| //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| //===----------------------------------------------------------------------===/ |
| // |
| // This file implements C++ template instantiation for declarations. |
| // |
| //===----------------------------------------------------------------------===/ |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/DeclVisitor.h" |
| #include "clang/AST/DependentDiagnostic.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/PrettyDeclStackTrace.h" |
| #include "clang/Sema/Template.h" |
| |
| using namespace clang; |
| |
| bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, |
| DeclaratorDecl *NewDecl) { |
| if (!OldDecl->getQualifierLoc()) |
| return false; |
| |
| NestedNameSpecifierLoc NewQualifierLoc |
| = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), |
| TemplateArgs); |
| |
| if (!NewQualifierLoc) |
| return true; |
| |
| NewDecl->setQualifierInfo(NewQualifierLoc); |
| return false; |
| } |
| |
| bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, |
| TagDecl *NewDecl) { |
| if (!OldDecl->getQualifierLoc()) |
| return false; |
| |
| NestedNameSpecifierLoc NewQualifierLoc |
| = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), |
| TemplateArgs); |
| |
| if (!NewQualifierLoc) |
| return true; |
| |
| NewDecl->setQualifierInfo(NewQualifierLoc); |
| return false; |
| } |
| |
| // Include attribute instantiation code. |
| #include "clang/Sema/AttrTemplateInstantiate.inc" |
| |
| static void instantiateDependentAlignedAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { |
| if (Aligned->isAlignmentExpr()) { |
| // The alignment expression is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated); |
| ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); |
| if (!Result.isInvalid()) |
| S.AddAlignedAttr(Aligned->getLocation(), New, Result.takeAs<Expr>(), |
| Aligned->getSpellingListIndex(), IsPackExpansion); |
| } else { |
| TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(), |
| TemplateArgs, Aligned->getLocation(), |
| DeclarationName()); |
| if (Result) |
| S.AddAlignedAttr(Aligned->getLocation(), New, Result, |
| Aligned->getSpellingListIndex(), IsPackExpansion); |
| } |
| } |
| |
| static void instantiateDependentAlignedAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const AlignedAttr *Aligned, Decl *New) { |
| if (!Aligned->isPackExpansion()) { |
| instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); |
| return; |
| } |
| |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| if (Aligned->isAlignmentExpr()) |
| S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), |
| Unexpanded); |
| else |
| S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), |
| Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether we can expand this attribute pack yet. |
| bool Expand = true, RetainExpansion = false; |
| Optional<unsigned> NumExpansions; |
| // FIXME: Use the actual location of the ellipsis. |
| SourceLocation EllipsisLoc = Aligned->getLocation(); |
| if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), |
| Unexpanded, TemplateArgs, Expand, |
| RetainExpansion, NumExpansions)) |
| return; |
| |
| if (!Expand) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); |
| instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); |
| } else { |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); |
| instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); |
| } |
| } |
| } |
| |
| void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, |
| const Decl *Tmpl, Decl *New, |
| LateInstantiatedAttrVec *LateAttrs, |
| LocalInstantiationScope *OuterMostScope) { |
| for (AttrVec::const_iterator i = Tmpl->attr_begin(), e = Tmpl->attr_end(); |
| i != e; ++i) { |
| const Attr *TmplAttr = *i; |
| |
| // FIXME: This should be generalized to more than just the AlignedAttr. |
| const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr); |
| if (Aligned && Aligned->isAlignmentDependent()) { |
| instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); |
| continue; |
| } |
| |
| assert(!TmplAttr->isPackExpansion()); |
| if (TmplAttr->isLateParsed() && LateAttrs) { |
| // Late parsed attributes must be instantiated and attached after the |
| // enclosing class has been instantiated. See Sema::InstantiateClass. |
| LocalInstantiationScope *Saved = 0; |
| if (CurrentInstantiationScope) |
| Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); |
| LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); |
| } else { |
| Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, |
| *this, TemplateArgs); |
| if (NewAttr) |
| New->addAttr(NewAttr); |
| } |
| } |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { |
| llvm_unreachable("Translation units cannot be instantiated"); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { |
| LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getIdentifier()); |
| Owner->addDecl(Inst); |
| return Inst; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { |
| llvm_unreachable("Namespaces cannot be instantiated"); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { |
| NamespaceAliasDecl *Inst |
| = NamespaceAliasDecl::Create(SemaRef.Context, Owner, |
| D->getNamespaceLoc(), |
| D->getAliasLoc(), |
| D->getIdentifier(), |
| D->getQualifierLoc(), |
| D->getTargetNameLoc(), |
| D->getNamespace()); |
| Owner->addDecl(Inst); |
| return Inst; |
| } |
| |
| Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, |
| bool IsTypeAlias) { |
| bool Invalid = false; |
| TypeSourceInfo *DI = D->getTypeSourceInfo(); |
| if (DI->getType()->isInstantiationDependentType() || |
| DI->getType()->isVariablyModifiedType()) { |
| DI = SemaRef.SubstType(DI, TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (!DI) { |
| Invalid = true; |
| DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); |
| } |
| } else { |
| SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); |
| } |
| |
| // HACK: g++ has a bug where it gets the value kind of ?: wrong. |
| // libstdc++ relies upon this bug in its implementation of common_type. |
| // If we happen to be processing that implementation, fake up the g++ ?: |
| // semantics. See LWG issue 2141 for more information on the bug. |
| const DecltypeType *DT = DI->getType()->getAs<DecltypeType>(); |
| CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); |
| if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) && |
| DT->isReferenceType() && |
| RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && |
| RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && |
| D->getIdentifier() && D->getIdentifier()->isStr("type") && |
| SemaRef.getSourceManager().isInSystemHeader(D->getLocStart())) |
| // Fold it to the (non-reference) type which g++ would have produced. |
| DI = SemaRef.Context.getTrivialTypeSourceInfo( |
| DI->getType().getNonReferenceType()); |
| |
| // Create the new typedef |
| TypedefNameDecl *Typedef; |
| if (IsTypeAlias) |
| Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getLocStart(), |
| D->getLocation(), D->getIdentifier(), DI); |
| else |
| Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getLocStart(), |
| D->getLocation(), D->getIdentifier(), DI); |
| if (Invalid) |
| Typedef->setInvalidDecl(); |
| |
| // If the old typedef was the name for linkage purposes of an anonymous |
| // tag decl, re-establish that relationship for the new typedef. |
| if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { |
