blob: c6e28c3e61a727e4660c6e40a501816b4b6e449f [file] [log] [blame]
//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements decl-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "TargetAttributesSema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Mangle.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
using namespace sema;
/// These constants match the enumerated choices of
/// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
enum AttributeDeclKind {
ExpectedFunction,
ExpectedUnion,
ExpectedVariableOrFunction,
ExpectedFunctionOrMethod,
ExpectedParameter,
ExpectedFunctionMethodOrBlock,
ExpectedFunctionMethodOrClass,
ExpectedFunctionMethodOrParameter,
ExpectedClass,
ExpectedVariable,
ExpectedMethod,
ExpectedVariableFunctionOrLabel,
ExpectedFieldOrGlobalVar,
ExpectedStruct,
ExpectedVariableFunctionOrTag,
ExpectedTLSVar,
ExpectedVariableOrField,
ExpectedVariableFieldOrTag,
ExpectedTypeOrNamespace
};
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
static const FunctionType *getFunctionType(const Decl *D,
bool blocksToo = true) {
QualType Ty;
if (const ValueDecl *decl = dyn_cast<ValueDecl>(D))
Ty = decl->getType();
else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D))
Ty = decl->getType();
else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D))
Ty = decl->getUnderlyingType();
else
return 0;
if (Ty->isFunctionPointerType())
Ty = Ty->getAs<PointerType>()->getPointeeType();
else if (blocksToo && Ty->isBlockPointerType())
Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
return Ty->getAs<FunctionType>();
}
// FIXME: We should provide an abstraction around a method or function
// to provide the following bits of information.
/// isFunction - Return true if the given decl has function
/// type (function or function-typed variable).
static bool isFunction(const Decl *D) {
return getFunctionType(D, false) != NULL;
}
/// isFunctionOrMethod - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method.
static bool isFunctionOrMethod(const Decl *D) {
return isFunction(D) || isa<ObjCMethodDecl>(D);
}
/// isFunctionOrMethodOrBlock - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method or a block.
static bool isFunctionOrMethodOrBlock(const Decl *D) {
if (isFunctionOrMethod(D))
return true;
// check for block is more involved.
if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
QualType Ty = V->getType();
return Ty->isBlockPointerType();
}
return isa<BlockDecl>(D);
}
/// Return true if the given decl has a declarator that should have
/// been processed by Sema::GetTypeForDeclarator.
static bool hasDeclarator(const Decl *D) {
// In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
isa<ObjCPropertyDecl>(D);
}
/// hasFunctionProto - Return true if the given decl has a argument
/// information. This decl should have already passed
/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
static bool hasFunctionProto(const Decl *D) {
if (const FunctionType *FnTy = getFunctionType(D))
return isa<FunctionProtoType>(FnTy);
else {
assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D));
return true;
}
}
/// getFunctionOrMethodNumArgs - Return number of function or method
/// arguments. It is an error to call this on a K&R function (use
/// hasFunctionProto first).
static unsigned getFunctionOrMethodNumArgs(const Decl *D) {
if (const FunctionType *FnTy = getFunctionType(D))
return cast<FunctionProtoType>(FnTy)->getNumArgs();
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->getNumParams();
return cast<ObjCMethodDecl>(D)->param_size();
}
static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) {
if (const FunctionType *FnTy = getFunctionType(D))
return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->getParamDecl(Idx)->getType();
return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
}
static QualType getFunctionOrMethodResultType(const Decl *D) {
if (const FunctionType *FnTy = getFunctionType(D))
return cast<FunctionProtoType>(FnTy)->getResultType();
return cast<ObjCMethodDecl>(D)->getResultType();
}
static bool isFunctionOrMethodVariadic(const Decl *D) {
if (const FunctionType *FnTy = getFunctionType(D)) {
const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
return proto->isVariadic();
} else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->isVariadic();
else {
return cast<ObjCMethodDecl>(D)->isVariadic();
}
}
static bool isInstanceMethod(const Decl *D) {
if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
return MethodDecl->isInstance();
return false;
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
if (!PT)
return false;
ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
if (!Cls)
return false;
IdentifierInfo* ClsName = Cls->getIdentifier();
// FIXME: Should we walk the chain of classes?
return ClsName == &Ctx.Idents.get("NSString") ||
ClsName == &Ctx.Idents.get("NSMutableString");
}
static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
const PointerType *PT = T->getAs<PointerType>();
if (!PT)
return false;
const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
if (RD->getTagKind() != TTK_Struct)
return false;
return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
}
/// \brief Check if the attribute has exactly as many args as Num. May
/// output an error.
static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
unsigned int Num) {
if (Attr.getNumArgs() != Num) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Num;
return false;
}
return true;
}
/// \brief Check if the attribute has at least as many args as Num. May
/// output an error.
static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
unsigned int Num) {
if (Attr.getNumArgs() < Num) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num;
return false;
}
return true;
}
/// \brief Check if IdxExpr is a valid argument index for a function or
/// instance method D. May output an error.
///
/// \returns true if IdxExpr is a valid index.
static bool checkFunctionOrMethodArgumentIndex(Sema &S, const Decl *D,
StringRef AttrName,
SourceLocation AttrLoc,
unsigned AttrArgNum,
const Expr *IdxExpr,
uint64_t &Idx)
{
assert(isFunctionOrMethod(D) && hasFunctionProto(D));
// In C++ the implicit 'this' function parameter also counts.
// Parameters are counted from one.
const bool HasImplicitThisParam = isInstanceMethod(D);
const unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
const unsigned FirstIdx = 1;
llvm::APSInt IdxInt;
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
!IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
S.Diag(AttrLoc, diag::err_attribute_argument_n_not_int)
<< AttrName << AttrArgNum << IdxExpr->getSourceRange();
return false;
}
Idx = IdxInt.getLimitedValue();
if (Idx < FirstIdx || (!isFunctionOrMethodVariadic(D) && Idx > NumArgs)) {
S.Diag(AttrLoc, diag::err_attribute_argument_out_of_bounds)
<< AttrName << AttrArgNum << IdxExpr->getSourceRange();
return false;
}
Idx--; // Convert to zero-based.
if (HasImplicitThisParam) {
if (Idx == 0) {
S.Diag(AttrLoc,
diag::err_attribute_invalid_implicit_this_argument)
<< AttrName << IdxExpr->getSourceRange();
return false;
}
--Idx;
}
return true;
}
///
/// \brief Check if passed in Decl is a field or potentially shared global var
/// \return true if the Decl is a field or potentially shared global variable
///
static bool mayBeSharedVariable(const Decl *D) {
if (isa<FieldDecl>(D))
return true;
if (const VarDecl *vd = dyn_cast<VarDecl>(D))
return (vd->hasGlobalStorage() && !(vd->isThreadSpecified()));
return false;
}
/// \brief Check if the passed-in expression is of type int or bool.
static bool isIntOrBool(Expr *Exp) {
QualType QT = Exp->getType();
return QT->isBooleanType() || QT->isIntegerType();
}
// Check to see if the type is a smart pointer of some kind. We assume
// it's a smart pointer if it defines both operator-> and operator*.
static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
DeclContextLookupConstResult Res1 = RT->getDecl()->lookup(
S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
if (Res1.empty())
return false;
DeclContextLookupConstResult Res2 = RT->getDecl()->lookup(
S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
if (Res2.empty())
return false;
return true;
}
/// \brief Check if passed in Decl is a pointer type.
/// Note that this function may produce an error message.
/// \return true if the Decl is a pointer type; false otherwise
static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
const AttributeList &Attr) {
if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) {
QualType QT = vd->getType();
if (QT->isAnyPointerType())
return true;
if (const RecordType *RT = QT->getAs<RecordType>()) {
// If it's an incomplete type, it could be a smart pointer; skip it.
// (We don't want to force template instantiation if we can avoid it,
// since that would alter the order in which templates are instantiated.)
if (RT->isIncompleteType())
return true;
if (threadSafetyCheckIsSmartPointer(S, RT))
return true;
}
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
<< Attr.getName()->getName() << QT;
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl)
<< Attr.getName();
}
return false;
}
/// \brief Checks that the passed in QualType either is of RecordType or points
/// to RecordType. Returns the relevant RecordType, null if it does not exit.
static const RecordType *getRecordType(QualType QT) {
if (const RecordType *RT = QT->getAs<RecordType>())
return RT;
// Now check if we point to record type.
if (const PointerType *PT = QT->getAs<PointerType>())
return PT->getPointeeType()->getAs<RecordType>();
return 0;
}
static bool checkBaseClassIsLockableCallback(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *Unused) {
const RecordType *RT = Specifier->getType()->getAs<RecordType>();
if (RT->getDecl()->getAttr<LockableAttr>())
return true;
return false;
}
/// \brief Thread Safety Analysis: Checks that the passed in RecordType
/// resolves to a lockable object.
static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr,
QualType Ty) {
const RecordType *RT = getRecordType(Ty);
// Warn if could not get record type for this argument.
if (!RT) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_class)
<< Attr.getName() << Ty.getAsString();
return;
}
// Don't check for lockable if the class hasn't been defined yet.
if (RT->isIncompleteType())
return;
// Allow smart pointers to be used as lockable objects.
// FIXME -- Check the type that the smart pointer points to.
if (threadSafetyCheckIsSmartPointer(S, RT))
return;
// Check if the type is lockable.
RecordDecl *RD = RT->getDecl();
if (RD->getAttr<LockableAttr>())
return;
// Else check if any base classes are lockable.
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
CXXBasePaths BPaths(false, false);
if (CRD->lookupInBases(checkBaseClassIsLockableCallback, 0, BPaths))
return;
}
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
<< Attr.getName() << Ty.getAsString();
}
/// \brief Thread Safety Analysis: Checks that all attribute arguments, starting
/// from Sidx, resolve to a lockable object.
/// \param Sidx The attribute argument index to start checking with.
/// \param ParamIdxOk Whether an argument can be indexing into a function
/// parameter list.
static void checkAttrArgsAreLockableObjs(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVectorImpl<Expr*> &Args,
int Sidx = 0,
bool ParamIdxOk = false) {
for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
Expr *ArgExp = Attr.getArg(Idx);
if (ArgExp->isTypeDependent()) {
// FIXME -- need to check this again on template instantiation
Args.push_back(ArgExp);
continue;
}
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
if (StrLit->getLength() == 0 ||
StrLit->getString() == StringRef("*")) {
// Pass empty strings to the analyzer without warnings.
// Treat "*" as the universal lock.
Args.push_back(ArgExp);
continue;
}
// We allow constant strings to be used as a placeholder for expressions
// that are not valid C++ syntax, but warn that they are ignored.
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
Attr.getName();
Args.push_back(ArgExp);
continue;
}
QualType ArgTy = ArgExp->getType();
// A pointer to member expression of the form &MyClass::mu is treated
// specially -- we need to look at the type of the member.
if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
if (UOp->getOpcode() == UO_AddrOf)
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
if (DRE->getDecl()->isCXXInstanceMember())
ArgTy = DRE->getDecl()->getType();
// First see if we can just cast to record type, or point to record type.
const RecordType *RT = getRecordType(ArgTy);
// Now check if we index into a record type function param.
if(!RT && ParamIdxOk) {
FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
if(FD && IL) {
unsigned int NumParams = FD->getNumParams();
llvm::APInt ArgValue = IL->getValue();
uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
<< Attr.getName() << Idx + 1 << NumParams;
continue;
}
ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
}
}
checkForLockableRecord(S, D, Attr, ArgTy);
Args.push_back(ArgExp);
}
}
//===----------------------------------------------------------------------===//
// Attribute Implementations
//===----------------------------------------------------------------------===//
// FIXME: All this manual attribute parsing code is gross. At the
// least add some helper functions to check most argument patterns (#
// and types of args).
enum ThreadAttributeDeclKind {
ThreadExpectedFieldOrGlobalVar,
ThreadExpectedFunctionOrMethod,
ThreadExpectedClassOrStruct
};
static bool checkGuardedVarAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (!checkAttributeNumArgs(S, Attr, 0))
return false;
// D must be either a member field or global (potentially shared) variable.
if (!mayBeSharedVariable(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedFieldOrGlobalVar;
return false;
}
return true;
}
static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!checkGuardedVarAttrCommon(S, D, Attr))
return;
D->addAttr(::new (S.Context)
GuardedVarAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handlePtGuardedVarAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkGuardedVarAttrCommon(S, D, Attr))
return;
if (!threadSafetyCheckIsPointer(S, D, Attr))
return;
D->addAttr(::new (S.Context)
PtGuardedVarAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
Expr* &Arg) {
assert(!Attr.isInvalid());
if (!checkAttributeNumArgs(S, Attr, 1))
return false;
// D must be either a member field or global (potentially shared) variable.
if (!mayBeSharedVariable(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedFieldOrGlobalVar;
return false;
}
SmallVector<Expr*, 1> Args;
// check that all arguments are lockable objects
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
unsigned Size = Args.size();
if (Size != 1)
return false;
Arg = Args[0];
return true;
}
static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
Expr *Arg = 0;
if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
return;
D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg));
}
static void handlePtGuardedByAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
Expr *Arg = 0;
if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
return;
if (!threadSafetyCheckIsPointer(S, D, Attr))
return;
D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
S.Context, Arg));
}
static bool checkLockableAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (!checkAttributeNumArgs(S, Attr, 0))
return false;
// FIXME: Lockable structs for C code.
if (!isa<CXXRecordDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedClassOrStruct;
return false;
}
return true;
}
static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!checkLockableAttrCommon(S, D, Attr))
return;
D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context));
}
static void handleScopedLockableAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkLockableAttrCommon(S, D, Attr))
return;
D->addAttr(::new (S.Context)
ScopedLockableAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNoThreadSafetyAnalysis(Sema &S, Decl *D,
const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(),
S.Context));
}
static void handleNoSanitizeAddressAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context)
NoSanitizeAddressAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNoSanitizeMemory(Sema &S, Decl *D,
const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context) NoSanitizeMemoryAttr(Attr.getRange(),
S.Context));
}
static void handleNoSanitizeThread(Sema &S, Decl *D,
const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context) NoSanitizeThreadAttr(Attr.getRange(),
S.Context));
}
static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVector<Expr*, 1> &Args) {
assert(!Attr.isInvalid());
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return false;
// D must be either a member field or global (potentially shared) variable.
