three classes: scalar, complex, aggregate. |
| |
| /// EmitScalarExpr - Emit the computation of the specified expression of LLVM |
| /// scalar type, returning the result. |
| llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); |
| |
| /// EmitScalarConversion - Emit a conversion from the specified type to the |
| /// specified destination type, both of which are LLVM scalar types. |
| llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, |
| QualType DstTy); |
| |
| /// EmitComplexToScalarConversion - Emit a conversion from the specified |
| /// complex type to the specified destination type, where the destination type |
| /// is an LLVM scalar type. |
| llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, |
| QualType DstTy); |
| |
| |
| /// EmitAggExpr - Emit the computation of the specified expression |
| /// of aggregate type. The result is computed into the given slot, |
| /// which may be null to indicate that the value is not needed. |
| void EmitAggExpr(const Expr *E, AggValueSlot AS); |
| |
| /// EmitAggExprToLValue - Emit the computation of the specified expression of |
| /// aggregate type into a temporary LValue. |
| LValue EmitAggExprToLValue(const Expr *E); |
| |
| /// EmitGCMemmoveCollectable - Emit special API for structs with object |
| /// pointers. |
| void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, |
| QualType Ty); |
| |
| /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, |
| /// make sure it survives garbage collection until this point. |
| void EmitExtendGCLifetime(llvm::Value *object); |
| |
| /// EmitComplexExpr - Emit the computation of the specified expression of |
| /// complex type, returning the result. |
| ComplexPairTy EmitComplexExpr(const Expr *E, |
| bool IgnoreReal = false, |
| bool IgnoreImag = false); |
| |
| /// EmitComplexExprIntoLValue - Emit the given expression of complex |
| /// type and place its result into the specified l-value. |
| void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); |
| |
| /// EmitStoreOfComplex - Store a complex number into the specified l-value. |
| void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); |
| |
| /// EmitLoadOfComplex - Load a complex number from the specified l-value. |
| ComplexPairTy EmitLoadOfComplex(LValue src); |
| |
| /// CreateStaticVarDecl - Create a zero-initialized LLVM global for |
| /// a static local variable. |
| llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, |
| const char *Separator, |
| llvm::GlobalValue::LinkageTypes Linkage); |
| |
| /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the |
| /// global variable that has already been created for it. If the initializer |
| /// has a different type than GV does, this may free GV and return a different |
| /// one. Otherwise it just returns GV. |
| llvm::GlobalVariable * |
| AddInitializerToStaticVarDecl(const VarDecl &D, |
| llvm::GlobalVariable *GV); |
| |
| |
| /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ |
| /// variable with global storage. |
| void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, |
| bool PerformInit); |
| |
| /// Call atexit() with a function that passes the given argument to |
| /// the given function. |
| void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); |
| |
| /// Emit code in this function to perform a guarded variable |
| /// initialization. Guarded initializations are used when it's not |
| /// possible to prove that an initialization will be done exactly |
| /// once, e.g. with a static local variable or a static data member |
| /// of a class template. |
| void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, |
| bool PerformInit); |
| |
| /// GenerateCXXGlobalInitFunc - Generates code for initializing global |
| /// variables. |
| void GenerateCXXGlobalInitFunc(llvm::Function *Fn, |
| llvm::Constant **Decls, |
| unsigned NumDecls); |
| |
| /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global |
| /// variables. |
| void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, |
| const std::vector<std::pair<llvm::WeakVH, |
| llvm::Constant*> > &DtorsAndObjects); |
| |
| void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, |
| const VarDecl *D, |
| llvm::GlobalVariable *Addr, |
| bool PerformInit); |
| |
| void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); |
| |
| void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, |
| const Expr *Exp); |
| |
| void enterFullExpression(const ExprWithCleanups *E) { |
| if (E->getNumObjects() == 0) return; |
| enterNonTrivialFullExpression(E); |
| } |
| void enterNonTrivialFullExpression(const ExprWithCleanups *E); |
| |
| void EmitCXXThrowExpr(const CXXThrowExpr *E); |
| |
| void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); |
| |
| RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); |
| |
| //===--------------------------------------------------------------------===// |
| // Annotations Emission |
| //===--------------------------------------------------------------------===// |
| |
| /// Emit an annotation call (intrinsic or builtin). |
| llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, |
| llvm::Value *AnnotatedVal, |
| StringRef AnnotationStr, |
| SourceLocation Location); |
| |
| /// Emit local annotations for the local variable V, declared by D. |
| void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); |
| |
| /// Emit field annotations for the given field & value. Returns the |
| /// annotation result. |
| llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); |
| |
| //===--------------------------------------------------------------------===// |
| // Internal Helpers |
| //===--------------------------------------------------------------------===// |
| |
| /// ContainsLabel - Return true if the statement contains a label in it. If |
| /// this statement is not executed normally, it not containing a label means |
| /// that we can just remove the code. |
| static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); |
| |
| /// containsBreak - Return true if the statement contains a break out of it. |
| /// If the statement (recursively) contains a switch or loop with a break |
| /// inside of it, this is fine. |
| static bool containsBreak(const Stmt *S); |
| |
| /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
| /// to a constant, or if it does but contains a label, return false. If it |
| /// constant folds return true and set the boolean result in Result. |
| bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); |
| |
| /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
| /// to a constant, or if it does but contains a label, return false. If it |
| /// constant folds return true and set the folded value. |
| bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); |
| |
| /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an |
| /// if statement) to the specified blocks. Based on the condition, this might |
| /// try to simplify the codegen of the conditional based on the branch. |
| void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, |
| llvm::BasicBlock *FalseBlock); |
| |
| /// \brief Emit a description of a type in a format suitable for passing to |
| /// a runtime sanitizer handler. |
| llvm::Constant *EmitCheckTypeDescriptor(QualType T); |
| |
| /// \brief Convert a value into a format suitable for passing to a runtime |
| /// sanitizer handler. |
| llvm::Value *EmitCheckValue(llvm::Value *V); |
| |
| /// \brief Emit a description of a source location in a format suitable for |
| /// passing to a runtime sanitizer handler. |
| llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); |
| |
| /// \brief Specify under what conditions this check can be recovered |
| enum CheckRecoverableKind { |
| /// Always terminate program execution if this check fails |
| CRK_Unrecoverable, |
| /// Check supports recovering, allows user to specify which |
| CRK_Recoverable, |
| /// Runtime conditionally aborts, always need to support recovery. |
| CRK_AlwaysRecoverable |
| }; |
| |
| /// \brief Create a basic block that will call a handler function in a |
| /// sanitizer runtime with the provided arguments, and create a conditional |
| /// branch to it. |
| void EmitCheck(llvm::Value *Checked, StringRef CheckName, |
| ArrayRef<llvm::Constant *> StaticArgs, |
| ArrayRef<llvm::Value *> DynamicArgs, |
| CheckRecoverableKind Recoverable); |
| |
| /// \brief Create a basic block that will call the trap intrinsic, and emit a |
| /// conditional branch to it, for the -ftrapv checks. |
| void EmitTrapCheck(llvm::Value *Checked); |
| |
| /// EmitCallArg - Emit a single call argument. |
| void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); |
| |
| /// EmitDelegateCallArg - We are performing a delegate call; that |
| /// is, the current function is delegating to another one. Produce |
| /// a r-value suitable for passing the given parameter. |
| void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); |
| |
| /// SetFPAccuracy - Set the minimum required accuracy of the given floating |
| /// point operation, expressed as the maximum relative error in ulp. |
| void SetFPAccuracy(llvm::Value *Val, float Accuracy); |
| |
| private: |
| llvm::MDNode *getRangeForLoadFromType(QualType Ty); |
| void EmitReturnOfRValue(RValue RV, QualType Ty); |
| |
| /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty |
| /// from function arguments into \arg Dst. See ABIArgInfo::Expand. |
| /// |
| /// \param AI - The first function argument of the expansion. |
| /// \return The argument following the last expanded function |
| /// argument. |
| llvm::Function::arg_iterator |
| ExpandTypeFromArgs(QualType Ty, LValue Dst, |
| llvm::Function::arg_iterator AI); |
| |
| /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg |
| /// Ty, into individual arguments on the provided vector \arg Args. See |
| /// ABIArgInfo::Expand. |
| void ExpandTypeToArgs(QualType Ty, RValue Src, |
| SmallVector<llvm::Value*, 16> &Args, |
| llvm::FunctionType *IRFuncTy); |
| |
| llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, |
| const Expr *InputExpr, std::string &ConstraintStr); |