| TagDecl *oldTag = oldTagType->getDecl(); |
| if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { |
| TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); |
| assert(!newTag->hasNameForLinkage()); |
| newTag->setTypedefNameForAnonDecl(Typedef); |
| } |
| } |
| |
| if (TypedefNameDecl *Prev = D->getPreviousDecl()) { |
| NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, |
| TemplateArgs); |
| if (!InstPrev) |
| return 0; |
| |
| TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev); |
| |
| // If the typedef types are not identical, reject them. |
| SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); |
| |
| Typedef->setPreviousDeclaration(InstPrevTypedef); |
| } |
| |
| SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); |
| |
| Typedef->setAccess(D->getAccess()); |
| |
| return Typedef; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { |
| Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); |
| Owner->addDecl(Typedef); |
| return Typedef; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { |
| Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); |
| Owner->addDecl(Typedef); |
| return Typedef; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { |
| // Create a local instantiation scope for this type alias template, which |
| // will contain the instantiations of the template parameters. |
| LocalInstantiationScope Scope(SemaRef); |
| |
| TemplateParameterList *TempParams = D->getTemplateParameters(); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return 0; |
| |
| TypeAliasDecl *Pattern = D->getTemplatedDecl(); |
| |
| TypeAliasTemplateDecl *PrevAliasTemplate = 0; |
| if (Pattern->getPreviousDecl()) { |
| DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); |
| if (!Found.empty()) { |
| PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front()); |
| } |
| } |
| |
| TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( |
| InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); |
| if (!AliasInst) |
| return 0; |
| |
| TypeAliasTemplateDecl *Inst |
| = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getDeclName(), InstParams, AliasInst); |
| if (PrevAliasTemplate) |
| Inst->setPreviousDeclaration(PrevAliasTemplate); |
| |
| Inst->setAccess(D->getAccess()); |
| |
| if (!PrevAliasTemplate) |
| Inst->setInstantiatedFromMemberTemplate(D); |
| |
| Owner->addDecl(Inst); |
| |
| return Inst; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { |
| // If this is the variable for an anonymous struct or union, |
| // instantiate the anonymous struct/union type first. |
| if (const RecordType *RecordTy = D->getType()->getAs<RecordType>()) |
| if (RecordTy->getDecl()->isAnonymousStructOrUnion()) |
| if (!VisitCXXRecordDecl(cast<CXXRecordDecl>(RecordTy->getDecl()))) |
| return 0; |
| |
| // Do substitution on the type of the declaration |
| TypeSourceInfo *DI = SemaRef.SubstType(D->getTypeSourceInfo(), |
| TemplateArgs, |
| D->getTypeSpecStartLoc(), |
| D->getDeclName()); |
| if (!DI) |
| return 0; |
| |
| if (DI->getType()->isFunctionType()) { |
| SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) |
| << D->isStaticDataMember() << DI->getType(); |
| return 0; |
| } |
| |
| // Build the instantiated declaration |
| VarDecl *Var = VarDecl::Create(SemaRef.Context, Owner, |
| D->getInnerLocStart(), |
| D->getLocation(), D->getIdentifier(), |
| DI->getType(), DI, |
| D->getStorageClass(), |
| D->getStorageClassAsWritten()); |
| Var->setThreadSpecified(D->isThreadSpecified()); |
| Var->setInitStyle(D->getInitStyle()); |
| Var->setCXXForRangeDecl(D->isCXXForRangeDecl()); |
| Var->setConstexpr(D->isConstexpr()); |
| |
| // Substitute the nested name specifier, if any. |
| if (SubstQualifier(D, Var)) |
| return 0; |
| |
| // If we are instantiating a static data member defined |
| // out-of-line, the instantiation will have the same lexical |
| // context (which will be a namespace scope) as the template. |
| if (D->isOutOfLine()) |
| Var->setLexicalDeclContext(D->getLexicalDeclContext()); |
| |
| Var->setAccess(D->getAccess()); |
| |
| if (!D->isStaticDataMember()) { |
| Var->setUsed(D->isUsed(false)); |
| Var->setReferenced(D->isReferenced()); |
| } |
| |
| SemaRef.InstantiateAttrs(TemplateArgs, D, Var, LateAttrs, StartingScope); |
| |
| if (Var->hasAttrs()) |
| SemaRef.CheckAlignasUnderalignment(Var); |
| |
| // FIXME: In theory, we could have a previous declaration for variables that |
| // are not static data members. |
| // FIXME: having to fake up a LookupResult is dumb. |
| LookupResult Previous(SemaRef, Var->getDeclName(), Var->getLocation(), |
| Sema::LookupOrdinaryName, Sema::ForRedeclaration); |
| if (D->isStaticDataMember()) |
| SemaRef.LookupQualifiedName(Previous, Owner, false); |
| |
| // In ARC, infer 'retaining' for variables of retainable type. |
| if (SemaRef.getLangOpts().ObjCAutoRefCount && |
| SemaRef.inferObjCARCLifetime(Var)) |
| Var->setInvalidDecl(); |
| |
| SemaRef.CheckVariableDeclaration(Var, Previous); |
| |
| if (D->isOutOfLine()) { |
| D->getLexicalDeclContext()->addDecl(Var); |
| Owner->makeDeclVisibleInContext(Var); |
| } else { |
| Owner->addDecl(Var); |
| if (Owner->isFunctionOrMethod()) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Var); |
| } |
| |
| // Link instantiations of static data members back to the template from |
| // which they were instantiated. |
| if (Var->isStaticDataMember()) |
| SemaRef.Context.setInstantiatedFromStaticDataMember(Var, D, |
| TSK_ImplicitInstantiation); |
| |
| if (Var->getAnyInitializer()) { |
| // We already have an initializer in the class. |
| } else if (D->getInit()) { |
| if (Var->isStaticDataMember() && !D->isOutOfLine()) |
| SemaRef.PushExpressionEvaluationContext(Sema::ConstantEvaluated, D); |
| else |
| SemaRef.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated, D); |
| |
| // Instantiate the initializer. |
| ExprResult Init = SemaRef.SubstInitializer(D->getInit(), TemplateArgs, |
| D->getInitStyle() == VarDecl::CallInit); |
| if (!Init.isInvalid()) { |
| bool TypeMayContainAuto = true; |
| if (Init.get()) { |
| bool DirectInit = D->isDirectInit(); |
| SemaRef.AddInitializerToDecl(Var, Init.take(), DirectInit, |
| TypeMayContainAuto); |
| } else |
| SemaRef.ActOnUninitializedDecl(Var, TypeMayContainAuto); |
| } else { |
| // FIXME: Not too happy about invalidating the declaration |
| // because of a bogus initializer. |
| Var->setInvalidDecl(); |
| } |
| |
| SemaRef.PopExpressionEvaluationContext(); |
| } else if ((!Var->isStaticDataMember() || Var->isOutOfLine()) && |
| !Var->isCXXForRangeDecl()) |
| SemaRef.ActOnUninitializedDecl(Var, false); |
| |
| // Diagnose unused local variables with dependent types, where the diagnostic |
| // will have been deferred. |
| if (!Var->isInvalidDecl() && Owner->isFunctionOrMethod() && !Var->isUsed() && |
| D->getType()->isDependentType()) |
| SemaRef.DiagnoseUnusedDecl(Var); |
| |
| return Var; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { |
| AccessSpecDecl* AD |
| = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, |
| D->getAccessSpecifierLoc(), D->getColonLoc()); |
| Owner->addHiddenDecl(AD); |
| return AD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { |
| bool Invalid = false; |
| TypeSourceInfo *DI = D->getTypeSourceInfo(); |
| if (DI->getType()->isInstantiationDependentType() || |
| DI->getType()->isVariablyModifiedType()) { |