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (!VD || !mayBeSharedVariable(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedFieldOrGlobalVar;
return false;
}
// Check that this attribute only applies to lockable types.
QualType QT = VD->getType();
if (!QT->isDependentType()) {
const RecordType *RT = getRecordType(QT);
if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
<< Attr.getName();
return false;
}
}
// Check that all arguments are lockable objects.
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
if (Args.size() == 0)
return false;
return true;
}
static void handleAcquiredAfterAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
AcquiredAfterAttr(Attr.getRange(), S.Context,
StartArg, Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
AcquiredBeforeAttr(Attr.getRange(), S.Context,
StartArg, Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static bool checkLockFunAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVector<Expr*, 1> &Args) {
assert(!Attr.isInvalid());
// zero or more arguments ok
// check that the attribute is applied to a function
if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedFunctionOrMethod;
return false;
}
// check that all arguments are lockable objects
checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
return true;
}
static void handleSharedLockFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, Attr, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? 0 : &Args[0];
D->addAttr(::new (S.Context)
SharedLockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleExclusiveLockFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, Attr, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? 0 : &Args[0];
D->addAttr(::new (S.Context)
ExclusiveLockFunctionAttr(Attr.getRange(), S.Context,
StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVector<Expr*, 2> &Args) {
assert(!Attr.isInvalid());
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return false;
if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedFunctionOrMethod;
return false;
}
if (!isIntOrBool(Attr.getArg(0))) {
S.Diag(Attr.getLoc(), diag::err_attribute_first_argument_not_int_or_bool)
<< Attr.getName();
return false;
}
// check that all arguments are lockable objects
checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1);
return true;
}
static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? 0 : &Args[0];
D->addAttr(::new (S.Context)
SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
Attr.getArg(0), StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? 0 : &Args[0];
D->addAttr(::new (S.Context)
ExclusiveTrylockFunctionAttr(Attr.getRange(), S.Context,
Attr.getArg(0), StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static bool checkLocksRequiredCommon(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVector<Expr*, 1> &Args) {
assert(!Attr.isInvalid());
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return false;
if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedFunctionOrMethod;
return false;
}
// check that all arguments are lockable objects
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
if (Args.size() == 0)
return false;
return true;
}
static void handleExclusiveLocksRequiredAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLocksRequiredCommon(S, D, Attr, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
ExclusiveLocksRequiredAttr(Attr.getRange(), S.Context,
StartArg, Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleSharedLocksRequiredAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLocksRequiredCommon(S, D, Attr, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
SharedLocksRequiredAttr(Attr.getRange(), S.Context,
StartArg, Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleUnlockFunAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
assert(!Attr.isInvalid());
// zero or more arguments ok
if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedFunctionOrMethod;
return;
}
// check that all arguments are lockable objects
SmallVector<Expr*, 1> Args;
checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? 0 : &Args[0];
D->addAttr(::new (S.Context)
UnlockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleLockReturnedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (!checkAttributeNumArgs(S, Attr, 1))
return;
if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedFunctionOrMethod;
return;
}
// check that the argument is lockable object
SmallVector<Expr*, 1> Args;
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
unsigned Size = Args.size();
if (Size == 0)
return;
D->addAttr(::new (S.Context)
LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
Attr.getAttributeSpellingListIndex()));
}
static void handleLocksExcludedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
<< Attr.getName() << ThreadExpectedFunctionOrMethod;
return;
}
// check that all arguments are lockable objects
SmallVector<Expr*, 1> Args;
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
unsigned Size = Args.size();
if (Size == 0)
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr) {
TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
if (TD == 0) {
// __attribute__((ext_vector_type(N))) can only be applied to typedefs
// and type-ids.
S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
return;
}
// Remember this typedef decl, we will need it later for diagnostics.
S.ExtVectorDecls.push_back(TD);
}
static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (TagDecl *TD = dyn_cast<TagDecl>(D))
TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
// If the alignment is less than or equal to 8 bits, the packed attribute
// has no effect.
if (!FD->getType()->isDependentType() &&
!FD->getType()->isIncompleteType() &&
S.Context.getTypeAlign(FD->getType()) <= 8)
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
<< Attr.getName() << FD->getType();
else
FD->addAttr(::new (S.Context)
PackedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
}
static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (RecordDecl *RD = dyn_cast<RecordDecl>(D))
RD->addAttr(::new (S.Context)
MsStructAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
}
static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
// The IBAction attributes only apply to instance methods.
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
if (MD->isInstanceMethod()) {
D->addAttr(::new (S.Context)
IBActionAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
}
S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName();
}
static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
// The IBOutlet/IBOutletCollection attributes only apply to instance
// variables or properties of Objective-C classes. The outlet must also
// have an object reference type.
if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
<< Attr.getName() << VD->getType() << 0;
return false;
}
}
else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
<< Attr.getName() << PD->getType() << 1;
return false;
}
}
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
return false;
}
return true;
}
static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!checkIBOutletCommon(S, D, Attr))
return;
D->addAttr(::new (S.Context)
IBOutletAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleIBOutletCollection(Sema &S, Decl *D,
const AttributeList &Attr) {
// The iboutletcollection attribute can have zero or one arguments.
if (Attr.getParameterName() && Attr.getNumArgs() > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (!checkIBOutletCommon(S, D, Attr))
return;
IdentifierInfo *II = Attr.getParameterName();
if (!II)
II = &S.Context.Idents.get("NSObject");
ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(),
S.getScopeForContext(D->getDeclContext()->getParent()));
if (!TypeRep) {
S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
return;
}
QualType QT = TypeRep.get();
// Diagnose use of non-object type in iboutletcollection attribute.
// FIXME. Gnu attribute extension ignores use of builtin types in
// attributes. So, __attribute__((iboutletcollection(char))) will be
// treated as __attribute__((iboutletcollection())).
if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
return;
}
D->addAttr(::new (S.Context)
IBOutletCollectionAttr(Attr.getRange(),S.Context,
QT, Attr.getParameterLoc(),
Attr.getAttributeSpellingListIndex()));
}
static void possibleTransparentUnionPointerType(QualType &T) {
if (const RecordType *UT = T->getAsUnionType())
if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
RecordDecl *UD = UT->getDecl();
for (RecordDecl::field_iterator it = UD->field_begin(),
itend = UD->field_end(); it != itend; ++it) {
QualType QT = it->getType();
if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
T = QT;
return;
}
}
}
}
static void handleAllocSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!isFunctionOrMethod(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "alloc_size" << ExpectedFunctionOrMethod;
return;
}
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs;
if (hasFunctionProto(D))
NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
else
NumArgs = 0;
SmallVector<unsigned, 8> SizeArgs;
for (AttributeList::arg_iterator I = Attr.arg_begin(),
E = Attr.arg_end(); I!=E; ++I) {
// The argument must be an integer constant expression.
Expr *Ex = *I;
llvm::APSInt ArgNum;
if (Ex->isTypeDependent() || Ex->isValueDependent() ||
!Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "alloc_size" << Ex->getSourceRange();
return;
}
uint64_t x = ArgNum.getZExtValue();
if (x < 1 || x > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "alloc_size" << I.getArgNum() << Ex->getSourceRange();
return;
}
--x;
if (HasImplicitThisParam) {
if (x == 0) {
S.Diag(Attr.getLoc(),
diag::err_attribute_invalid_implicit_this_argument)
<< "alloc_size" << Ex->getSourceRange();
return;
}
--x;
}
// check if the function argument is of an integer type
QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
if (!T->isIntegerType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "alloc_size" << Ex->getSourceRange();
return;
}
SizeArgs.push_back(x);
}
// check if the function returns a pointer
if (!getFunctionType(D)->getResultType()->isAnyPointerType()) {
S.Diag(Attr.getLoc(), diag::warn_ns_attribute_wrong_return_type)
<< "alloc_size" << 0 /*function*/<< 1 /*pointer*/ << D->getSourceRange();
}
D->addAttr(::new (S.Context)
AllocSizeAttr(Attr.getRange(), S.Context,
SizeArgs.data(), SizeArgs.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// GCC ignores the nonnull attribute on K&R style function prototypes, so we
// ignore it as well
if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
// The nonnull attribute only applies to pointers.
SmallVector<unsigned, 10> NonNullArgs;
for (AttributeList::arg_iterator I = Attr.arg_begin(),
E = Attr.arg_end(); I != E; ++I) {
// The argument must be an integer constant expression.
Expr *Ex = *I;
llvm::APSInt ArgNum(32);
if (Ex->isTypeDependent() || Ex->isValueDependent() ||
!Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "nonnull" << Ex->getSourceRange();
return;
}
unsigned x = (unsigned) ArgNum.getZExtValue();
if (x < 1 || x > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "nonnull" << I.getArgNum() << Ex->getSourceRange();
return;
}
--x;
if (HasImplicitThisParam) {
if (x == 0) {
S.Diag(Attr.getLoc(),
diag::err_attribute_invalid_implicit_this_argument)
<< "nonnull" << Ex->getSourceRange();
return;
}
--x;
}
// Is the function argument a pointer type?
QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
possibleTransparentUnionPointerType(T);
if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
// FIXME: Should also highlight argument in decl.
S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only)
<< "nonnull" << Ex->getSourceRange();
continue;
}
NonNullArgs.push_back(x);
}
// If no arguments were specified to __attribute__((nonnull)) then all pointer
// arguments have a nonnull attribute.
if (NonNullArgs.empty()) {
for (unsigned i = 0, e = getFunctionOrMethodNumArgs(D); i != e; ++i) {
QualType T = getFunctionOrMethodArgType(D, i).getNonReferenceType();
possibleTransparentUnionPointerType(T);
if (T->isAnyPointerType() || T->isBlockPointerType())
NonNullArgs.push_back(i);
}
// No pointer arguments?
if (NonNullArgs.empty()) {
// Warn the trivial case only if attribute is not coming from a
// macro instantiation.
if (Attr.getLoc().isFileID())
S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
return;
}
}
unsigned *start = &NonNullArgs[0];
unsigned size = NonNullArgs.size();
llvm::array_pod_sort(start, start + size);
D->addAttr(::new (S.Context)
NonNullAttr(Attr.getRange(), S.Context, start, size,
Attr.getAttributeSpellingListIndex()));
}
static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
// This attribute must be applied to a function declaration.
// The first argument to the attribute must be a string,
// the name of the resource, for example "malloc".
// The following arguments must be argument indexes, the arguments must be
// of integer type for Returns, otherwise of pointer type.
// The difference between Holds and Takes is that a pointer may still be used
// after being held. free() should be __attribute((ownership_takes)), whereas
// a list append function may well be __attribute((ownership_holds)).
if (!AL.getParameterName()) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_not_string)
<< AL.getName()->getName() << 1;
return;
}
// Figure out our Kind, and check arguments while we're at it.
OwnershipAttr::OwnershipKind K;
switch (AL.getKind()) {
case AttributeList::AT_ownership_takes:
K = OwnershipAttr::Takes;
if (AL.getNumArgs() < 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
return;
}
break;
case AttributeList::AT_ownership_holds:
K = OwnershipAttr::Holds;
if (AL.getNumArgs() < 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
return;
}
break;
case AttributeList::AT_ownership_returns:
K = OwnershipAttr::Returns;
if (AL.getNumArgs() > 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
<< AL.getNumArgs() + 1;
return;
}
break;
default:
// This should never happen given how we are called.
llvm_unreachable("Unknown ownership attribute");
}
if (!isFunction(D) || !hasFunctionProto(D)) {
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL.getName() << ExpectedFunction;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
StringRef Module = AL.getParameterName()->getName();
// Normalize the argument, __foo__ becomes foo.
if (Module.startswith("__") && Module.endswith("__"))
Module = Module.substr(2, Module.size() - 4);
SmallVector<unsigned, 10> OwnershipArgs;
for (AttributeList::arg_iterator I = AL.arg_begin(), E = AL.arg_end(); I != E;
++I) {
Expr *IdxExpr = *I;
llvm::APSInt ArgNum(32);
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
|| !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_not_int)
<< AL.getName()->getName() << IdxExpr->getSourceRange();
continue;
}
unsigned x = (unsigned) ArgNum.getZExtValue();
if (x > NumArgs || x < 1) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< AL.getName()->getName() << x << IdxExpr->getSourceRange();
continue;
}
--x;
if (HasImplicitThisParam) {
if (x == 0) {
S.Diag(AL.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
<< "ownership" << IdxExpr->getSourceRange();
return;
}
--x;
}
switch (K) {
case OwnershipAttr::Takes:
case OwnershipAttr::Holds: {
// Is the function argument a pointer type?
QualType T = getFunctionOrMethodArgType(D, x);
if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
// FIXME: Should also highlight argument in decl.
S.Diag(AL.getLoc(), diag::err_ownership_type)
<< ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds")
<< "pointer"
<< IdxExpr->getSourceRange();
continue;
}
break;
}
case OwnershipAttr::Returns: {
if (AL.getNumArgs() > 1) {
// Is the function argument an integer type?