| |
| llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, |
| LValue InputValue, QualType InputType, |
| std::string &ConstraintStr); |
| |
| /// EmitCallArgs - Emit call arguments for a function. |
| /// The CallArgTypeInfo parameter is used for iterating over the known |
| /// argument types of the function being called. |
| template<typename T> |
| void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd) { |
| CallExpr::const_arg_iterator Arg = ArgBeg; |
| |
| // First, use the argument types that the type info knows about |
| if (CallArgTypeInfo) { |
| for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), |
| E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { |
| assert(Arg != ArgEnd && "Running over edge of argument list!"); |
| QualType ArgType = *I; |
| #ifndef NDEBUG |
| QualType ActualArgType = Arg->getType(); |
| if (ArgType->isPointerType() && ActualArgType->isPointerType()) { |
| QualType ActualBaseType = |
| ActualArgType->getAs<PointerType>()->getPointeeType(); |
| QualType ArgBaseType = |
| ArgType->getAs<PointerType>()->getPointeeType(); |
| if (ArgBaseType->isVariableArrayType()) { |
| if (const VariableArrayType *VAT = |
| getContext().getAsVariableArrayType(ActualBaseType)) { |
| if (!VAT->getSizeExpr()) |
| ActualArgType = ArgType; |
| } |
| } |
| } |
| assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). |
| getTypePtr() == |
| getContext().getCanonicalType(ActualArgType).getTypePtr() && |
| "type mismatch in call argument!"); |
| #endif |
| EmitCallArg(Args, *Arg, ArgType); |
| } |
| |
| // Either we've emitted all the call args, or we have a call to a |
| // variadic function. |
| assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && |
| "Extra arguments in non-variadic function!"); |
| |
| } |
| |
| // If we still have any arguments, emit them using the type of the argument. |
| for (; Arg != ArgEnd; ++Arg) |
| EmitCallArg(Args, *Arg, Arg->getType()); |
| } |
| |
| const TargetCodeGenInfo &getTargetHooks() const { |
| return CGM.getTargetCodeGenInfo(); |
| } |
| |
| void EmitDeclMetadata(); |
| |
| CodeGenModule::ByrefHelpers * |
| buildByrefHelpers(llvm::StructType &byrefType, |
| const AutoVarEmission &emission); |
| |
| void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); |
| |
| /// GetPointeeAlignment - Given an expression with a pointer type, emit the |
| /// value and compute our best estimate of the alignment of the pointee. |
| std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); |
| }; |
| |
| /// Helper class with most of the code for saving a value for a |
| /// conditional expression cleanup. |
| struct DominatingLLVMValue { |
| typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; |
| |
| /// Answer whether the given value needs extra work to be saved. |
| static bool needsSaving(llvm::Value *value) { |
| // If it's not an instruction, we don't need to save. |
| if (!isa<llvm::Instruction>(value)) return false; |
| |
| // If it's an instruction in the entry block, we don't need to save. |
| llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); |
| return (block != &block->getParent()->getEntryBlock()); |
| } |
| |
| /// Try to save the given value. |
| static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { |
| if (!needsSaving(value)) return saved_type(value, false); |
| |
| // Otherwise we need an alloca. |
| llvm::Value *alloca = |
| CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); |
| CGF.Builder.CreateStore(value, alloca); |
| |
| return saved_type(alloca, true); |
| } |
| |
| static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { |
| if (!value.getInt()) return value.getPointer(); |
| return CGF.Builder.CreateLoad(value.getPointer()); |
| } |
| }; |
| |
| /// A partial specialization of DominatingValue for llvm::Values that |
| /// might be llvm::Instructions. |
| template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { |
| typedef T *type; |
| static type restore(CodeGenFunction &CGF, saved_type value) { |
| return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); |
| } |
| }; |
| |
| /// A specialization of DominatingValue for RValue. |
| template <> struct DominatingValue<RValue> { |
| typedef RValue type; |
| class saved_type { |
| enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, |
| AggregateAddress, ComplexAddress }; |
| |
| llvm::Value *Value; |
| Kind K; |
| saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} |
| |
| public: |
| static bool needsSaving(RValue value); |
| static saved_type save(CodeGenFunction &CGF, RValue value); |
| RValue restore(CodeGenFunction &CGF); |
| |
| // implementations in CGExprCXX.cpp |
| }; |
| |
| static bool needsSaving(type value) { |
| return saved_type::needsSaving(value); |
| } |
| static saved_type save(CodeGenFunction &CGF, type value) { |
| return saved_type::save(CGF, value); |
| } |
| static type restore(CodeGenFunction &CGF, saved_type value) { |
| return value.restore(CGF); |
| } |
| }; |
| |
| } // end namespace CodeGen |
| } // end namespace clang |
| |
| #endif |