| DI = SemaRef.SubstType(DI, TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (!DI) { |
| DI = D->getTypeSourceInfo(); |
| Invalid = true; |
| } else if (DI->getType()->isFunctionType()) { |
| // C++ [temp.arg.type]p3: |
| // If a declaration acquires a function type through a type |
| // dependent on a template-parameter and this causes a |
| // declaration that does not use the syntactic form of a |
| // function declarator to have function type, the program is |
| // ill-formed. |
| SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) |
| << DI->getType(); |
| Invalid = true; |
| } |
| } else { |
| SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); |
| } |
| |
| Expr *BitWidth = D->getBitWidth(); |
| if (Invalid) |
| BitWidth = 0; |
| else if (BitWidth) { |
| // The bit-width expression is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, |
| Sema::ConstantEvaluated); |
| |
| ExprResult InstantiatedBitWidth |
| = SemaRef.SubstExpr(BitWidth, TemplateArgs); |
| if (InstantiatedBitWidth.isInvalid()) { |
| Invalid = true; |
| BitWidth = 0; |
| } else |
| BitWidth = InstantiatedBitWidth.takeAs<Expr>(); |
| } |
| |
| FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), |
| DI->getType(), DI, |
| cast<RecordDecl>(Owner), |
| D->getLocation(), |
| D->isMutable(), |
| BitWidth, |
| D->getInClassInitStyle(), |
| D->getInnerLocStart(), |
| D->getAccess(), |
| 0); |
| if (!Field) { |
| cast<Decl>(Owner)->setInvalidDecl(); |
| return 0; |
| } |
| |
| SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); |
| |
| if (Field->hasAttrs()) |
| SemaRef.CheckAlignasUnderalignment(Field); |
| |
| if (Invalid) |
| Field->setInvalidDecl(); |
| |
| if (!Field->getDeclName()) { |
| // Keep track of where this decl came from. |
| SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); |
| } |
| if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { |
| if (Parent->isAnonymousStructOrUnion() && |
| Parent->getRedeclContext()->isFunctionOrMethod()) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); |
| } |
| |
| Field->setImplicit(D->isImplicit()); |
| Field->setAccess(D->getAccess()); |
| Owner->addDecl(Field); |
| |
| return Field; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { |
| NamedDecl **NamedChain = |
| new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; |
| |
| int i = 0; |
| for (IndirectFieldDecl::chain_iterator PI = |
| D->chain_begin(), PE = D->chain_end(); |
| PI != PE; ++PI) { |
| NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), *PI, |
| TemplateArgs); |
| if (!Next) |
| return 0; |
| |
| NamedChain[i++] = Next; |
| } |
| |
| QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); |
| IndirectFieldDecl* IndirectField |
| = IndirectFieldDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getIdentifier(), T, |
| NamedChain, D->getChainingSize()); |
| |
| |
| IndirectField->setImplicit(D->isImplicit()); |
| IndirectField->setAccess(D->getAccess()); |
| Owner->addDecl(IndirectField); |
| return IndirectField; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { |
| // Handle friend type expressions by simply substituting template |
| // parameters into the pattern type and checking the result. |
| if (TypeSourceInfo *Ty = D->getFriendType()) { |
| TypeSourceInfo *InstTy; |
| // If this is an unsupported friend, don't bother substituting template |
| // arguments into it. The actual type referred to won't be used by any |
| // parts of Clang, and may not be valid for instantiating. Just use the |
| // same info for the instantiated friend. |
| if (D->isUnsupportedFriend()) { |
| InstTy = Ty; |
| } else { |
| InstTy = SemaRef.SubstType(Ty, TemplateArgs, |
| D->getLocation(), DeclarationName()); |
| } |
| if (!InstTy) |
| return 0; |
| |
| FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getLocStart(), |
| D->getFriendLoc(), InstTy); |
| if (!FD) |
| return 0; |
| |
| FD->setAccess(AS_public); |
| FD->setUnsupportedFriend(D->isUnsupportedFriend()); |
| Owner->addDecl(FD); |
| return FD; |
| } |
| |
| NamedDecl *ND = D->getFriendDecl(); |
| assert(ND && "friend decl must be a decl or a type!"); |
| |
| // All of the Visit implementations for the various potential friend |
| // declarations have to be carefully written to work for friend |
| // objects, with the most important detail being that the target |
| // decl should almost certainly not be placed in Owner. |
| Decl *NewND = Visit(ND); |
| if (!NewND) return 0; |
| |
| FriendDecl *FD = |
| FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| cast<NamedDecl>(NewND), D->getFriendLoc()); |
| FD->setAccess(AS_public); |
| FD->setUnsupportedFriend(D->isUnsupportedFriend()); |
| Owner->addDecl(FD); |
| return FD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { |
| Expr *AssertExpr = D->getAssertExpr(); |
| |
| // The expression in a static assertion is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, |
| Sema::ConstantEvaluated); |
| |
| ExprResult InstantiatedAssertExpr |
| = SemaRef.SubstExpr(AssertExpr, TemplateArgs); |
| if (InstantiatedAssertExpr.isInvalid()) |
| return 0; |
| |
| return SemaRef.BuildStaticAssertDeclaration(D->getLocation(), |
| InstantiatedAssertExpr.get(), |
| D->getMessage(), |
| D->getRParenLoc(), |
| D->isFailed()); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { |
| EnumDecl *PrevDecl = 0; |
| if (D->getPreviousDecl()) { |
| NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), |
| D->getPreviousDecl(), |
| TemplateArgs); |
| if (!Prev) return 0; |
| PrevDecl = cast<EnumDecl>(Prev); |
| } |
| |
| EnumDecl *Enum = EnumDecl::Create(SemaRef.Context, Owner, D->getLocStart(), |
| D->getLocation(), D->getIdentifier(), |
| PrevDecl, D->isScoped(), |
| D->isScopedUsingClassTag(), D->isFixed()); |
| if (D->isFixed()) { |
| if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { |
| // If we have type source information for the underlying type, it means it |
| // has been explicitly set by the user. Perform substitution on it before |
| // moving on. |
| SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); |
| TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, |
| DeclarationName()); |
| if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) |
| Enum->setIntegerType(SemaRef.Context.IntTy); |
| else |
| Enum->setIntegerTypeSourceInfo(NewTI); |
| } else { |
| assert(!D->getIntegerType()->isDependentType() |
| && "Dependent type without type source info"); |
| Enum->setIntegerType(D->getIntegerType()); |
| } |
| } |
| |
| SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); |
| |
| Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); |
| Enum->setAccess(D->getAccess()); |
| if (SubstQualifier(D, Enum)) return 0; |
| Owner->addDecl(Enum); |
| |
| EnumDecl *Def = D->getDefinition(); |
| if (Def && Def != D) { |
| // If this is an out-of-line definition of an enum member template, check |
| // that the underlying types match in the instantiation of both |
| // declarations. |
| if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { |
| SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); |
| QualType DefnUnderlying = |
| SemaRef.SubstType(TI->getType(), TemplateArgs, |
| UnderlyingLoc, DeclarationName()); |
| SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), |
| DefnUnderlying, Enum); |
| } |
| } |
| |
| if (D->getDeclContext()->isFunctionOrMethod()) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); |
| |