Expr *IdxExpr = AL.getArg(0);
llvm::APSInt ArgNum(32);
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
|| !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(AL.getLoc(), diag::err_ownership_type)
<< "ownership_returns" << "integer"
<< IdxExpr->getSourceRange();
return;
}
}
break;
}
} // switch
// Check we don't have a conflict with another ownership attribute.
for (specific_attr_iterator<OwnershipAttr>
i = D->specific_attr_begin<OwnershipAttr>(),
e = D->specific_attr_end<OwnershipAttr>();
i != e; ++i) {
if ((*i)->getOwnKind() != K) {
for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end();
I!=E; ++I) {
if (x == *I) {
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
<< AL.getName()->getName() << "ownership_*";
}
}
}
}
OwnershipArgs.push_back(x);
}
unsigned* start = OwnershipArgs.data();
unsigned size = OwnershipArgs.size();
llvm::array_pod_sort(start, start + size);
if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
return;
}
D->addAttr(::new (S.Context)
OwnershipAttr(AL.getLoc(), S.Context, K, Module, start, size,
AL.getAttributeSpellingListIndex()));
}
static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
NamedDecl *nd = cast<NamedDecl>(D);
// gcc rejects
// class c {
// static int a __attribute__((weakref ("v2")));
// static int b() __attribute__((weakref ("f3")));
// };
// and ignores the attributes of
// void f(void) {
// static int a __attribute__((weakref ("v2")));
// }
// we reject them
const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
if (!Ctx->isFileContext()) {
S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) <<
nd->getNameAsString();
return;
}
// The GCC manual says
//
// At present, a declaration to which `weakref' is attached can only
// be `static'.
//
// It also says
//
// Without a TARGET,
// given as an argument to `weakref' or to `alias', `weakref' is
// equivalent to `weak'.
//
// gcc 4.4.1 will accept
// int a7 __attribute__((weakref));
// as
// int a7 __attribute__((weak));
// This looks like a bug in gcc. We reject that for now. We should revisit
// it if this behaviour is actually used.
// GCC rejects
// static ((alias ("y"), weakref)).
// Should we? How to check that weakref is before or after alias?
if (Attr.getNumArgs() == 1) {
Expr *Arg = Attr.getArg(0);
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "weakref" << 1;
return;
}
// GCC will accept anything as the argument of weakref. Should we
// check for an existing decl?
D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
Str->getString()));
}
D->addAttr(::new (S.Context)
WeakRefAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *Arg = Attr.getArg(0);
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "alias" << 1;
return;
}
if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
return;
}
// FIXME: check if target symbol exists in current file
D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
Str->getString(),
Attr.getAttributeSpellingListIndex()));
}
static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D) && !isa<ObjCMethodDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context)
MinSizeAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
if (D->hasAttr<HotAttr>()) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< Attr.getName() << "hot";
return;
}
D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
if (D->hasAttr<ColdAttr>()) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< Attr.getName() << "cold";
return;
}
D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context)
NakedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleAlwaysInlineAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context)
AlwaysInlineAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleTLSModelAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *Arg = Attr.getArg(0);
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
// Check that it is a string.
if (!Str) {
S.Diag(Attr.getLoc(), diag::err_attribute_not_string) << "tls_model";
return;
}
if (!isa<VarDecl>(D) || !cast<VarDecl>(D)->isThreadSpecified()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedTLSVar;
return;
}
// Check that the value.
StringRef Model = Str->getString();
if (Model != "global-dynamic" && Model != "local-dynamic"
&& Model != "initial-exec" && Model != "local-exec") {
S.Diag(Attr.getLoc(), diag::err_attr_tlsmodel_arg);
return;
}
D->addAttr(::new (S.Context)
TLSModelAttr(Attr.getRange(), S.Context, Model,
Attr.getAttributeSpellingListIndex()));
}
static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
QualType RetTy = FD->getResultType();
if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
D->addAttr(::new (S.Context)
MallocAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
}
}
S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
}
static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
D->addAttr(::new (S.Context)
MayAliasAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (isa<VarDecl>(D))
D->addAttr(::new (S.Context)
NoCommonAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariable;
}
static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
assert(!Attr.isInvalid());
if (isa<VarDecl>(D))
D->addAttr(::new (S.Context)
CommonAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariable;
}
static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
if (hasDeclarator(D)) return;
if (S.CheckNoReturnAttr(attr)) return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context)
NoReturnAttr(attr.getRange(), S.Context,
attr.getAttributeSpellingListIndex()));
}
bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
if (attr.hasParameterOrArguments()) {
Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
attr.setInvalid();
return true;
}
return false;
}
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// The checking path for 'noreturn' and 'analyzer_noreturn' are different
// because 'analyzer_noreturn' does not impact the type.
if(!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (VD == 0 || (!VD->getType()->isBlockPointerType()
&& !VD->getType()->isFunctionPointerType())) {
S.Diag(Attr.getLoc(),
Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
: diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
}
D->addAttr(::new (S.Context)
AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleCXX11NoReturnAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// C++11 [dcl.attr.noreturn]p1:
// The attribute may be applied to the declarator-id in a function
// declaration.
FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (!FD) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context)
CXX11NoReturnAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
// PS3 PPU-specific.
static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
/*
Returning a Vector Class in Registers
According to the PPU ABI specifications, a class with a single member of
vector type is returned in memory when used as the return value of a function.
This results in inefficient code when implementing vector classes. To return
the value in a single vector register, add the vecreturn attribute to the
class definition. This attribute is also applicable to struct types.
Example:
struct Vector
{
__vector float xyzw;
} __attribute__((vecreturn));
Vector Add(Vector lhs, Vector rhs)
{
Vector result;
result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
return result; // This will be returned in a register
}
*/
if (!isa<RecordDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedClass;
return;
}
if (D->getAttr<VecReturnAttr>()) {
S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn";
return;
}
RecordDecl *record = cast<RecordDecl>(D);
int count = 0;
if (!isa<CXXRecordDecl>(record)) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
if (!cast<CXXRecordDecl>(record)->isPOD()) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
return;
}
for (RecordDecl::field_iterator iter = record->field_begin();
iter != record->field_end(); iter++) {
if ((count == 1) || !iter->getType()->isVectorType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
count++;
}
D->addAttr(::new (S.Context)
VecReturnAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
const AttributeList &Attr) {
if (isa<ParmVarDecl>(D)) {
// [[carries_dependency]] can only be applied to a parameter if it is a
// parameter of a function declaration or lambda.
if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
S.Diag(Attr.getLoc(),
diag::err_carries_dependency_param_not_function_decl);
return;
}
} else if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrParameter;
return;
}
D->addAttr(::new (S.Context) CarriesDependencyAttr(
Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) &&
!isa<TypeDecl>(D) && !isa<LabelDecl>(D) && !isa<FieldDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableFunctionOrLabel;
return;
}
D->addAttr(::new (S.Context)
UnusedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleReturnsTwiceAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context)
ReturnsTwiceAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
return;
}
} else if (!isFunctionOrMethod(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context)
UsedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
return;
}
int priority = 65535; // FIXME: Do not hardcode such constants.
if (Attr.getNumArgs() > 0) {
Expr *E = Attr.getArg(0);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "constructor" << 1 << E->getSourceRange();
return;
}
priority = Idx.getZExtValue();
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context)
ConstructorAttr(Attr.getRange(), S.Context, priority,
Attr.getAttributeSpellingListIndex()));
}
static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
return;
}
int priority = 65535; // FIXME: Do not hardcode such constants.
if (Attr.getNumArgs() > 0) {
Expr *E = Attr.getArg(0);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "destructor" << 1 << E->getSourceRange();
return;
}
priority = Idx.getZExtValue();
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context)
DestructorAttr(Attr.getRange(), S.Context, priority,
Attr.getAttributeSpellingListIndex()));
}
template <typename AttrTy>
static void handleAttrWithMessage(Sema &S, Decl *D, const AttributeList &Attr,
const char *Name) {
unsigned NumArgs = Attr.getNumArgs();
if (NumArgs > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
return;
}
// Handle the case where the attribute has a text message.
StringRef Str;
if (NumArgs == 1) {
StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
if (!SE) {
S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string)
<< Name;
return;
}
Str = SE->getString();
}
D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
Attr.getAttributeSpellingListIndex()));
}
static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
unsigned NumArgs = Attr.getNumArgs();
if (NumArgs > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
return;
}
D->addAttr(::new (S.Context)
ArcWeakrefUnavailableAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCRootClassAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!isa<ObjCInterfaceDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
return;
}
unsigned NumArgs = Attr.getNumArgs();
if (NumArgs > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
return;
}
D->addAttr(::new (S.Context)
ObjCRootClassAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!isa<ObjCInterfaceDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis);
return;
}
unsigned NumArgs = Attr.getNumArgs();
if (NumArgs > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
return;
}
D->addAttr(::new (S.Context)
ObjCRequiresPropertyDefsAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
IdentifierInfo *Platform,
VersionTuple Introduced,
VersionTuple Deprecated,
VersionTuple Obsoleted) {
StringRef PlatformName
= AvailabilityAttr::getPrettyPlatformName(Platform->getName());
if (PlatformName.empty())
PlatformName = Platform->getName();
// Ensure that Introduced <= Deprecated <= Obsoleted (although not all
// of these steps are needed).
if (!Introduced.empty() && !Deprecated.empty() &&
!(Introduced <= Deprecated)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 1 << PlatformName << Deprecated.getAsString()
<< 0 << Introduced.getAsString();
return true;
}
if (!Introduced.empty() && !Obsoleted.empty() &&
!(Introduced <= Obsoleted)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.getAsString()
<< 0 << Introduced.getAsString();
return true;
}
if (!Deprecated.empty() && !Obsoleted.empty() &&
!(Deprecated <= Obsoleted)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.getAsString()
<< 1 << Deprecated.getAsString();
return true;
}
return false;
}
/// \brief Check whether the two versions match.
///
/// If either version tuple is empty, then they are assumed to match. If
/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
bool BeforeIsOkay) {
if (X.empty() || Y.empty())
return true;
if (X == Y)
return true;
if (BeforeIsOkay && X < Y)
return true;
return false;
}
AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
IdentifierInfo *Platform,
VersionTuple Introduced,
VersionTuple Deprecated,
VersionTuple Obsoleted,
bool IsUnavailable,
StringRef Message,
bool Override,
unsigned AttrSpellingListIndex) {
VersionTuple MergedIntroduced = Introduced;
VersionTuple MergedDeprecated = Deprecated;
VersionTuple MergedObsoleted = Obsoleted;
bool FoundAny = false;
if (D->hasAttrs()) {
AttrVec &Attrs = D->getAttrs();
for (unsigned i = 0, e = Attrs.size(); i != e;) {
const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
if (!OldAA) {
++i;
continue;
}
IdentifierInfo *OldPlatform = OldAA->getPlatform();
if (OldPlatform != Platform) {
++i;
continue;
}
FoundAny = true;
VersionTuple OldIntroduced = OldAA->getIntroduced();
VersionTuple OldDeprecated = OldAA->getDeprecated();
VersionTuple OldObsoleted = OldAA->getObsoleted();
bool OldIsUnavailable = OldAA->getUnavailable();
if (!versionsMatch(OldIntroduced, Introduced, Override) ||
!versionsMatch(Deprecated, OldDeprecated, Override) ||
!versionsMatch(Obsoleted, OldObsoleted, Override) ||
!(OldIsUnavailable == IsUnavailable ||
(Override && !OldIsUnavailable && IsUnavailable))) {
if (Override) {
int Which = -1;
VersionTuple FirstVersion;
VersionTuple SecondVersion;
if (!versionsMatch(OldIntroduced, Introduced, Override)) {
Which = 0;
FirstVersion = OldIntroduced;
SecondVersion = Introduced;
} else if (!versionsMatch(Deprecated, OldDeprecated, Override)) {
Which = 1;
FirstVersion = Deprecated;
SecondVersion = OldDeprecated;
} else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) {
Which = 2;
FirstVersion = Obsoleted;
SecondVersion = OldObsoleted;
}
if (Which == -1) {
Diag(OldAA->getLocation(),
diag::warn_mismatched_availability_override_unavail)
<< AvailabilityAttr::getPrettyPlatformName(Platform->getName());
} else {
Diag(OldAA->getLocation(),
diag::warn_mismatched_availability_override)
<< Which
<< AvailabilityAttr::getPrettyPlatformName(Platform->getName())
<< FirstVersion.getAsString() << SecondVersion.getAsString();
}
Diag(Range.getBegin(), diag::note_overridden_method);
} else {
Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
Diag(Range.getBegin(), diag::note_previous_attribute);
}
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
VersionTuple MergedIntroduced2 = MergedIntroduced;
VersionTuple MergedDeprecated2 = MergedDeprecated;
VersionTuple MergedObsoleted2 = MergedObsoleted;
if (MergedIntroduced2.empty())
MergedIntroduced2 = OldIntroduced;
if (MergedDeprecated2.empty())
MergedDeprecated2 = OldDeprecated;
if (MergedObsoleted2.empty())
MergedObsoleted2 = OldObsoleted;
if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
MergedIntroduced2, MergedDeprecated2,
MergedObsoleted2)) {
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
MergedIntroduced = MergedIntroduced2;
MergedDeprecated = MergedDeprecated2;
MergedObsoleted = MergedObsoleted2;
++i;
}
}
if (FoundAny &&
MergedIntroduced == Introduced &&
MergedDeprecated == Deprecated &&
MergedObsoleted == Obsoleted)
return NULL;
if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
MergedDeprecated, MergedObsoleted)) {
return ::new (Context) AvailabilityAttr(Range, Context, Platform,
Introduced, Deprecated,
Obsoleted, IsUnavailable, Message,
AttrSpellingListIndex);
}
return NULL;
}
static void handleAvailabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
IdentifierInfo *Platform = Attr.getParameterName();
SourceLocation PlatformLoc = Attr.getParameterLoc();
unsigned Index = Attr.getAttributeSpellingListIndex();
if (AvailabilityAttr::getPrettyPlatformName(Platform->getName()).empty())
S.Diag(PlatformLoc, diag::warn_availability_unknown_platform)
<< Platform;
NamedDecl *ND = dyn_cast<NamedDecl>(D);
if (!ND) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
bool IsUnavailable = Attr.getUnavailableLoc().isValid();
StringRef Str;
const StringLiteral *SE =
dyn_cast_or_null<const StringLiteral>(Attr.getMessageExpr());
if (SE)
Str = SE->getString();
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(),
Platform,
Introduced.Version,
Deprecated.Version,
Obsoleted.Version,
IsUnavailable, Str,
/*Override=*/false,
Index);
if (NewAttr)
D->addAttr(NewAttr);
}
template <class T>
static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
typename T::VisibilityType value,
unsigned attrSpellingListIndex) {
T *existingAttr = D->getAttr<T>();
if (existingAttr) {
typename T::VisibilityType existingValue = existingAttr->getVisibility();
if (existingValue == value)
return NULL;
S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
S.Diag(range.getBegin(), diag::note_previous_attribute);
D->dropAttr<T>();
}
return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
}
VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
VisibilityAttr::VisibilityType Vis,
unsigned AttrSpellingListIndex) {
return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
AttrSpellingListIndex);
}
TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
TypeVisibilityAttr::VisibilityType Vis,
unsigned AttrSpellingListIndex) {
return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
AttrSpellingListIndex);
}
static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
bool isTypeVisibility) {
// Visibility attributes don't mean anything on a typedef.
if (isa<TypedefNameDecl>(D)) {
S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
<< Attr.getName();
return;
}
// 'type_visibility' can only go on a type or namespace.
if (isTypeVisibility &&
!(isa<TagDecl>(D) ||
isa<ObjCInterfaceDecl>(D) ||
isa<NamespaceDecl>(D))) {
S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedTypeOrNamespace;
return;
}
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 1))
return;
Expr *Arg = Attr.getArg(0);
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< (isTypeVisibility ? "type_visibility" : "visibility") << 1;
return;
}
StringRef TypeStr = Str->getString();
VisibilityAttr::VisibilityType type;
if (TypeStr == "default")
type = VisibilityAttr::Default;
else if (TypeStr == "hidden")
type = VisibilityAttr::Hidden;
else if (TypeStr == "internal")
type = VisibilityAttr::Hidden; // FIXME
else if (TypeStr == "protected") {
// Complain about attempts to use protected visibility on targets
// (like Darwin) that don't support it.
if (!S.Context.getTargetInfo().hasProtectedVisibility()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
type = VisibilityAttr::Default;
} else {
type = VisibilityAttr::Protected;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
return;
}
unsigned Index = Attr.getAttributeSpellingListIndex();
clang::Attr *newAttr;
if (isTypeVisibility) {
newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
(TypeVisibilityAttr::VisibilityType) type,
Index);
} else {
newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
}
if (newAttr)
D->addAttr(newAttr);
}
static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
const AttributeList &Attr) {
ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl);
if (!method) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< ExpectedMethod;
return;
}
if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) {
if (!Attr.getParameterName() && Attr.getNumArgs() == 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "objc_method_family" << 1;
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
}
Attr.setInvalid();
return;
}
StringRef param = Attr.getParameterName()->getName();
ObjCMethodFamilyAttr::FamilyKind family;
if (param == "none")
family = ObjCMethodFamilyAttr::OMF_None;
else if (param == "alloc")
family = ObjCMethodFamilyAttr::OMF_alloc;
else if (param == "copy")
family = ObjCMethodFamilyAttr::OMF_copy;
else if (param == "init")
family = ObjCMethodFamilyAttr::OMF_init;
else if (param == "mutableCopy")
family = ObjCMethodFamilyAttr::OMF_mutableCopy;
else if (param == "new")
family = ObjCMethodFamilyAttr::OMF_new;
else {
// Just warn and ignore it. This is future-proof against new
// families being used in system headers.
S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family);
return;
}
if (family == ObjCMethodFamilyAttr::OMF_init &&
!method->getResultType()->isObjCObjectPointerType()) {
S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
<< method->getResultType();
// Ignore the attribute.
return;
}
method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
S.Context, family));
}
static void handleObjCExceptionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 0))
return;
ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
if (OCI == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
return;
}
D->addAttr(::new (S.Context)
ObjCExceptionAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
QualType T = TD->getUnderlyingType();
if (!T->isCARCBridgableType()) {
S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
QualType T = PD->getType();
if (!T->isCARCBridgableType()) {
S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
else {
// It is okay to include this attribute on properties, e.g.:
//
// @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
//
// In this case it follows tradition and suppresses an error in the above
// case.
S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
}
D->addAttr(::new (S.Context)
ObjCNSObjectAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void
handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
return;
}
D->addAttr(::new (S.Context)
OverloadableAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "blocks" << 1;
return;
}
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
BlocksAttr::BlockType type;
if (Attr.getParameterName()->isStr("byref"))
type = BlocksAttr::ByRef;
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< "blocks" << Attr.getParameterName();
return;
}
D->addAttr(::new (S.Context)
BlocksAttr(Attr.getRange(), S.Context, type,
Attr.getAttributeSpellingListIndex()));
}
static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 2) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
return;
}
unsigned sentinel = 0;
if (Attr.getNumArgs() > 0) {
Expr *E = Attr.getArg(0);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "sentinel" << 1 << E->getSourceRange();
return;
}
if (Idx.isSigned() && Idx.isNegative()) {
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
<< E->getSourceRange();
return;
}
sentinel = Idx.getZExtValue();
}
unsigned nullPos = 0;
if (Attr.getNumArgs() > 1) {
Expr *E = Attr.getArg(1);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "sentinel" << 2 << E->getSourceRange();
return;
}
nullPos = Idx.getZExtValue();
if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
// FIXME: This error message could be improved, it would be nice
// to say what the bounds actually are.
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
<< E->getSourceRange();
return;
}
}
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
const FunctionType *FT = FD->getType()->castAs<FunctionType>();
if (isa<FunctionNoProtoType>(FT)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
return;
}
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
if (!MD->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
if (!BD->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
return;
}
} else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D)
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
int m = Ty->isFunctionPointerType() ? 0 : 1;
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
D->addAttr(::new (S.Context)
SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
Attr.getAttributeSpellingListIndex()));
}
static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isFunction(D) && !isa<ObjCMethodDecl>(D) && !isa<CXXRecordDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrClass;
return;
}
if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
<< Attr.getName() << 0;
return;
}
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
if (MD->getResultType()->isVoidType()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
<< Attr.getName() << 1;
return;
}
D->addAttr(::new (S.Context)
WarnUnusedResultAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
if (isa<CXXRecordDecl>(D)) {
D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
return;
}
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
NamedDecl *nd = cast<NamedDecl>(D);
nd->addAttr(::new (S.Context)
WeakAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
// weak_import only applies to variable & function declarations.
bool isDef = false;
if (!D->canBeWeakImported(isDef)) {
if (isDef)
S.Diag(Attr.getLoc(),
diag::warn_attribute_weak_import_invalid_on_definition)
<< "weak_import" << 2 /*variable and function*/;
else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
(S.Context.getTargetInfo().getTriple().isOSDarwin() &&
(isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
// Nothing to warn about here.
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context)
WeakImportAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
// Handles reqd_work_group_size and work_group_size_hint.
static void handleWorkGroupSize(Sema &S, Decl *D,
const AttributeList &Attr) {
assert(Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize
|| Attr.getKind() == AttributeList::AT_WorkGroupSizeHint);
// Attribute has 3 arguments.
if (!checkAttributeNumArgs(S, Attr, 3)) return;
unsigned WGSize[3];
for (unsigned i = 0; i < 3; ++i) {
Expr *E = Attr.getArg(i);
llvm::APSInt ArgNum(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< Attr.getName()->getName() << E->getSourceRange();
return;
}
WGSize[i] = (unsigned) ArgNum.getZExtValue();
}
if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize
&& D->hasAttr<ReqdWorkGroupSizeAttr>()) {
ReqdWorkGroupSizeAttr *A = D->getAttr<ReqdWorkGroupSizeAttr>();
if (!(A->getXDim() == WGSize[0] &&
A->getYDim() == WGSize[1] &&
A->getZDim() == WGSize[2])) {
S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) <<
Attr.getName();
}
}
if (Attr.getKind() == AttributeList::AT_WorkGroupSizeHint
&& D->hasAttr<WorkGroupSizeHintAttr>()) {
WorkGroupSizeHintAttr *A = D->getAttr<WorkGroupSizeHintAttr>();
if (!(A->getXDim() == WGSize[0] &&
A->getYDim() == WGSize[1] &&
A->getZDim() == WGSize[2])) {
S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) <<
Attr.getName();
}
}
if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize)
D->addAttr(::new (S.Context)
ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context,
WGSize[0], WGSize[1], WGSize[2],
Attr.getAttributeSpellingListIndex()));
else
D->addAttr(::new (S.Context)
WorkGroupSizeHintAttr(Attr.getRange(), S.Context,
WGSize[0], WGSize[1], WGSize[2],
Attr.getAttributeSpellingListIndex()));
}
static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
assert(Attr.getKind() == AttributeList::AT_VecTypeHint);
// Attribute has 1 argument.
if (!checkAttributeNumArgs(S, Attr, 1))
return;
QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg());
if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
(ParmType->isBooleanType() ||
!ParmType->isIntegralType(S.getASTContext()))) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
<< ParmType;
return;
}
if (Attr.getKind() == AttributeList::AT_VecTypeHint &&
D->hasAttr<VecTypeHintAttr>()) {
VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>();
if (A->getTypeHint() != ParmType) {
S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
return;
}
}
D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
ParmType, Attr.getLoc()));
}
static void handleEndianAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!dyn_cast<VarDecl>(D))
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "endian"
<< 9;
StringRef EndianType = Attr.getParameterName()->getName();
if (EndianType != "host" && EndianType != "device")
S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_endian) << EndianType;
}
SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
StringRef Name,
unsigned AttrSpellingListIndex) {
if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
if (ExistingAttr->getName() == Name)
return NULL;
Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
Diag(Range.getBegin(), diag::note_previous_attribute);
return NULL;
}
return ::new (Context) SectionAttr(Range, Context, Name,
AttrSpellingListIndex);
}
static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Attribute has no arguments.
if (!checkAttributeNumArgs(S, Attr, 1))
return;
// Make sure that there is a string literal as the sections's single
// argument.
Expr *ArgExpr = Attr.getArg(0);
StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
if (!SE) {
S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section";
return;
}
// If the target wants to validate the section specifier, make it happen.
std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(SE->getString());
if (!Error.empty()) {
S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target)
<< Error;
return;
}
// This attribute cannot be applied to local variables.
if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) {
S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable);
return;
}
unsigned Index = Attr.getAttributeSpellingListIndex();
SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(),
SE->getString(), Index);
if (NewAttr)
D->addAttr(NewAttr);
}
static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) {
if (Existing->getLocation().isInvalid())
Existing->setRange(Attr.getRange());
} else {
D->addAttr(::new (S.Context)
NoThrowAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
}
static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (ConstAttr *Existing = D->getAttr<ConstAttr>()) {
if (Existing->getLocation().isInvalid())
Existing->setRange(Attr.getRange());
} else {
D->addAttr(::new (S.Context)
ConstAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex() ));
}
}
static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
D->addAttr(::new (S.Context)
PureAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
VarDecl *VD = dyn_cast<VarDecl>(D);
if (!VD || !VD->hasLocalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
return;
}
// Look up the function
// FIXME: Lookup probably isn't looking in the right place
NamedDecl *CleanupDecl
= S.LookupSingleName(S.TUScope, Attr.getParameterName(),
Attr.getParameterLoc(), Sema::LookupOrdinaryName);
if (!CleanupDecl) {
S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) <<
Attr.getParameterName();
return;
}
FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
if (!FD) {
S.Diag(Attr.getParameterLoc(),
diag::err_attribute_cleanup_arg_not_function)
<< Attr.getParameterName();
return;
}
if (FD->getNumParams() != 1) {
S.Diag(Attr.getParameterLoc(),
diag::err_attribute_cleanup_func_must_take_one_arg)
<< Attr.getParameterName();
return;
}
// We're currently more strict than GCC about what function types we accept.
// If this ever proves to be a problem it should be easy to fix.
QualType Ty = S.Context.getPointerType(VD->getType());
QualType ParamTy = FD->getParamDecl(0)->getType();
if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
ParamTy, Ty) != Sema::Compatible) {
S.Diag(Attr.getParameterLoc(),
diag::err_attribute_cleanup_func_arg_incompatible_type) <<
Attr.getParameterName() << ParamTy << Ty;
return;
}
D->addAttr(::new (S.Context)
CleanupAttr(Attr.getRange(), S.Context, FD,
Attr.getAttributeSpellingListIndex()));
S.MarkFunctionReferenced(Attr.getParameterLoc(), FD);
S.DiagnoseUseOfDecl(FD, Attr.getParameterLoc());
}
/// Handle __attribute__((format_arg((idx)))) attribute based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 1))
return;
if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
unsigned FirstIdx = 1;
// checks for the 2nd argument
Expr *IdxExpr = Attr.getArg(0);
llvm::APSInt Idx(32);
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
unsigned ArgIdx = Idx.getZExtValue() - 1;
if (HasImplicitThisParam) {
if (ArgIdx == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
<< "format_arg" << IdxExpr->getSourceRange();
return;
}
ArgIdx--;
}
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
bool not_nsstring_type = !isNSStringType(Ty, S.Context);
if (not_nsstring_type &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< (not_nsstring_type ? "a string type" : "an NSString")
<< IdxExpr->getSourceRange();
return;
}
Ty = getFunctionOrMethodResultType(D);
if (!isNSStringType(Ty, S.Context) &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
<< (not_nsstring_type ? "string type" : "NSString")
<< IdxExpr->getSourceRange();
return;
}
D->addAttr(::new (S.Context)
FormatArgAttr(Attr.getRange(), S.Context, Idx.getZExtValue(),
Attr.getAttributeSpellingListIndex()));
}
enum FormatAttrKind {
CFStringFormat,
NSStringFormat,
StrftimeFormat,
SupportedFormat,
IgnoredFormat,
InvalidFormat
};
/// getFormatAttrKind - Map from format attribute names to supported format
/// types.
static FormatAttrKind getFormatAttrKind(StringRef Format) {
return llvm::StringSwitch<FormatAttrKind>(Format)
// Check for formats that get handled specially.