| // C++11 [temp.inst]p1: The implicit instantiation of a class template |
| // specialization causes the implicit instantiation of the declarations, but |
| // not the definitions of scoped member enumerations. |
| // FIXME: There appears to be no wording for what happens for an enum defined |
| // within a block scope, but we treat that much like a member template. Only |
| // instantiate the definition when visiting the definition in that case, since |
| // we will visit all redeclarations. |
| if (!Enum->isScoped() && Def && |
| (!D->getDeclContext()->isFunctionOrMethod() || D->isCompleteDefinition())) |
| InstantiateEnumDefinition(Enum, Def); |
| |
| return Enum; |
| } |
| |
| void TemplateDeclInstantiator::InstantiateEnumDefinition( |
| EnumDecl *Enum, EnumDecl *Pattern) { |
| Enum->startDefinition(); |
| |
| // Update the location to refer to the definition. |
| Enum->setLocation(Pattern->getLocation()); |
| |
| SmallVector<Decl*, 4> Enumerators; |
| |
| EnumConstantDecl *LastEnumConst = 0; |
| for (EnumDecl::enumerator_iterator EC = Pattern->enumerator_begin(), |
| ECEnd = Pattern->enumerator_end(); |
| EC != ECEnd; ++EC) { |
| // The specified value for the enumerator. |
| ExprResult Value = SemaRef.Owned((Expr *)0); |
| if (Expr *UninstValue = EC->getInitExpr()) { |
| // The enumerator's value expression is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, |
| Sema::ConstantEvaluated); |
| |
| Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); |
| } |
| |
| // Drop the initial value and continue. |
| bool isInvalid = false; |
| if (Value.isInvalid()) { |
| Value = SemaRef.Owned((Expr *)0); |
| isInvalid = true; |
| } |
| |
| EnumConstantDecl *EnumConst |
| = SemaRef.CheckEnumConstant(Enum, LastEnumConst, |
| EC->getLocation(), EC->getIdentifier(), |
| Value.get()); |
| |
| if (isInvalid) { |
| if (EnumConst) |
| EnumConst->setInvalidDecl(); |
| Enum->setInvalidDecl(); |
| } |
| |
| if (EnumConst) { |
| SemaRef.InstantiateAttrs(TemplateArgs, *EC, EnumConst); |
| |
| EnumConst->setAccess(Enum->getAccess()); |
| Enum->addDecl(EnumConst); |
| Enumerators.push_back(EnumConst); |
| LastEnumConst = EnumConst; |
| |
| if (Pattern->getDeclContext()->isFunctionOrMethod() && |
| !Enum->isScoped()) { |
| // If the enumeration is within a function or method, record the enum |
| // constant as a local. |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(*EC, EnumConst); |
| } |
| } |
| } |
| |
| // FIXME: Fixup LBraceLoc |
| SemaRef.ActOnEnumBody(Enum->getLocation(), SourceLocation(), |
| Enum->getRBraceLoc(), Enum, |
| Enumerators.data(), Enumerators.size(), |
| 0, 0); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { |
| llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { |
| bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); |
| |
| // Create a local instantiation scope for this class template, which |
| // will contain the instantiations of the template parameters. |
| LocalInstantiationScope Scope(SemaRef); |
| TemplateParameterList *TempParams = D->getTemplateParameters(); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return NULL; |
| |
| CXXRecordDecl *Pattern = D->getTemplatedDecl(); |
| |
| // Instantiate the qualifier. We have to do this first in case |
| // we're a friend declaration, because if we are then we need to put |
| // the new declaration in the appropriate context. |
| NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, |
| TemplateArgs); |
| if (!QualifierLoc) |
| return 0; |
| } |
| |
| CXXRecordDecl *PrevDecl = 0; |
| ClassTemplateDecl *PrevClassTemplate = 0; |
| |
| if (!isFriend && Pattern->getPreviousDecl()) { |
| DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); |
| if (!Found.empty()) { |
| PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front()); |
| if (PrevClassTemplate) |
| PrevDecl = PrevClassTemplate->getTemplatedDecl(); |
| } |
| } |
| |
| // If this isn't a friend, then it's a member template, in which |
| // case we just want to build the instantiation in the |
| // specialization. If it is a friend, we want to build it in |
| // the appropriate context. |
| DeclContext *DC = Owner; |
| if (isFriend) { |
| if (QualifierLoc) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| DC = SemaRef.computeDeclContext(SS); |
| if (!DC) return 0; |
| } else { |
| DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), |
| Pattern->getDeclContext(), |
| TemplateArgs); |
| } |
| |
| // Look for a previous declaration of the template in the owning |
| // context. |
| LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), |
| Sema::LookupOrdinaryName, Sema::ForRedeclaration); |
| SemaRef.LookupQualifiedName(R, DC); |
| |
| if (R.isSingleResult()) { |
| PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); |
| if (PrevClassTemplate) |
| PrevDecl = PrevClassTemplate->getTemplatedDecl(); |
| } |
| |
| if (!PrevClassTemplate && QualifierLoc) { |
| SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) |
| << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC |
| << QualifierLoc.getSourceRange(); |
| return 0; |
| } |
| |
| bool AdoptedPreviousTemplateParams = false; |
| if (PrevClassTemplate) { |
| bool Complain = true; |
| |
| // HACK: libstdc++ 4.2.1 contains an ill-formed friend class |
| // template for struct std::tr1::__detail::_Map_base, where the |
| // template parameters of the friend declaration don't match the |
| // template parameters of the original declaration. In this one |
| // case, we don't complain about the ill-formed friend |
| // declaration. |
| if (isFriend && Pattern->getIdentifier() && |
| Pattern->getIdentifier()->isStr("_Map_base") && |
| DC->isNamespace() && |
| cast<NamespaceDecl>(DC)->getIdentifier() && |
| cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__detail")) { |
| DeclContext *DCParent = DC->getParent(); |
| if (DCParent->isNamespace() && |
| cast<NamespaceDecl>(DCParent)->getIdentifier() && |
| cast<NamespaceDecl>(DCParent)->getIdentifier()->isStr("tr1")) { |
| DeclContext *DCParent2 = DCParent->getParent(); |
| if (DCParent2->isNamespace() && |
| cast<NamespaceDecl>(DCParent2)->getIdentifier() && |
| cast<NamespaceDecl>(DCParent2)->getIdentifier()->isStr("std") && |
| DCParent2->getParent()->isTranslationUnit()) |
| Complain = false; |
| } |
| } |
| |
| TemplateParameterList *PrevParams |
| = PrevClassTemplate->getTemplateParameters(); |
| |
| // Make sure the parameter lists match. |
| if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, |
| Complain, |
| Sema::TPL_TemplateMatch)) { |
| if (Complain) |
| return 0; |
| |
| AdoptedPreviousTemplateParams = true; |
| InstParams = PrevParams; |
| } |
| |
| // Do some additional validation, then merge default arguments |
| // from the existing declarations. |
| if (!AdoptedPreviousTemplateParams && |
| SemaRef.CheckTemplateParameterList(InstParams, PrevParams, |
| Sema::TPC_ClassTemplate)) |
| return 0; |
| } |
| } |
| |
| CXXRecordDecl *RecordInst |
| = CXXRecordDecl::Create(SemaRef.Context, Pattern->getTagKind(), DC, |
| Pattern->getLocStart(), Pattern->getLocation(), |
| Pattern->getIdentifier(), PrevDecl, |
| /*DelayTypeCreation=*/true); |
| |
| if (QualifierLoc) |
| RecordInst->setQualifierInfo(QualifierLoc); |
| |
| ClassTemplateDecl *Inst |
| = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), |
| D->getIdentifier(), InstParams, RecordInst, |
| PrevClassTemplate); |