.Case("NSString", NSStringFormat)
.Case("CFString", CFStringFormat)
.Case("strftime", StrftimeFormat)
// Otherwise, check for supported formats.
.Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
.Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
.Case("kprintf", SupportedFormat) // OpenBSD.
.Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
.Default(InvalidFormat);
}
/// Handle __attribute__((init_priority(priority))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
static void handleInitPriorityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!S.getLangOpts().CPlusPlus) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) {
S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
Attr.setInvalid();
return;
}
QualType T = dyn_cast<VarDecl>(D)->getType();
if (S.Context.getAsArrayType(T))
T = S.Context.getBaseElementType(T);
if (!T->getAs<RecordType>()) {
S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
Attr.setInvalid();
return;
}
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
Attr.setInvalid();
return;
}
Expr *priorityExpr = Attr.getArg(0);
llvm::APSInt priority(32);
if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() ||
!priorityExpr->isIntegerConstantExpr(priority, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "init_priority" << priorityExpr->getSourceRange();
Attr.setInvalid();
return;
}
unsigned prioritynum = priority.getZExtValue();
if (prioritynum < 101 || prioritynum > 65535) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
<< priorityExpr->getSourceRange();
Attr.setInvalid();
return;
}
D->addAttr(::new (S.Context)
InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
Attr.getAttributeSpellingListIndex()));
}
FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range, StringRef Format,
int FormatIdx, int FirstArg,
unsigned AttrSpellingListIndex) {
// Check whether we already have an equivalent format attribute.
for (specific_attr_iterator<FormatAttr>
i = D->specific_attr_begin<FormatAttr>(),
e = D->specific_attr_end<FormatAttr>();
i != e ; ++i) {
FormatAttr *f = *i;
if (f->getType() == Format &&
f->getFormatIdx() == FormatIdx &&
f->getFirstArg() == FirstArg) {
// If we don't have a valid location for this attribute, adopt the
// location.
if (f->getLocation().isInvalid())
f->setRange(Range);
return NULL;
}
}
return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx, FirstArg,
AttrSpellingListIndex);
}
/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "format" << 1;
return;
}
if (Attr.getNumArgs() != 2) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3;
return;
}
if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
unsigned FirstIdx = 1;
StringRef Format = Attr.getParameterName()->getName();
// Normalize the argument, __foo__ becomes foo.
if (Format.startswith("__") && Format.endswith("__"))
Format = Format.substr(2, Format.size() - 4);
// Check for supported formats.
FormatAttrKind Kind = getFormatAttrKind(Format);
if (Kind == IgnoredFormat)
return;
if (Kind == InvalidFormat) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< "format" << Attr.getParameterName()->getName();
return;
}
// checks for the 2nd argument
Expr *IdxExpr = Attr.getArg(0);
llvm::APSInt Idx(32);
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
// FIXME: Do we need to bounds check?
unsigned ArgIdx = Idx.getZExtValue() - 1;
if (HasImplicitThisParam) {
if (ArgIdx == 0) {
S.Diag(Attr.getLoc(),
diag::err_format_attribute_implicit_this_format_string)
<< IdxExpr->getSourceRange();
return;
}
ArgIdx--;
}
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
if (Kind == CFStringFormat) {
if (!isCFStringType(Ty, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a CFString" << IdxExpr->getSourceRange();
return;
}
} else if (Kind == NSStringFormat) {
// FIXME: do we need to check if the type is NSString*? What are the
// semantics?
if (!isNSStringType(Ty, S.Context)) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "an NSString" << IdxExpr->getSourceRange();
return;
}
} else if (!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a string type" << IdxExpr->getSourceRange();
return;
}
// check the 3rd argument
Expr *FirstArgExpr = Attr.getArg(1);
llvm::APSInt FirstArg(32);
if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() ||
!FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 3 << FirstArgExpr->getSourceRange();
return;
}
// check if the function is variadic if the 3rd argument non-zero
if (FirstArg != 0) {
if (isFunctionOrMethodVariadic(D)) {
++NumArgs; // +1 for ...
} else {
S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
return;
}
}
// strftime requires FirstArg to be 0 because it doesn't read from any
// variable the input is just the current time + the format string.
if (Kind == StrftimeFormat) {
if (FirstArg != 0) {
S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
<< FirstArgExpr->getSourceRange();
return;
}
// if 0 it disables parameter checking (to use with e.g. va_list)
} else if (FirstArg != 0 && FirstArg != NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 3 << FirstArgExpr->getSourceRange();
return;
}
FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), Format,
Idx.getZExtValue(),
FirstArg.getZExtValue(),
Attr.getAttributeSpellingListIndex());
if (NewAttr)
D->addAttr(NewAttr);
}
static void handleTransparentUnionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
// Try to find the underlying union declaration.
RecordDecl *RD = 0;
TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
if (TD && TD->getUnderlyingType()->isUnionType())
RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
else
RD = dyn_cast<RecordDecl>(D);
if (!RD || !RD->isUnion()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedUnion;
return;
}
if (!RD->isCompleteDefinition()) {
S.Diag(Attr.getLoc(),
diag::warn_transparent_union_attribute_not_definition);
return;
}
RecordDecl::field_iterator Field = RD->field_begin(),
FieldEnd = RD->field_end();
if (Field == FieldEnd) {
S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
return;
}
FieldDecl *FirstField = *Field;
QualType FirstType = FirstField->getType();
if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
S.Diag(FirstField->getLocation(),
diag::warn_transparent_union_attribute_floating)
<< FirstType->isVectorType() << FirstType;
return;
}
uint64_t FirstSize = S.Context.getTypeSize(FirstType);
uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
for (; Field != FieldEnd; ++Field) {
QualType FieldType = Field->getType();
if (S.Context.getTypeSize(FieldType) != FirstSize ||
S.Context.getTypeAlign(FieldType) != FirstAlign) {
// Warn if we drop the attribute.
bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
: S.Context.getTypeAlign(FieldType);
S.Diag(Field->getLocation(),
diag::warn_transparent_union_attribute_field_size_align)
<< isSize << Field->getDeclName() << FieldBits;
unsigned FirstBits = isSize? FirstSize : FirstAlign;
S.Diag(FirstField->getLocation(),
diag::note_transparent_union_first_field_size_align)
<< isSize << FirstBits;
return;
}
}
RD->addAttr(::new (S.Context)
TransparentUnionAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 1))
return;
Expr *ArgExpr = Attr.getArg(0);
StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
// Make sure that there is a string literal as the annotation's single
// argument.
if (!SE) {
S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate";
return;
}
// Don't duplicate annotations that are already set.
for (specific_attr_iterator<AnnotateAttr>
i = D->specific_attr_begin<AnnotateAttr>(),
e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) {
if ((*i)->getAnnotation() == SE->getString())
return;
}
D->addAttr(::new (S.Context)
AnnotateAttr(Attr.getRange(), S.Context, SE->getString(),
Attr.getAttributeSpellingListIndex()));
}
static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (Attr.getNumArgs() == 0) {
D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
true, 0, Attr.getAttributeSpellingListIndex()));
return;
}
Expr *E = Attr.getArg(0);
if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
S.Diag(Attr.getEllipsisLoc(),
diag::err_pack_expansion_without_parameter_packs);
return;
}
if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
return;
S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
Attr.isPackExpansion());
}
void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
unsigned SpellingListIndex, bool IsPackExpansion) {
AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
SourceLocation AttrLoc = AttrRange.getBegin();
// C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
if (TmpAttr.isAlignas()) {
// C++11 [dcl.align]p1:
// An alignment-specifier may be applied to a variable or to a class
// data member, but it shall not be applied to a bit-field, a function
// parameter, the formal parameter of a catch clause, or a variable
// declared with the register storage class specifier. An
// alignment-specifier may also be applied to the declaration of a class
// or enumeration type.
// C11 6.7.5/2:
// An alignment attribute shall not be specified in a declaration of
// a typedef, or a bit-field, or a function, or a parameter, or an
// object declared with the register storage-class specifier.
int DiagKind = -1;
if (isa<ParmVarDecl>(D)) {
DiagKind = 0;
} else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->getStorageClass() == SC_Register)
DiagKind = 1;
if (VD->isExceptionVariable())
DiagKind = 2;
} else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
if (FD->isBitField())
DiagKind = 3;
} else if (!isa<TagDecl>(D)) {
Diag(AttrLoc, diag::err_attribute_wrong_decl_type)
<< (TmpAttr.isC11() ? "'_Alignas'" : "'alignas'")
<< (TmpAttr.isC11() ? ExpectedVariableOrField
: ExpectedVariableFieldOrTag);
return;
}
if (DiagKind != -1) {
Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
<< TmpAttr.isC11() << DiagKind;
return;
}
}
if (E->isTypeDependent() || E->isValueDependent()) {
// Save dependent expressions in the AST to be instantiated.
AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
return;
}
// FIXME: Cache the number on the Attr object?
llvm::APSInt Alignment(32);
ExprResult ICE
= VerifyIntegerConstantExpression(E, &Alignment,
diag::err_aligned_attribute_argument_not_int,
/*AllowFold*/ false);
if (ICE.isInvalid())
return;
// C++11 [dcl.align]p2:
// -- if the constant expression evaluates to zero, the alignment
// specifier shall have no effect
// C11 6.7.5p6:
// An alignment specification of zero has no effect.
if (!(TmpAttr.isAlignas() && !Alignment) &&
!llvm::isPowerOf2_64(Alignment.getZExtValue())) {
Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
<< E->getSourceRange();
return;
}
if (TmpAttr.isDeclspec()) {
// We've already verified it's a power of 2, now let's make sure it's
// 8192 or less.
if (Alignment.getZExtValue() > 8192) {
Diag(AttrLoc, diag::err_attribute_aligned_greater_than_8192)
<< E->getSourceRange();
return;
}
}
AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
ICE.take(), SpellingListIndex);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
}
void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
unsigned SpellingListIndex, bool IsPackExpansion) {
// FIXME: Cache the number on the Attr object if non-dependent?
// FIXME: Perform checking of type validity
AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
SpellingListIndex);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
}
void Sema::CheckAlignasUnderalignment(Decl *D) {
assert(D->hasAttrs() && "no attributes on decl");
QualType Ty;
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
Ty = VD->getType();
else
Ty = Context.getTagDeclType(cast<TagDecl>(D));
if (Ty->isDependentType() || Ty->isIncompleteType())
return;
// C++11 [dcl.align]p5, C11 6.7.5/4:
// The combined effect of all alignment attributes in a declaration shall
// not specify an alignment that is less strict than the alignment that
// would otherwise be required for the entity being declared.
AlignedAttr *AlignasAttr = 0;
unsigned Align = 0;
for (specific_attr_iterator<AlignedAttr>
I = D->specific_attr_begin<AlignedAttr>(),
E = D->specific_attr_end<AlignedAttr>(); I != E; ++I) {
if (I->isAlignmentDependent())
return;
if (I->isAlignas())
AlignasAttr = *I;
Align = std::max(Align, I->getAlignment(Context));
}
if (AlignasAttr && Align) {
CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
CharUnits NaturalAlign = Context.getTypeAlignInChars(Ty);
if (NaturalAlign > RequestedAlign)
Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
<< Ty << (unsigned)NaturalAlign.getQuantity();
}
}
/// handleModeAttr - This attribute modifies the width of a decl with primitive
/// type.
///
/// Despite what would be logical, the mode attribute is a decl attribute, not a
/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
/// HImode, not an intermediate pointer.
static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// This attribute isn't documented, but glibc uses it. It changes
// the width of an int or unsigned int to the specified size.
// Check that there aren't any arguments
if (!checkAttributeNumArgs(S, Attr, 0))
return;
IdentifierInfo *Name = Attr.getParameterName();
if (!Name) {
S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
return;
}
StringRef Str = Attr.getParameterName()->getName();
// Normalize the attribute name, __foo__ becomes foo.
if (Str.startswith("__") && Str.endswith("__"))
Str = Str.substr(2, Str.size() - 4);
unsigned DestWidth = 0;
bool IntegerMode = true;
bool ComplexMode = false;
switch (Str.size()) {
case 2:
switch (Str[0]) {
case 'Q': DestWidth = 8; break;
case 'H': DestWidth = 16; break;
case 'S': DestWidth = 32; break;
case 'D': DestWidth = 64; break;
case 'X': DestWidth = 96; break;
case 'T': DestWidth = 128; break;
}
if (Str[1] == 'F') {
IntegerMode = false;
} else if (Str[1] == 'C') {
IntegerMode = false;
ComplexMode = true;
} else if (Str[1] != 'I') {
DestWidth = 0;
}
break;
case 4:
// FIXME: glibc uses 'word' to define register_t; this is narrower than a
// pointer on PIC16 and other embedded platforms.
if (Str == "word")
DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
else if (Str == "byte")
DestWidth = S.Context.getTargetInfo().getCharWidth();
break;
case 7:
if (Str == "pointer")
DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
break;
case 11:
if (Str == "unwind_word")
DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
break;
}
QualType OldTy;
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
OldTy = TD->getUnderlyingType();
else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
OldTy = VD->getType();
else {
S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
<< "mode" << Attr.getRange();
return;
}
if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
else if (IntegerMode) {
if (!OldTy->isIntegralOrEnumerationType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
} else if (ComplexMode) {
if (!OldTy->isComplexType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
} else {
if (!OldTy->isFloatingType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
}
// FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
// and friends, at least with glibc.
// FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong
// width on unusual platforms.
// FIXME: Make sure floating-point mappings are accurate
// FIXME: Support XF and TF types
QualType NewTy;
switch (DestWidth) {
case 0:
S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
return;
default:
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
case 8:
if (!IntegerMode) {
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
}
if (OldTy->isSignedIntegerType())
NewTy = S.Context.SignedCharTy;
else
NewTy = S.Context.UnsignedCharTy;
break;
case 16:
if (!IntegerMode) {
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
}
if (OldTy->isSignedIntegerType())
NewTy = S.Context.ShortTy;
else
NewTy = S.Context.UnsignedShortTy;
break;
case 32:
if (!IntegerMode)
NewTy = S.Context.FloatTy;
else if (OldTy->isSignedIntegerType())
NewTy = S.Context.IntTy;
else
NewTy = S.Context.UnsignedIntTy;
break;
case 64:
if (!IntegerMode)
NewTy = S.Context.DoubleTy;
else if (OldTy->isSignedIntegerType())
if (S.Context.getTargetInfo().getLongWidth() == 64)
NewTy = S.Context.LongTy;
else
NewTy = S.Context.LongLongTy;
else
if (S.Context.getTargetInfo().getLongWidth() == 64)
NewTy = S.Context.UnsignedLongTy;
else
NewTy = S.Context.UnsignedLongLongTy;
break;
case 96:
NewTy = S.Context.LongDoubleTy;
break;
case 128:
if (!IntegerMode) {
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
}
if (OldTy->isSignedIntegerType())
NewTy = S.Context.Int128Ty;
else
NewTy = S.Context.UnsignedInt128Ty;
break;
}
if (ComplexMode) {
NewTy = S.Context.getComplexType(NewTy);
}
// Install the new type.
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
// FIXME: preserve existing source info.
TD->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(NewTy));
} else
cast<ValueDecl>(D)->setType(NewTy);
}
static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!VD->hasGlobalStorage())
S.Diag(Attr.getLoc(),
diag::warn_attribute_requires_functions_or_static_globals)
<< Attr.getName();
} else if (!isFunctionOrMethod(D)) {
S.Diag(Attr.getLoc(),
diag::warn_attribute_requires_functions_or_static_globals)
<< Attr.getName();
return;
}
D->addAttr(::new (S.Context)
NoDebugAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context)
NoInlineAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context)
NoInstrumentFunctionAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (Attr.hasParameterOrArguments()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<VarDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariable;
return;
}
D->addAttr(::new (S.Context)
CUDAConstantAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant";
}
}
static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context)
CUDADeviceAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device";
}
}
static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
FunctionDecl *FD = cast<FunctionDecl>(D);
if (!FD->getResultType()->isVoidType()) {
TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
if (FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>()) {
S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
<< FD->getType()
<< FixItHint::CreateReplacement(FTL.getResultLoc().getSourceRange(),
"void");
} else {
S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
<< FD->getType();
}
return;
}
D->addAttr(::new (S.Context)
CUDAGlobalAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global";
}
}
static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context)
CUDAHostAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host";
}
}
static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
if (!isa<VarDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariable;
return;
}
D->addAttr(::new (S.Context)
CUDASharedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared";
}
}
static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 0))
return;
FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
if (Fn == 0) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunction;
return;
}
if (!Fn->isInlineSpecified()) {
S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
return;
}
D->addAttr(::new (S.Context)
GNUInlineAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (hasDeclarator(D)) return;
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
// Diagnostic is emitted elsewhere: here we store the (valid) Attr
// in the Decl node for syntactic reasoning, e.g., pretty-printing.
CallingConv CC;
if (S.CheckCallingConvAttr(Attr, CC, FD))
return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
switch (Attr.getKind()) {
case AttributeList::AT_FastCall:
D->addAttr(::new (S.Context)
FastCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_StdCall:
D->addAttr(::new (S.Context)
StdCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_ThisCall:
D->addAttr(::new (S.Context)
ThisCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_CDecl:
D->addAttr(::new (S.Context)
CDeclAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_Pascal:
D->addAttr(::new (S.Context)
PascalAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_Pcs: {
PcsAttr::PCSType PCS;
switch (CC) {
case CC_AAPCS:
PCS = PcsAttr::AAPCS;
break;
case CC_AAPCS_VFP:
PCS = PcsAttr::AAPCS_VFP;
break;
default:
llvm_unreachable("unexpected calling convention in pcs attribute");
}
D->addAttr(::new (S.Context)
PcsAttr(Attr.getRange(), S.Context, PCS,
Attr.getAttributeSpellingListIndex()));
return;
}
case AttributeList::AT_PnaclCall:
D->addAttr(::new (S.Context)
PnaclCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_IntelOclBicc:
D->addAttr(::new (S.Context)
IntelOclBiccAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
default:
llvm_unreachable("unexpected attribute kind");
}
}
static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){
assert(!Attr.isInvalid());
D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context));
}
bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
const FunctionDecl *FD) {
if (attr.isInvalid())
return true;
unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
if (attr.getNumArgs() != ReqArgs || attr.getParameterName()) {
Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << ReqArgs;
attr.setInvalid();
return true;
}
// TODO: diagnose uses of these conventions on the wrong target. Or, better
// move to TargetAttributesSema one day.
switch (attr.getKind()) {
case AttributeList::AT_CDecl: CC = CC_C; break;
case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
case AttributeList::AT_Pcs: {
Expr *Arg = attr.getArg(0);
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "pcs" << 1;
attr.setInvalid();
return true;
}
StringRef StrRef = Str->getString();
if (StrRef == "aapcs") {
CC = CC_AAPCS;
break;
} else if (StrRef == "aapcs-vfp") {
CC = CC_AAPCS_VFP;
break;
}
attr.setInvalid();
Diag(attr.getLoc(), diag::err_invalid_pcs);
return true;
}
case AttributeList::AT_PnaclCall: CC = CC_PnaclCall; break;
case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
default: llvm_unreachable("unexpected attribute kind");
}
const TargetInfo &TI = Context.getTargetInfo();
TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
if (A == TargetInfo::CCCR_Warning) {
Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown;
if (FD)
MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member :
TargetInfo::CCMT_NonMember;
CC = TI.getDefaultCallingConv(MT);
}
return false;
}
static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (hasDeclarator(D)) return;
unsigned numParams;
if (S.CheckRegparmAttr(Attr, numParams))
return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context)
RegparmAttr(Attr.getRange(), S.Context, numParams,
Attr.getAttributeSpellingListIndex()));
}
/// Checks a regparm attribute, returning true if it is ill-formed and
/// otherwise setting numParams to the appropriate value.
bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
if (Attr.isInvalid())
return true;
if (Attr.getNumArgs() != 1) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
Attr.setInvalid();
return true;
}
Expr *NumParamsExpr = Attr.getArg(0);
llvm::APSInt NumParams(32);
if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
!NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) {
Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "regparm" << NumParamsExpr->getSourceRange();
Attr.setInvalid();
return true;
}
if (Context.getTargetInfo().getRegParmMax() == 0) {
Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
<< NumParamsExpr->getSourceRange();
Attr.setInvalid();
return true;
}
numParams = NumParams.getZExtValue();
if (numParams > Context.getTargetInfo().getRegParmMax()) {
Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
<< Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
Attr.setInvalid();
return true;
}
return false;
}
static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){
if (S.LangOpts.CUDA) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
// FIXME: 0 is not okay.
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
return;
}
if (!isFunctionOrMethod(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
Expr *MaxThreadsExpr = Attr.getArg(0);
llvm::APSInt MaxThreads(32);
if (MaxThreadsExpr->isTypeDependent() ||
MaxThreadsExpr->isValueDependent() ||
!MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "launch_bounds" << 1 << MaxThreadsExpr->getSourceRange();
return;
}
llvm::APSInt MinBlocks(32);
if (Attr.getNumArgs() > 1) {
Expr *MinBlocksExpr = Attr.getArg(1);
if (MinBlocksExpr->isTypeDependent() ||
MinBlocksExpr->isValueDependent() ||
!MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "launch_bounds" << 2 << MinBlocksExpr->getSourceRange();
return;
}
}
D->addAttr(::new (S.Context)
CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
MaxThreads.getZExtValue(),
MinBlocks.getZExtValue(),
Attr.getAttributeSpellingListIndex()));
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds";
}
}
static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
StringRef AttrName = Attr.getName()->getName();
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_identifier)
<< Attr.getName() << /* arg num = */ 1;
return;
}
if (Attr.getNumArgs() != 2) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< /* required args = */ 3;
return;
}
IdentifierInfo *ArgumentKind = Attr.getParameterName();
if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
uint64_t ArgumentIdx;
if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName,
Attr.getLoc(), 2,
Attr.getArg(0), ArgumentIdx))
return;
uint64_t TypeTagIdx;
if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName,
Attr.getLoc(), 3,
Attr.getArg(1), TypeTagIdx))
return;
bool IsPointer = (AttrName == "pointer_with_type_tag");
if (IsPointer) {
// Ensure that buffer has a pointer type.
QualType BufferTy = getFunctionOrMethodArgType(D, ArgumentIdx);
if (!BufferTy->isPointerType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
<< AttrName;
}
}
D->addAttr(::new (S.Context)
ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
ArgumentIdx, TypeTagIdx, IsPointer,
Attr.getAttributeSpellingListIndex()));
}
static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
IdentifierInfo *PointerKind = Attr.getParameterName();
if (!PointerKind) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_identifier)
<< "type_tag_for_datatype" << 1;
return;
}
QualType MatchingCType = S.GetTypeFromParser(Attr.getMatchingCType(), NULL);
D->addAttr(::new (S.Context)
TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
MatchingCType,
Attr.getLayoutCompatible(),
Attr.getMustBeNull(),
Attr.getAttributeSpellingListIndex()));
}
//===----------------------------------------------------------------------===//
// Checker-specific attribute handlers.
//===----------------------------------------------------------------------===//
static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
return type->isDependentType() ||
type->isObjCObjectPointerType() ||
S.Context.isObjCNSObjectType(type);
}
static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
return type->isDependentType() ||
type->isPointerType() ||
isValidSubjectOfNSAttribute(S, type);
}
static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
ParmVarDecl *param = dyn_cast<ParmVarDecl>(D);
if (!param) {
S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
<< Attr.getRange() << Attr.getName() << ExpectedParameter;
return;
}
bool typeOK, cf;
if (Attr.getKind() == AttributeList::AT_NSConsumed) {
typeOK = isValidSubjectOfNSAttribute(S, param->getType());
cf = false;
} else {
typeOK = isValidSubjectOfCFAttribute(S, param->getType());
cf = true;
}
if (!typeOK) {
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
<< Attr.getRange() << Attr.getName() << cf;
return;
}
if (cf)
param->addAttr(::new (S.Context)
CFConsumedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else
param->addAttr(::new (S.Context)
NSConsumedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNSConsumesSelfAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
<< Attr.getRange() << Attr.getName() << ExpectedMethod;
return;
}
D->addAttr(::new (S.Context)
NSConsumesSelfAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
QualType returnType;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
returnType = MD->getResultType();
else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
(Attr.getKind() == AttributeList::AT_NSReturnsRetained))
return; // ignore: was handled as a type attribute
else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
returnType = PD->getType();
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
returnType = FD->getResultType();
else {
S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
<< Attr.getRange() << Attr.getName()
<< ExpectedFunctionOrMethod;
return;
}
bool typeOK;
bool cf;
switch (Attr.getKind()) {
default: llvm_unreachable("invalid ownership attribute");
case AttributeList::AT_NSReturnsAutoreleased:
case AttributeList::AT_NSReturnsRetained:
case AttributeList::AT_NSReturnsNotRetained:
typeOK = isValidSubjectOfNSAttribute(S, returnType);
cf = false;
break;
case AttributeList::AT_CFReturnsRetained:
case AttributeList::AT_CFReturnsNotRetained:
typeOK = isValidSubjectOfCFAttribute(S, returnType);
cf = true;
break;
}
if (!typeOK) {
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
<< Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
return;
}
switch (Attr.getKind()) {
default:
llvm_unreachable("invalid ownership attribute");
case AttributeList::AT_NSReturnsAutoreleased:
D->addAttr(::new (S.Context)
NSReturnsAutoreleasedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_CFReturnsNotRetained:
D->addAttr(::new (S.Context)
CFReturnsNotRetainedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_NSReturnsNotRetained:
D->addAttr(::new (S.Context)
NSReturnsNotRetainedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_CFReturnsRetained:
D->addAttr(::new (S.Context)
CFReturnsRetainedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_NSReturnsRetained:
D->addAttr(::new (S.Context)
NSReturnsRetainedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
};
}
static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
const AttributeList &attr) {
SourceLocation loc = attr.getLoc();
ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
if (!method) {
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
<< SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
return;
}
// Check that the method returns a normal pointer.
QualType resultType = method->getResultType();
if (!resultType->isReferenceType() &&
(!resultType->isPointerType() || resultType->isObjCRetainableType())) {
S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
<< SourceRange(loc)
<< attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2;
// Drop the attribute.
return;
}
method->addAttr(::new (S.Context)
ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context,
attr.getAttributeSpellingListIndex()));
}
static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
const AttributeList &attr) {
SourceLocation loc = attr.getLoc();
ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
if (!method) {
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
<< SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
return;
}
DeclContext *DC = method->getDeclContext();
if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
<< attr.getName() << 0;
S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
return;
}
if (method->getMethodFamily() == OMF_dealloc) {
S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
<< attr.getName() << 1;
return;
}
method->addAttr(::new (S.Context)
ObjCRequiresSuperAttr(attr.getRange(), S.Context,
attr.getAttributeSpellingListIndex()));
}
/// Handle cf_audited_transfer and cf_unknown_transfer.
static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) {
if (!isa<FunctionDecl>(D)) {
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
<< A.getRange() << A.getName() << ExpectedFunction;
return;
}
bool IsAudited = (A.getKind() == AttributeList::AT_CFAuditedTransfer);
// Check whether there's a conflicting attribute already present.
Attr *Existing;
if (IsAudited) {
Existing = D->getAttr<CFUnknownTransferAttr>();
} else {
Existing = D->getAttr<CFAuditedTransferAttr>();
}
if (Existing) {
S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible)
<< A.getName()
<< (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer")
<< A.getRange() << Existing->getRange();
return;
}
// All clear; add the attribute.
if (IsAudited) {
D->addAttr(::new (S.Context)
CFAuditedTransferAttr(A.getRange(), S.Context,
A.getAttributeSpellingListIndex()));
} else {
D->addAttr(::new (S.Context)
CFUnknownTransferAttr(A.getRange(), S.Context,
A.getAttributeSpellingListIndex()));
}
}
static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D,
const AttributeList &Attr) {
RecordDecl *RD = dyn_cast<RecordDecl>(D);
if (!RD || RD->isUnion()) {
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
<< Attr.getRange() << Attr.getName() << ExpectedStruct;
}
IdentifierInfo *ParmName = Attr.getParameterName();
// In Objective-C, verify that the type names an Objective-C type.