| RecordInst->setDescribedClassTemplate(Inst); |
| |
| if (isFriend) { |
| if (PrevClassTemplate) |
| Inst->setAccess(PrevClassTemplate->getAccess()); |
| else |
| Inst->setAccess(D->getAccess()); |
| |
| Inst->setObjectOfFriendDecl(PrevClassTemplate != 0); |
| // TODO: do we want to track the instantiation progeny of this |
| // friend target decl? |
| } else { |
| Inst->setAccess(D->getAccess()); |
| if (!PrevClassTemplate) |
| Inst->setInstantiatedFromMemberTemplate(D); |
| } |
| |
| // Trigger creation of the type for the instantiation. |
| SemaRef.Context.getInjectedClassNameType(RecordInst, |
| Inst->getInjectedClassNameSpecialization()); |
| |
| // Finish handling of friends. |
| if (isFriend) { |
| DC->makeDeclVisibleInContext(Inst); |
| Inst->setLexicalDeclContext(Owner); |
| RecordInst->setLexicalDeclContext(Owner); |
| return Inst; |
| } |
| |
| if (D->isOutOfLine()) { |
| Inst->setLexicalDeclContext(D->getLexicalDeclContext()); |
| RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); |
| } |
| |
| Owner->addDecl(Inst); |
| |
| if (!PrevClassTemplate) { |
| // Queue up any out-of-line partial specializations of this member |
| // class template; the client will force their instantiation once |
| // the enclosing class has been instantiated. |
| SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; |
| D->getPartialSpecializations(PartialSpecs); |
| for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) |
| if (PartialSpecs[I]->isOutOfLine()) |
| OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); |
| } |
| |
| return Inst; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( |
| ClassTemplatePartialSpecializationDecl *D) { |
| ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); |
| |
| // Lookup the already-instantiated declaration in the instantiation |
| // of the class template and return that. |
| DeclContext::lookup_result Found |
| = Owner->lookup(ClassTemplate->getDeclName()); |
| if (Found.empty()) |
| return 0; |
| |
| ClassTemplateDecl *InstClassTemplate |
| = dyn_cast<ClassTemplateDecl>(Found.front()); |
| if (!InstClassTemplate) |
| return 0; |
| |
| if (ClassTemplatePartialSpecializationDecl *Result |
| = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) |
| return Result; |
| |
| return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { |
| // Create a local instantiation scope for this function template, which |
| // will contain the instantiations of the template parameters and then get |
| // merged with the local instantiation scope for the function template |
| // itself. |
| LocalInstantiationScope Scope(SemaRef); |
| |
| TemplateParameterList *TempParams = D->getTemplateParameters(); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return NULL; |
| |
| FunctionDecl *Instantiated = 0; |
| if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) |
| Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, |
| InstParams)); |
| else |
| Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( |
| D->getTemplatedDecl(), |
| InstParams)); |
| |
| if (!Instantiated) |
| return 0; |
| |
| // Link the instantiated function template declaration to the function |
| // template from which it was instantiated. |
| FunctionTemplateDecl *InstTemplate |
| = Instantiated->getDescribedFunctionTemplate(); |
| InstTemplate->setAccess(D->getAccess()); |
| assert(InstTemplate && |
| "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); |
| |
| bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); |
| |
| // Link the instantiation back to the pattern *unless* this is a |
| // non-definition friend declaration. |
| if (!InstTemplate->getInstantiatedFromMemberTemplate() && |
| !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) |
| InstTemplate->setInstantiatedFromMemberTemplate(D); |
| |
| // Make declarations visible in the appropriate context. |
| if (!isFriend) { |
| Owner->addDecl(InstTemplate); |
| } else if (InstTemplate->getDeclContext()->isRecord() && |
| !D->getPreviousDecl()) { |
| SemaRef.CheckFriendAccess(InstTemplate); |
| } |
| |
| return InstTemplate; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { |
| CXXRecordDecl *PrevDecl = 0; |
| if (D->isInjectedClassName()) |
| PrevDecl = cast<CXXRecordDecl>(Owner); |
| else if (D->getPreviousDecl()) { |
| NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), |
| D->getPreviousDecl(), |
| TemplateArgs); |
| if (!Prev) return 0; |
| PrevDecl = cast<CXXRecordDecl>(Prev); |
| } |
| |
| CXXRecordDecl *Record |
| = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, |
| D->getLocStart(), D->getLocation(), |
| D->getIdentifier(), PrevDecl); |
| |
| // Substitute the nested name specifier, if any. |
| if (SubstQualifier(D, Record)) |
| return 0; |
| |
| Record->setImplicit(D->isImplicit()); |
| // FIXME: Check against AS_none is an ugly hack to work around the issue that |
| // the tag decls introduced by friend class declarations don't have an access |
| // specifier. Remove once this area of the code gets sorted out. |
| if (D->getAccess() != AS_none) |
| Record->setAccess(D->getAccess()); |
| if (!D->isInjectedClassName()) |
| Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); |
| |
| // If the original function was part of a friend declaration, |
| // inherit its namespace state. |
| if (Decl::FriendObjectKind FOK = D->getFriendObjectKind()) |
| Record->setObjectOfFriendDecl(FOK == Decl::FOK_Declared); |
| |
| // Make sure that anonymous structs and unions are recorded. |
| if (D->isAnonymousStructOrUnion()) { |
| Record->setAnonymousStructOrUnion(true); |
| if (Record->getDeclContext()->getRedeclContext()->isFunctionOrMethod()) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); |
| } |
| |
| Owner->addDecl(Record); |
| return Record; |
| } |
| |
| /// \brief Adjust the given function type for an instantiation of the |
| /// given declaration, to cope with modifications to the function's type that |
| /// aren't reflected in the type-source information. |
| /// |
| /// \param D The declaration we're instantiating. |
| /// \param TInfo The already-instantiated type. |
| static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, |
| FunctionDecl *D, |
| TypeSourceInfo *TInfo) { |
| const FunctionProtoType *OrigFunc |
| = D->getType()->castAs<FunctionProtoType>(); |
| const FunctionProtoType *NewFunc |
| = TInfo->getType()->castAs<FunctionProtoType>(); |
| if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) |
| return TInfo->getType(); |
| |
| FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); |
| NewEPI.ExtInfo = OrigFunc->getExtInfo(); |
| return Context.getFunctionType(NewFunc->getResultType(), |
| ArrayRef<QualType>(NewFunc->arg_type_begin(), |
| NewFunc->getNumArgs()), |
| NewEPI); |
| } |
| |
| /// Normal class members are of more specific types and therefore |
| /// don't make it here. This function serves two purposes: |
| /// 1) instantiating function templates |
| /// 2) substituting friend declarations |
| /// FIXME: preserve function definitions in case #2 |
| Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D, |
| TemplateParameterList *TemplateParams) { |
| // Check whether there is already a function template specialization for |
| // this declaration. |
| FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); |
| if (FunctionTemplate && !TemplateParams) { |
| std::pair<const TemplateArgument *, unsigned> Innermost |
| = TemplateArgs.getInnermost(); |
| |
| void *InsertPos = 0; |
| FunctionDecl *SpecFunc |
| = FunctionTemplate->findSpecialization(Innermost.first, Innermost.second, |
| InsertPos); |
| |
| // If we already have a function template specialization, return it. |
| if (SpecFunc) |
| return SpecFunc; |
| } |
| |
| bool isFriend; |
| if (FunctionTemplate) |
| isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); |
| else |
| isFriend = (D->getFriendObjectKind() != Decl::FOK_None); |
| |
| bool MergeWithParentScope = (TemplateParams != 0) || |
| Owner->isFunctionOrMethod() || |
| !(isa<Decl>(Owner) && |
| cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); |
| LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); |
| |
| SmallVector<ParmVarDecl *, 4> Params; |
| TypeSourceInfo *TInfo = SubstFunctionType(D, Params); |
| if (!TInfo) |
| return 0; |
| QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); |
| |
| NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, |
| TemplateArgs); |
| if (!QualifierLoc) |
| return 0; |
| } |
| |
| // If we're instantiating a local function declaration, put the result |
| // in the owner; otherwise we need to find the instantiated context. |
| DeclContext *DC; |
| if (D->getDeclContext()->isFunctionOrMethod()) |
| DC = Owner; |
| else if (isFriend && QualifierLoc) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| DC = SemaRef.computeDeclContext(SS); |
| if (!DC) return 0; |
| } else { |
| DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), |
| TemplateArgs); |
| } |
| |
| FunctionDecl *Function = |
| FunctionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), |
| D->getNameInfo(), T, TInfo, |
| D->getStorageClass(), D->getStorageClassAsWritten(), |
| D->isInlineSpecified(), D->hasWrittenPrototype(), |
| D->isConstexpr()); |
| |
| if (D->isInlined()) |
| Function->setImplicitlyInline(); |
| |
| if (QualifierLoc) |
| Function->setQualifierInfo(QualifierLoc); |
| |
| DeclContext *LexicalDC = Owner; |
| if (!isFriend && D->isOutOfLine()) { |
| assert(D->getDeclContext()->isFileContext()); |
| LexicalDC = D->getDeclContext(); |
| } |
| |
| Function->setLexicalDeclContext(LexicalDC); |
| |
| // Attach the parameters |
| if (isa<FunctionProtoType>(Function->getType().IgnoreParens())) { |
| // Adopt the already-instantiated parameters into our own context. |
| for (unsigned P = 0; P < Params.size(); ++P) |
| if (Params[P]) |
| Params[P]->setOwningFunction(Function); |
| } else { |
| // Since we were instantiated via a typedef of a function type, create |
| // new parameters. |
| const FunctionProtoType *Proto |
| = Function->getType()->getAs<FunctionProtoType>(); |
| assert(Proto && "No function prototype in template instantiation?"); |
| for (FunctionProtoType::arg_type_iterator AI = Proto->arg_type_begin(), |
| AE = Proto->arg_type_end(); AI != AE; ++AI) { |
| ParmVarDecl *Param |
| = SemaRef.BuildParmVarDeclForTypedef(Function, Function->getLocation(), |
| *AI); |
| Param->setScopeInfo(0, Params.size()); |
| Params.push_back(Param); |
| } |
| } |
| Function->setParams(Params); |
| |
| SourceLocation InstantiateAtPOI; |
| if (TemplateParams) { |
| // Our resulting instantiation is actually a function template, since we |
| // are substituting only the outer template parameters. For example, given |
| // |
| // template<typename T> |
| // struct X { |
| // template<typename U> friend void f(T, U); |
| // }; |
| // |
| // X<int> x; |
| // |
| // We are instantiating the friend function template "f" within X<int>, |
| // which means substituting int for T, but leaving "f" as a friend function |
| // template. |
| // Build the function template itself. |
| FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, |
| Function->getLocation(), |
| Function->getDeclName(), |
| TemplateParams, Function); |
| Function->setDescribedFunctionTemplate(FunctionTemplate); |
| |
| FunctionTemplate->setLexicalDeclContext(LexicalDC); |
| |
| if (isFriend && D->isThisDeclarationADefinition()) { |
| // TODO: should we remember this connection regardless of whether |
| // the friend declaration provided a body? |
| FunctionTemplate->setInstantiatedFromMemberTemplate( |
| D->getDescribedFunctionTemplate()); |
| } |
| } else if (FunctionTemplate) { |
| // Record this function template specialization. |
| std::pair<const TemplateArgument *, unsigned> Innermost |
| = TemplateArgs.getInnermost(); |
| Function->setFunctionTemplateSpecialization(FunctionTemplate, |
| TemplateArgumentList::CreateCopy(SemaRef.Context, |
| Innermost.first, |
| Innermost.second), |
| /*InsertPos=*/0); |
| } else if (isFriend) { |
| // Note, we need this connection even if the friend doesn't have a body. |
| // Its body may exist but not have been attached yet due to deferred |
| // parsing. |
| // FIXME: It might be cleaner to set this when attaching the body to the |
| // friend function declaration, however that would require finding all the |
| // instantiations and modifying them. |
| Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); |
| } |
| |
| if (InitFunctionInstantiation(Function, D)) |
| Function->setInvalidDecl(); |
| |
| bool isExplicitSpecialization = false; |
| |
| LookupResult Previous(SemaRef, Function->getDeclName(), SourceLocation(), |
| Sema::LookupOrdinaryName, Sema::ForRedeclaration); |
| |
| if (DependentFunctionTemplateSpecializationInfo *Info |
| = D->getDependentSpecializationInfo()) { |
| assert(isFriend && "non-friend has dependent specialization info?"); |
| |
| // This needs to be set now for future sanity. |
| Function->setObjectOfFriendDecl(/*HasPrevious*/ true); |
| |
| // Instantiate the explicit template arguments. |
| TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), |
| Info->getRAngleLoc()); |
| if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), |
| ExplicitArgs, TemplateArgs)) |
| return 0; |
| |
| // Map the candidate templates to their instantiations. |
| for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { |
| Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), |
| Info->getTemplate(I), |
| TemplateArgs); |
| if (!Temp) return 0; |
| |
| Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); |
| } |
| |
| if (SemaRef.CheckFunctionTemplateSpecialization(Function, |
| &ExplicitArgs, |
| Previous)) |
| Function->setInvalidDecl(); |
| |
| isExplicitSpecialization = true; |
| |
| } else if (TemplateParams || !FunctionTemplate) { |
| // Look only into the namespace where the friend would be declared to |
| // find a previous declaration. This is the innermost enclosing namespace, |
| // as described in ActOnFriendFunctionDecl. |
| SemaRef.LookupQualifiedName(Previous, DC); |
| |
| // In C++, the previous declaration we find might be a tag type |
| // (class or enum). In this case, the new declaration will hide the |
| // tag type. Note that this does does not apply if we're declaring a |
| // typedef (C++ [dcl.typedef]p4). |
| if (Previous.isSingleTagDecl()) |
| Previous.clear(); |
| } |
| |
| SemaRef.CheckFunctionDeclaration(/*Scope*/ 0, Function, Previous, |
| isExplicitSpecialization); |
| |
| NamedDecl *PrincipalDecl = (TemplateParams |
| ? cast<NamedDecl>(FunctionTemplate) |
| : Function); |
| |
| // If the original function was part of a friend declaration, |
| // inherit its namespace state and add it to the owner. |
| if (isFriend) { |
| NamedDecl *PrevDecl; |
| if (TemplateParams) |
| PrevDecl = FunctionTemplate->getPreviousDecl(); |