// We don't want to check this outside of ObjC because people sometimes
// do crazy C declarations of Objective-C types.
if (ParmName && S.getLangOpts().ObjC1) {
// Check for an existing type with this name.
LookupResult R(S, DeclarationName(ParmName), Attr.getParameterLoc(),
Sema::LookupOrdinaryName);
if (S.LookupName(R, Sc)) {
NamedDecl *Target = R.getFoundDecl();
if (Target && !isa<ObjCInterfaceDecl>(Target)) {
S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface);
S.Diag(Target->getLocStart(), diag::note_declared_at);
}
}
}
D->addAttr(::new (S.Context)
NSBridgedAttr(Attr.getRange(), S.Context, ParmName,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCOwnershipAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (hasDeclarator(D)) return;
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
<< Attr.getRange() << Attr.getName() << ExpectedVariable;
}
static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) {
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
<< Attr.getRange() << Attr.getName() << ExpectedVariable;
return;
}
ValueDecl *vd = cast<ValueDecl>(D);
QualType type = vd->getType();
if (!type->isDependentType() &&
!type->isObjCLifetimeType()) {
S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
<< type;
return;
}
Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
// If we have no lifetime yet, check the lifetime we're presumably
// going to infer.
if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
lifetime = type->getObjCARCImplicitLifetime();
switch (lifetime) {
case Qualifiers::OCL_None:
assert(type->isDependentType() &&
"didn't infer lifetime for non-dependent type?");
break;
case Qualifiers::OCL_Weak: // meaningful
case Qualifiers::OCL_Strong: // meaningful
break;
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
<< (lifetime == Qualifiers::OCL_Autoreleasing);
break;
}
D->addAttr(::new (S.Context)
ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
//===----------------------------------------------------------------------===//
// Microsoft specific attribute handlers.
//===----------------------------------------------------------------------===//
static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.MicrosoftExt || S.LangOpts.Borland) {
// check the attribute arguments.
if (!checkAttributeNumArgs(S, Attr, 1))
return;
Expr *Arg = Attr.getArg(0);
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (!Str || !Str->isAscii()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "uuid" << 1;
return;
}
StringRef StrRef = Str->getString();
bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' &&
StrRef.back() == '}';
// Validate GUID length.
if (IsCurly && StrRef.size() != 38) {
S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
return;
}
if (!IsCurly && StrRef.size() != 36) {
S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
return;
}
// GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
// "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"
StringRef::iterator I = StrRef.begin();
if (IsCurly) // Skip the optional '{'
++I;
for (int i = 0; i < 36; ++i) {
if (i == 8 || i == 13 || i == 18 || i == 23) {
if (*I != '-') {
S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
return;
}
} else if (!isHexDigit(*I)) {
S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
return;
}
I++;
}
D->addAttr(::new (S.Context)
UuidAttr(Attr.getRange(), S.Context, Str->getString(),
Attr.getAttributeSpellingListIndex()));
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "uuid";
}
static void handleInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!S.LangOpts.MicrosoftExt) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
AttributeList::Kind Kind = Attr.getKind();
if (Kind == AttributeList::AT_SingleInheritance)
D->addAttr(
::new (S.Context)
SingleInheritanceAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else if (Kind == AttributeList::AT_MultipleInheritance)
D->addAttr(
::new (S.Context)
MultipleInheritanceAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else if (Kind == AttributeList::AT_VirtualInheritance)
D->addAttr(
::new (S.Context)
VirtualInheritanceAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handlePortabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.MicrosoftExt) {
AttributeList::Kind Kind = Attr.getKind();
if (Kind == AttributeList::AT_Ptr32)
D->addAttr(
::new (S.Context) Ptr32Attr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else if (Kind == AttributeList::AT_Ptr64)
D->addAttr(
::new (S.Context) Ptr64Attr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else if (Kind == AttributeList::AT_Win64)
D->addAttr(
::new (S.Context) Win64Attr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
}
static void handleForceInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.MicrosoftExt)
D->addAttr(::new (S.Context)
ForceInlineAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
}
//===----------------------------------------------------------------------===//
// Top Level Sema Entry Points
//===----------------------------------------------------------------------===//
static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr) {
switch (Attr.getKind()) {
case AttributeList::AT_CUDADevice: handleDeviceAttr (S, D, Attr); break;
case AttributeList::AT_CUDAHost: handleHostAttr (S, D, Attr); break;
case AttributeList::AT_Overloadable:handleOverloadableAttr(S, D, Attr); break;
default:
break;
}
}
static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr) {
switch (Attr.getKind()) {
case AttributeList::AT_IBAction: handleIBAction(S, D, Attr); break;
case AttributeList::AT_IBOutlet: handleIBOutlet(S, D, Attr); break;
case AttributeList::AT_IBOutletCollection:
handleIBOutletCollection(S, D, Attr); break;
case AttributeList::AT_AddressSpace:
case AttributeList::AT_OpenCLImageAccess:
case AttributeList::AT_ObjCGC:
case AttributeList::AT_VectorSize:
case AttributeList::AT_NeonVectorType:
case AttributeList::AT_NeonPolyVectorType:
// Ignore these, these are type attributes, handled by
// ProcessTypeAttributes.
break;
case AttributeList::AT_CUDADevice:
case AttributeList::AT_CUDAHost:
case AttributeList::AT_Overloadable:
// Ignore, this is a non-inheritable attribute, handled
// by ProcessNonInheritableDeclAttr.
break;
case AttributeList::AT_Alias: handleAliasAttr (S, D, Attr); break;
case AttributeList::AT_Aligned: handleAlignedAttr (S, D, Attr); break;
case AttributeList::AT_AllocSize: handleAllocSizeAttr (S, D, Attr); break;
case AttributeList::AT_AlwaysInline:
handleAlwaysInlineAttr (S, D, Attr); break;
case AttributeList::AT_AnalyzerNoReturn:
handleAnalyzerNoReturnAttr (S, D, Attr); break;
case AttributeList::AT_TLSModel: handleTLSModelAttr (S, D, Attr); break;
case AttributeList::AT_Annotate: handleAnnotateAttr (S, D, Attr); break;
case AttributeList::AT_Availability:handleAvailabilityAttr(S, D, Attr); break;
case AttributeList::AT_CarriesDependency:
handleDependencyAttr(S, scope, D, Attr);
break;
case AttributeList::AT_Common: handleCommonAttr (S, D, Attr); break;
case AttributeList::AT_CUDAConstant:handleConstantAttr (S, D, Attr); break;
case AttributeList::AT_Constructor: handleConstructorAttr (S, D, Attr); break;
case AttributeList::AT_CXX11NoReturn:
handleCXX11NoReturnAttr(S, D, Attr);
break;
case AttributeList::AT_Deprecated:
handleAttrWithMessage<DeprecatedAttr>(S, D, Attr, "deprecated");
break;
case AttributeList::AT_Destructor: handleDestructorAttr (S, D, Attr); break;
case AttributeList::AT_ExtVectorType:
handleExtVectorTypeAttr(S, scope, D, Attr);
break;
case AttributeList::AT_MinSize:
handleMinSizeAttr(S, D, Attr);
break;
case AttributeList::AT_Format: handleFormatAttr (S, D, Attr); break;
case AttributeList::AT_FormatArg: handleFormatArgAttr (S, D, Attr); break;
case AttributeList::AT_CUDAGlobal: handleGlobalAttr (S, D, Attr); break;
case AttributeList::AT_GNUInline: handleGNUInlineAttr (S, D, Attr); break;
case AttributeList::AT_CUDALaunchBounds:
handleLaunchBoundsAttr(S, D, Attr);
break;
case AttributeList::AT_Mode: handleModeAttr (S, D, Attr); break;
case AttributeList::AT_Malloc: handleMallocAttr (S, D, Attr); break;
case AttributeList::AT_MayAlias: handleMayAliasAttr (S, D, Attr); break;
case AttributeList::AT_NoCommon: handleNoCommonAttr (S, D, Attr); break;
case AttributeList::AT_NonNull: handleNonNullAttr (S, D, Attr); break;
case AttributeList::AT_ownership_returns:
case AttributeList::AT_ownership_takes:
case AttributeList::AT_ownership_holds:
handleOwnershipAttr (S, D, Attr); break;
case AttributeList::AT_Cold: handleColdAttr (S, D, Attr); break;
case AttributeList::AT_Hot: handleHotAttr (S, D, Attr); break;
case AttributeList::AT_Naked: handleNakedAttr (S, D, Attr); break;
case AttributeList::AT_NoReturn: handleNoReturnAttr (S, D, Attr); break;
case AttributeList::AT_NoThrow: handleNothrowAttr (S, D, Attr); break;
case AttributeList::AT_CUDAShared: handleSharedAttr (S, D, Attr); break;
case AttributeList::AT_VecReturn: handleVecReturnAttr (S, D, Attr); break;
case AttributeList::AT_ObjCOwnership:
handleObjCOwnershipAttr(S, D, Attr); break;
case AttributeList::AT_ObjCPreciseLifetime:
handleObjCPreciseLifetimeAttr(S, D, Attr); break;
case AttributeList::AT_ObjCReturnsInnerPointer:
handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
case AttributeList::AT_ObjCRequiresSuper:
handleObjCRequiresSuperAttr(S, D, Attr); break;
case AttributeList::AT_NSBridged:
handleNSBridgedAttr(S, scope, D, Attr); break;
case AttributeList::AT_CFAuditedTransfer:
case AttributeList::AT_CFUnknownTransfer:
handleCFTransferAttr(S, D, Attr); break;
// Checker-specific.
case AttributeList::AT_CFConsumed:
case AttributeList::AT_NSConsumed: handleNSConsumedAttr (S, D, Attr); break;
case AttributeList::AT_NSConsumesSelf:
handleNSConsumesSelfAttr(S, D, Attr); break;
case AttributeList::AT_NSReturnsAutoreleased:
case AttributeList::AT_NSReturnsNotRetained:
case AttributeList::AT_CFReturnsNotRetained:
case AttributeList::AT_NSReturnsRetained:
case AttributeList::AT_CFReturnsRetained:
handleNSReturnsRetainedAttr(S, D, Attr); break;
case AttributeList::AT_WorkGroupSizeHint:
case AttributeList::AT_ReqdWorkGroupSize:
handleWorkGroupSize(S, D, Attr); break;
case AttributeList::AT_VecTypeHint:
handleVecTypeHint(S, D, Attr); break;
case AttributeList::AT_Endian:
handleEndianAttr(S, D, Attr);
break;
case AttributeList::AT_InitPriority:
handleInitPriorityAttr(S, D, Attr); break;
case AttributeList::AT_Packed: handlePackedAttr (S, D, Attr); break;
case AttributeList::AT_Section: handleSectionAttr (S, D, Attr); break;
case AttributeList::AT_Unavailable:
handleAttrWithMessage<UnavailableAttr>(S, D, Attr, "unavailable");
break;
case AttributeList::AT_ArcWeakrefUnavailable:
handleArcWeakrefUnavailableAttr (S, D, Attr);
break;
case AttributeList::AT_ObjCRootClass:
handleObjCRootClassAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCRequiresPropertyDefs:
handleObjCRequiresPropertyDefsAttr (S, D, Attr);
break;
case AttributeList::AT_Unused: handleUnusedAttr (S, D, Attr); break;
case AttributeList::AT_ReturnsTwice:
handleReturnsTwiceAttr(S, D, Attr);
break;
case AttributeList::AT_Used: handleUsedAttr (S, D, Attr); break;
case AttributeList::AT_Visibility:
handleVisibilityAttr(S, D, Attr, false);
break;
case AttributeList::AT_TypeVisibility:
handleVisibilityAttr(S, D, Attr, true);
break;
case AttributeList::AT_WarnUnusedResult: handleWarnUnusedResult(S, D, Attr);
break;
case AttributeList::AT_Weak: handleWeakAttr (S, D, Attr); break;
case AttributeList::AT_WeakRef: handleWeakRefAttr (S, D, Attr); break;
case AttributeList::AT_WeakImport: handleWeakImportAttr (S, D, Attr); break;
case AttributeList::AT_TransparentUnion:
handleTransparentUnionAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCException:
handleObjCExceptionAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCMethodFamily:
handleObjCMethodFamilyAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCNSObject:handleObjCNSObject (S, D, Attr); break;
case AttributeList::AT_Blocks: handleBlocksAttr (S, D, Attr); break;
case AttributeList::AT_Sentinel: handleSentinelAttr (S, D, Attr); break;
case AttributeList::AT_Const: handleConstAttr (S, D, Attr); break;
case AttributeList::AT_Pure: handlePureAttr (S, D, Attr); break;
case AttributeList::AT_Cleanup: handleCleanupAttr (S, D, Attr); break;
case AttributeList::AT_NoDebug: handleNoDebugAttr (S, D, Attr); break;
case AttributeList::AT_NoInline: handleNoInlineAttr (S, D, Attr); break;
case AttributeList::AT_Regparm: handleRegparmAttr (S, D, Attr); break;
case AttributeList::IgnoredAttribute:
// Just ignore
break;
case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
handleNoInstrumentFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_StdCall:
case AttributeList::AT_CDecl:
case AttributeList::AT_FastCall:
case AttributeList::AT_ThisCall:
case AttributeList::AT_Pascal:
case AttributeList::AT_Pcs:
case AttributeList::AT_PnaclCall:
case AttributeList::AT_IntelOclBicc:
handleCallConvAttr(S, D, Attr);
break;
case AttributeList::AT_OpenCLKernel:
handleOpenCLKernelAttr(S, D, Attr);
break;
// Microsoft attributes:
case AttributeList::AT_MsStruct:
handleMsStructAttr(S, D, Attr);
break;
case AttributeList::AT_Uuid:
handleUuidAttr(S, D, Attr);
break;
case AttributeList::AT_SingleInheritance:
case AttributeList::AT_MultipleInheritance:
case AttributeList::AT_VirtualInheritance:
handleInheritanceAttr(S, D, Attr);
break;
case AttributeList::AT_Win64:
case AttributeList::AT_Ptr32:
case AttributeList::AT_Ptr64:
handlePortabilityAttr(S, D, Attr);
break;
case AttributeList::AT_ForceInline:
handleForceInlineAttr(S, D, Attr);
break;
// Thread safety attributes:
case AttributeList::AT_GuardedVar:
handleGuardedVarAttr(S, D, Attr);
break;
case AttributeList::AT_PtGuardedVar:
handlePtGuardedVarAttr(S, D, Attr);
break;
case AttributeList::AT_ScopedLockable:
handleScopedLockableAttr(S, D, Attr);
break;
case AttributeList::AT_NoSanitizeAddress:
handleNoSanitizeAddressAttr(S, D, Attr);
break;
case AttributeList::AT_NoThreadSafetyAnalysis:
handleNoThreadSafetyAnalysis(S, D, Attr);
break;
case AttributeList::AT_NoSanitizeThread:
handleNoSanitizeThread(S, D, Attr);
break;
case AttributeList::AT_NoSanitizeMemory:
handleNoSanitizeMemory(S, D, Attr);
break;
case AttributeList::AT_Lockable:
handleLockableAttr(S, D, Attr);
break;
case AttributeList::AT_GuardedBy:
handleGuardedByAttr(S, D, Attr);
break;
case AttributeList::AT_PtGuardedBy:
handlePtGuardedByAttr(S, D, Attr);
break;
case AttributeList::AT_ExclusiveLockFunction:
handleExclusiveLockFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_ExclusiveLocksRequired:
handleExclusiveLocksRequiredAttr(S, D, Attr);
break;
case AttributeList::AT_ExclusiveTrylockFunction:
handleExclusiveTrylockFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_LockReturned:
handleLockReturnedAttr(S, D, Attr);
break;
case AttributeList::AT_LocksExcluded:
handleLocksExcludedAttr(S, D, Attr);
break;
case AttributeList::AT_SharedLockFunction:
handleSharedLockFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_SharedLocksRequired:
handleSharedLocksRequiredAttr(S, D, Attr);
break;
case AttributeList::AT_SharedTrylockFunction:
handleSharedTrylockFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_UnlockFunction:
handleUnlockFunAttr(S, D, Attr);
break;
case AttributeList::AT_AcquiredBefore:
handleAcquiredBeforeAttr(S, D, Attr);
break;
case AttributeList::AT_AcquiredAfter:
handleAcquiredAfterAttr(S, D, Attr);
break;
// Type safety attributes.