| else |
| PrevDecl = Function->getPreviousDecl(); |
| |
| PrincipalDecl->setObjectOfFriendDecl(PrevDecl != 0); |
| DC->makeDeclVisibleInContext(PrincipalDecl); |
| |
| bool queuedInstantiation = false; |
| |
| // C++98 [temp.friend]p5: When a function is defined in a friend function |
| // declaration in a class template, the function is defined at each |
| // instantiation of the class template. The function is defined even if it |
| // is never used. |
| // C++11 [temp.friend]p4: When a function is defined in a friend function |
| // declaration in a class template, the function is instantiated when the |
| // function is odr-used. |
| // |
| // If -Wc++98-compat is enabled, we go through the motions of checking for a |
| // redefinition, but don't instantiate the function. |
| if ((!SemaRef.getLangOpts().CPlusPlus11 || |
| SemaRef.Diags.getDiagnosticLevel( |
| diag::warn_cxx98_compat_friend_redefinition, |
| Function->getLocation()) |
| != DiagnosticsEngine::Ignored) && |
| D->isThisDeclarationADefinition()) { |
| // Check for a function body. |
| const FunctionDecl *Definition = 0; |
| if (Function->isDefined(Definition) && |
| Definition->getTemplateSpecializationKind() == TSK_Undeclared) { |
| SemaRef.Diag(Function->getLocation(), |
| SemaRef.getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_friend_redefinition : |
| diag::err_redefinition) << Function->getDeclName(); |
| SemaRef.Diag(Definition->getLocation(), diag::note_previous_definition); |
| if (!SemaRef.getLangOpts().CPlusPlus11) |
| Function->setInvalidDecl(); |
| } |
| // Check for redefinitions due to other instantiations of this or |
| // a similar friend function. |
| else for (FunctionDecl::redecl_iterator R = Function->redecls_begin(), |
| REnd = Function->redecls_end(); |
| R != REnd; ++R) { |
| if (*R == Function) |
| continue; |
| switch (R->getFriendObjectKind()) { |
| case Decl::FOK_None: |
| if (!SemaRef.getLangOpts().CPlusPlus11 && |
| !queuedInstantiation && R->isUsed(false)) { |
| if (MemberSpecializationInfo *MSInfo |
| = Function->getMemberSpecializationInfo()) { |
| if (MSInfo->getPointOfInstantiation().isInvalid()) { |
| SourceLocation Loc = R->getLocation(); // FIXME |
| MSInfo->setPointOfInstantiation(Loc); |
| SemaRef.PendingLocalImplicitInstantiations.push_back( |
| std::make_pair(Function, Loc)); |
| queuedInstantiation = true; |
| } |
| } |
| } |
| break; |
| default: |
| if (const FunctionDecl *RPattern |
| = R->getTemplateInstantiationPattern()) |
| if (RPattern->isDefined(RPattern)) { |
| SemaRef.Diag(Function->getLocation(), |
| SemaRef.getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_friend_redefinition : |
| diag::err_redefinition) |
| << Function->getDeclName(); |
| SemaRef.Diag(R->getLocation(), diag::note_previous_definition); |
| if (!SemaRef.getLangOpts().CPlusPlus11) |
| Function->setInvalidDecl(); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| if (Function->isOverloadedOperator() && !DC->isRecord() && |
| PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) |
| PrincipalDecl->setNonMemberOperator(); |
| |
| assert(!D->isDefaulted() && "only methods should be defaulted"); |
| return Function; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D, |
| TemplateParameterList *TemplateParams, |
| bool IsClassScopeSpecialization) { |
| FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); |
| if (FunctionTemplate && !TemplateParams) { |
| // We are creating a function template specialization from a function |
| // template. Check whether there is already a function template |
| // specialization for this particular set of template arguments. |
| std::pair<const TemplateArgument *, unsigned> Innermost |
| = TemplateArgs.getInnermost(); |
| |
| void *InsertPos = 0; |
| FunctionDecl *SpecFunc |
| = FunctionTemplate->findSpecialization(Innermost.first, Innermost.second, |
| InsertPos); |
| |
| // If we already have a function template specialization, return it. |
| if (SpecFunc) |
| return SpecFunc; |
| } |
| |
| bool isFriend; |
| if (FunctionTemplate) |
| isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); |
| else |
| isFriend = (D->getFriendObjectKind() != Decl::FOK_None); |
| |
| bool MergeWithParentScope = (TemplateParams != 0) || |
| !(isa<Decl>(Owner) && |
| cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); |
| LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); |
| |
| // Instantiate enclosing template arguments for friends. |
| SmallVector<TemplateParameterList *, 4> TempParamLists; |
| unsigned NumTempParamLists = 0; |
| if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { |
| TempParamLists.set_size(NumTempParamLists); |
| for (unsigned I = 0; I != NumTempParamLists; ++I) { |
| TemplateParameterList *TempParams = D->getTemplateParameterList(I); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return NULL; |
| TempParamLists[I] = InstParams; |
| } |
| } |
| |
| SmallVector<ParmVarDecl *, 4> Params; |
| TypeSourceInfo *TInfo = SubstFunctionType(D, Params); |
| if (!TInfo) |
| return 0; |
| QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); |
| |
| // \brief If the type of this function, after ignoring parentheses, |
| // is not *directly* a function type, then we're instantiating a function |
| // that was declared via a typedef, e.g., |
| // |
| // typedef int functype(int, int); |
| // functype func; |
| // |
| // In this case, we'll just go instantiate the ParmVarDecls that we |
| // synthesized in the method declaration. |
| if (!isa<FunctionProtoType>(T.IgnoreParens())) { |
| assert(!Params.size() && "Instantiating type could not yield parameters"); |
| SmallVector<QualType, 4> ParamTypes; |
| if (SemaRef.SubstParmTypes(D->getLocation(), D->param_begin(), |
| D->getNumParams(), TemplateArgs, ParamTypes, |
| &Params)) |
| return 0; |
| } |
| |
| NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, |
| TemplateArgs); |
| if (!QualifierLoc) |
| return 0; |
| } |
| |
| DeclContext *DC = Owner; |
| if (isFriend) { |
| if (QualifierLoc) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| DC = SemaRef.computeDeclContext(SS); |
| |
| if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) |
| return 0; |
| } else { |
| DC = SemaRef.FindInstantiatedContext(D->getLocation(), |
| D->getDeclContext(), |
| TemplateArgs); |
| } |
| if (!DC) return 0; |
| } |
| |
| // Build the instantiated method declaration. |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); |
| CXXMethodDecl *Method = 0; |
| |
| SourceLocation StartLoc = D->getInnerLocStart(); |
| DeclarationNameInfo NameInfo |
| = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { |
| Method = CXXConstructorDecl::Create(SemaRef.Context, Record, |
| StartLoc, NameInfo, T, TInfo, |
| Constructor->isExplicit(), |
| Constructor->isInlineSpecified(), |
| false, Constructor->isConstexpr()); |
| } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { |
| Method = CXXDestructorDecl::Create(SemaRef.Context, Record, |
| StartLoc, NameInfo, T, TInfo, |
| Destructor->isInlineSpecified(), |
| false); |
| } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { |
| Method = CXXConversionDecl::Create(SemaRef.Context, Record, |
| StartLoc, NameInfo, T, TInfo, |
| Conversion->isInlineSpecified(), |
| Conversion->isExplicit(), |
| Conversion->isConstexpr(), |
| Conversion->getLocEnd()); |
| } else { |
| Method = CXXMethodDecl::Create(SemaRef.Context, Record, |