case AttributeList::AT_ArgumentWithTypeTag:
handleArgumentWithTypeTagAttr(S, D, Attr);
break;
case AttributeList::AT_TypeTagForDatatype:
handleTypeTagForDatatypeAttr(S, D, Attr);
break;
default:
// Ask target about the attribute.
const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema();
if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S))
S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute() ?
diag::warn_unhandled_ms_attribute_ignored :
diag::warn_unknown_attribute_ignored) << Attr.getName();
break;
}
}
/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
/// the attribute applies to decls. If the attribute is a type attribute, just
/// silently ignore it if a GNU attribute.
static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr,
bool NonInheritable, bool Inheritable,
bool IncludeCXX11Attributes) {
if (Attr.isInvalid())
return;
// Ignore C++11 attributes on declarator chunks: they appertain to the type
// instead.
if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
return;
if (NonInheritable)
ProcessNonInheritableDeclAttr(S, scope, D, Attr);
if (Inheritable)
ProcessInheritableDeclAttr(S, scope, D, Attr);
}
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
/// attribute list to the specified decl, ignoring any type attributes.
void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
const AttributeList *AttrList,
bool NonInheritable, bool Inheritable,
bool IncludeCXX11Attributes) {
for (const AttributeList* l = AttrList; l; l = l->getNext())
ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable,
IncludeCXX11Attributes);
// GCC accepts
// static int a9 __attribute__((weakref));
// but that looks really pointless. We reject it.
if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) <<
cast<NamedDecl>(D)->getNameAsString();
D->dropAttr<WeakRefAttr>();
return;
}
}
// Annotation attributes are the only attributes allowed after an access
// specifier.
bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
const AttributeList *AttrList) {
for (const AttributeList* l = AttrList; l; l = l->getNext()) {
if (l->getKind() == AttributeList::AT_Annotate) {
handleAnnotateAttr(*this, ASDecl, *l);
} else {
Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
return true;
}
}
return false;
}
/// checkUnusedDeclAttributes - Check a list of attributes to see if it
/// contains any decl attributes that we should warn about.
static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
for ( ; A; A = A->getNext()) {
// Only warn if the attribute is an unignored, non-type attribute.
if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
if (A->getKind() == AttributeList::IgnoredAttribute) continue;
if (A->getKind() == AttributeList::UnknownAttribute) {
S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
<< A->getName() << A->getRange();
} else {
S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
<< A->getName() << A->getRange();
}
}
}
/// checkUnusedDeclAttributes - Given a declarator which is not being
/// used to build a declaration, complain about any decl attributes
/// which might be lying around on it.
void Sema::checkUnusedDeclAttributes(Declarator &D) {
::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
::checkUnusedDeclAttributes(*this, D.getAttributes());
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
}
/// DeclClonePragmaWeak - clone existing decl (maybe definition),
/// \#pragma weak needs a non-definition decl and source may not have one.
NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
SourceLocation Loc) {
assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
NamedDecl *NewD = 0;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
FunctionDecl *NewFD;
// FIXME: Missing call to CheckFunctionDeclaration().
// FIXME: Mangling?
// FIXME: Is the qualifier info correct?
// FIXME: Is the DeclContext correct?
NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
Loc, Loc, DeclarationName(II),
FD->getType(), FD->getTypeSourceInfo(),
SC_None, SC_None,
false/*isInlineSpecified*/,
FD->hasPrototype(),
false/*isConstexprSpecified*/);
NewD = NewFD;
if (FD->getQualifier())
NewFD->setQualifierInfo(FD->getQualifierLoc());
// Fake up parameter variables; they are declared as if this were
// a typedef.
QualType FDTy = FD->getType();
if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
SmallVector<ParmVarDecl*, 16> Params;
for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
AE = FT->arg_type_end(); AI != AE; ++AI) {
ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI);
Param->setScopeInfo(0, Params.size());
Params.push_back(Param);
}
NewFD->setParams(Params);
}
} else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
VD->getInnerLocStart(), VD->getLocation(), II,
VD->getType(), VD->getTypeSourceInfo(),
VD->getStorageClass(),
VD->getStorageClassAsWritten());
if (VD->getQualifier()) {
VarDecl *NewVD = cast<VarDecl>(NewD);
NewVD->setQualifierInfo(VD->getQualifierLoc());
}
}
return NewD;
}
/// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
/// applied to it, possibly with an alias.
void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
if (W.getUsed()) return; // only do this once
W.setUsed(true);
if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
IdentifierInfo *NDId = ND->getIdentifier();
NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context,
NDId->getName()));
NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
WeakTopLevelDecl.push_back(NewD);
// FIXME: "hideous" code from Sema::LazilyCreateBuiltin
// to insert Decl at TU scope, sorry.
DeclContext *SavedContext = CurContext;
CurContext = Context.getTranslationUnitDecl();
PushOnScopeChains(NewD, S);
CurContext = SavedContext;
} else { // just add weak to existing
ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
}
}
void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
// It's valid to "forward-declare" #pragma weak, in which case we
// have to do this.
LoadExternalWeakUndeclaredIdentifiers();
if (!WeakUndeclaredIdentifiers.empty()) {
NamedDecl *ND = NULL;
if (VarDecl *VD = dyn_cast<VarDecl>(D))
if (VD->isExternC())
ND = VD;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
if (FD->isExternC())
ND = FD;
if (ND) {
if (IdentifierInfo *Id = ND->getIdentifier()) {
llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
= WeakUndeclaredIdentifiers.find(Id);
if (I != WeakUndeclaredIdentifiers.end()) {
WeakInfo W = I->second;
DeclApplyPragmaWeak(S, ND, W);
WeakUndeclaredIdentifiers[Id] = W;
}
}
}
}
}
/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
/// it, apply them to D. This is a bit tricky because PD can have attributes
/// specified in many different places, and we need to find and apply them all.
void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD,
bool NonInheritable, bool Inheritable) {
// Apply decl attributes from the DeclSpec if present.
if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
// Walk the declarator structure, applying decl attributes that were in a type
// position to the decl itself. This handles cases like:
// int *__attr__(x)** D;
// when X is a decl attribute.
for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable,
/*IncludeCXX11Attributes=*/false);
// Finally, apply any attributes on the decl itself.
if (const AttributeList *Attrs = PD.getAttributes())
ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
}
/// Is the given declaration allowed to use a forbidden type?
static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
// Private ivars are always okay. Unfortunately, people don't
// always properly make their ivars private, even in system headers.
// Plus we need to make fields okay, too.
// Function declarations in sys headers will be marked unavailable.
if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
!isa<FunctionDecl>(decl))
return false;
// Require it to be declared in a system header.
return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
}
/// Handle a delayed forbidden-type diagnostic.
static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
Decl *decl) {
if (decl && isForbiddenTypeAllowed(S, decl)) {
decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context,
"this system declaration uses an unsupported type"));
return;
}
if (S.getLangOpts().ObjCAutoRefCount)
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
// FIXME: we may want to suppress diagnostics for all
// kind of forbidden type messages on unavailable functions.
if (FD->hasAttr<UnavailableAttr>() &&
diag.getForbiddenTypeDiagnostic() ==
diag::err_arc_array_param_no_ownership) {
diag.Triggered = true;
return;
}
}
S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
<< diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
diag.Triggered = true;
}
void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
assert(DelayedDiagnostics.getCurrentPool());
DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
DelayedDiagnostics.popWithoutEmitting(state);
// When delaying diagnostics to run in the context of a parsed
// declaration, we only want to actually emit anything if parsing
// succeeds.
if (!decl) return;
// We emit all the active diagnostics in this pool or any of its
// parents. In general, we'll get one pool for the decl spec
// and a child pool for each declarator; in a decl group like:
// deprecated_typedef foo, *bar, baz();
// only the declarator pops will be passed decls. This is correct;
// we really do need to consider delayed diagnostics from the decl spec
// for each of the different declarations.
const DelayedDiagnosticPool *pool = &poppedPool;
do {
for (DelayedDiagnosticPool::pool_iterator
i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
// This const_cast is a bit lame. Really, Triggered should be mutable.
DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
if (diag.Triggered)
continue;
switch (diag.Kind) {
case DelayedDiagnostic::Deprecation:
// Don't bother giving deprecation diagnostics if the decl is invalid.
if (!decl->isInvalidDecl())
HandleDelayedDeprecationCheck(diag, decl);
break;
case DelayedDiagnostic::Access:
HandleDelayedAccessCheck(diag, decl);
break;
case DelayedDiagnostic::ForbiddenType:
handleDelayedForbiddenType(*this, diag, decl);
break;
}
}
} while ((pool = pool->getParent()));
}
/// Given a set of delayed diagnostics, re-emit them as if they had
/// been delayed in the current context instead of in the given pool.
/// Essentially, this just moves them to the current pool.
void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
assert(curPool && "re-emitting in undelayed context not supported");
curPool->steal(pool);
}
static bool isDeclDeprecated(Decl *D) {
do {
if (D->isDeprecated())
return true;
// A category implicitly has the availability of the interface.
if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
return CatD->getClassInterface()->isDeprecated();
} while ((D = cast_or_null<Decl>(D->getDeclContext())));
return false;
}
static void
DoEmitDeprecationWarning(Sema &S, const NamedDecl *D, StringRef Message,
SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass,
const ObjCPropertyDecl *ObjCPropery) {
DeclarationName Name = D->getDeclName();
if (!Message.empty()) {
S.Diag(Loc, diag::warn_deprecated_message) << Name << Message;
S.Diag(D->getLocation(),
isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
: diag::note_previous_decl) << Name;
if (ObjCPropery)
S.Diag(ObjCPropery->getLocation(), diag::note_property_attribute)
<< ObjCPropery->getDeclName() << 0;
} else if (!UnknownObjCClass) {
S.Diag(Loc, diag::warn_deprecated) << D->getDeclName();
S.Diag(D->getLocation(),
isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
: diag::note_previous_decl) << Name;
if (ObjCPropery)
S.Diag(ObjCPropery->getLocation(), diag::note_property_attribute)
<< ObjCPropery->getDeclName() << 0;
} else {
S.Diag(Loc, diag::warn_deprecated_fwdclass_message) << Name;
S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
}
}
void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD,
Decl *Ctx) {
if (isDeclDeprecated(Ctx))
return;
DD.Triggered = true;
DoEmitDeprecationWarning(*this, DD.getDeprecationDecl(),
DD.getDeprecationMessage(), DD.Loc,
DD.getUnknownObjCClass(),
DD.getObjCProperty());
}
void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message,
SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass,
const ObjCPropertyDecl *ObjCProperty) {
// Delay if we're currently parsing a declaration.
if (DelayedDiagnostics.shouldDelayDiagnostics()) {
DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D,
UnknownObjCClass,
ObjCProperty,
Message));
return;
}
// Otherwise, don't warn if our current context is deprecated.
if (isDeclDeprecated(cast<Decl>(getCurLexicalContext())))
return;
DoEmitDeprecationWarning(*this, D, Message, Loc, UnknownObjCClass, ObjCProperty);
}