| StartLoc, NameInfo, T, TInfo, |
| D->isStatic(), |
| D->getStorageClassAsWritten(), |
| D->isInlineSpecified(), |
| D->isConstexpr(), D->getLocEnd()); |
| } |
| |
| if (D->isInlined()) |
| Method->setImplicitlyInline(); |
| |
| if (QualifierLoc) |
| Method->setQualifierInfo(QualifierLoc); |
| |
| if (TemplateParams) { |
| // Our resulting instantiation is actually a function template, since we |
| // are substituting only the outer template parameters. For example, given |
| // |
| // template<typename T> |
| // struct X { |
| // template<typename U> void f(T, U); |
| // }; |
| // |
| // X<int> x; |
| // |
| // We are instantiating the member template "f" within X<int>, which means |
| // substituting int for T, but leaving "f" as a member function template. |
| // Build the function template itself. |
| FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, |
| Method->getLocation(), |
| Method->getDeclName(), |
| TemplateParams, Method); |
| if (isFriend) { |
| FunctionTemplate->setLexicalDeclContext(Owner); |
| FunctionTemplate->setObjectOfFriendDecl(true); |
| } else if (D->isOutOfLine()) |
| FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); |
| Method->setDescribedFunctionTemplate(FunctionTemplate); |
| } else if (FunctionTemplate) { |
| // Record this function template specialization. |
| std::pair<const TemplateArgument *, unsigned> Innermost |
| = TemplateArgs.getInnermost(); |
| Method->setFunctionTemplateSpecialization(FunctionTemplate, |
| TemplateArgumentList::CreateCopy(SemaRef.Context, |
| Innermost.first, |
| Innermost.second), |
| /*InsertPos=*/0); |
| } else if (!isFriend) { |
| // Record that this is an instantiation of a member function. |
| Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); |
| } |
| |
| // If we are instantiating a member function defined |
| // out-of-line, the instantiation will have the same lexical |
| // context (which will be a namespace scope) as the template. |
| if (isFriend) { |
| if (NumTempParamLists) |
| Method->setTemplateParameterListsInfo(SemaRef.Context, |
| NumTempParamLists, |
| TempParamLists.data()); |
| |
| Method->setLexicalDeclContext(Owner); |
| Method->setObjectOfFriendDecl(true); |
| } else if (D->isOutOfLine()) |
| Method->setLexicalDeclContext(D->getLexicalDeclContext()); |
| |
| // Attach the parameters |
| for (unsigned P = 0; P < Params.size(); ++P) |
| Params[P]->setOwningFunction(Method); |
| Method->setParams(Params); |
| |
| if (InitMethodInstantiation(Method, D)) |
| Method->setInvalidDecl(); |
| |
| LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, |
| Sema::ForRedeclaration); |
| |
| if (!FunctionTemplate || TemplateParams || isFriend) { |
| SemaRef.LookupQualifiedName(Previous, Record); |
| |
| // In C++, the previous declaration we find might be a tag type |
| // (class or enum). In this case, the new declaration will hide the |
| // tag type. Note that this does does not apply if we're declaring a |
| // typedef (C++ [dcl.typedef]p4). |
| if (Previous.isSingleTagDecl()) |
| Previous.clear(); |
| } |
| |
| if (!IsClassScopeSpecialization) |
| SemaRef.CheckFunctionDeclaration(0, Method, Previous, false); |
| |
| if (D->isPure()) |
| SemaRef.CheckPureMethod(Method, SourceRange()); |
| |
| // Propagate access. For a non-friend declaration, the access is |
| // whatever we're propagating from. For a friend, it should be the |
| // previous declaration we just found. |
| if (isFriend && Method->getPreviousDecl()) |
| Method->setAccess(Method->getPreviousDecl()->getAccess()); |
| else |
| Method->setAccess(D->getAccess()); |
| if (FunctionTemplate) |
| FunctionTemplate->setAccess(Method->getAccess()); |
| |
| SemaRef.CheckOverrideControl(Method); |
| |
| // If a function is defined as defaulted or deleted, mark it as such now. |
| if (D->isExplicitlyDefaulted()) |
| SemaRef.SetDeclDefaulted(Method, Method->getLocation()); |
| if (D->isDeletedAsWritten()) |
| SemaRef.SetDeclDeleted(Method, Method->getLocation()); |
| |
| // If there's a function template, let our caller handle it. |
| if (FunctionTemplate) { |
| // do nothing |
| |
| // Don't hide a (potentially) valid declaration with an invalid one. |
| } else if (Method->isInvalidDecl() && !Previous.empty()) { |
| // do nothing |
| |
| // Otherwise, check access to friends and make them visible. |
| } else if (isFriend) { |
| // We only need to re-check access for methods which we didn't |
| // manage to match during parsing. |
| if (!D->getPreviousDecl()) |
| SemaRef.CheckFriendAccess(Method); |
| |
| Record->makeDeclVisibleInContext(Method); |
| |
| // Otherwise, add the declaration. We don't need to do this for |
| // class-scope specializations because we'll have matched them with |
| // the appropriate template. |
| } else if (!IsClassScopeSpecialization) { |
| Owner->addDecl(Method); |
| } |
| |
| return Method; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { |
| return VisitCXXMethodDecl(D); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { |
| return VisitCXXMethodDecl(D); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { |
| return VisitCXXMethodDecl(D); |
| } |
| |
| ParmVarDecl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { |
| return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None, |
| /*ExpectParameterPack=*/ false); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( |
| TemplateTypeParmDecl *D) { |
| // TODO: don't always clone when decls are refcounted. |
| assert(D->getTypeForDecl()->isTemplateTypeParmType()); |
| |
| TemplateTypeParmDecl *Inst = |
| TemplateTypeParmDecl::Create(SemaRef.Context, Owner, |
| D->getLocStart(), D->getLocation(), |
| D->getDepth() - TemplateArgs.getNumLevels(), |
| D->getIndex(), D->getIdentifier(), |
| D->wasDeclaredWithTypename(), |
| D->isParameterPack()); |
| Inst->setAccess(AS_public); |
| |
| if (D->hasDefaultArgument()) |
| Inst->setDefaultArgument(D->getDefaultArgumentInfo(), false); |
| |
| // Introduce this template parameter's instantiation into the instantiation |
| // scope. |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); |
| |
| return Inst; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( |
| NonTypeTemplateParmDecl *D) { |
| // Substitute into the type of the non-type template parameter. |
| TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); |
| SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; |
| SmallVector<QualType, 4> ExpandedParameterPackTypes; |
| bool IsExpandedParameterPack = false; |
| TypeSourceInfo *DI; |
| QualType T; |
| bool Invalid = false; |
| |
| if (D->isExpandedParameterPack()) { |
| // The non-type template parameter pack is an already-expanded pack |
| // expansion of types. Substitute into each of the expanded types. |
| ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); |
| ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); |
| for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { |
| TypeSourceInfo *NewDI =SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), |
| TemplateArgs, |
| D->getLocation(), |
| D->getDeclName()); |
| if (!NewDI) |
| return 0; |
| |
| ExpandedParameterPackTypesAsWritten.push_back(NewDI); |
| QualType NewT =SemaRef.CheckNonTypeTemplateParameterType(NewDI->getType(), |
| D->getLocation()); |
| if (NewT.isNull()) |
| return 0; |
| ExpandedParameterPackTypes.push_back(NewT); |
| } |
| |
| IsExpandedParameterPack = true; |
| DI = D->getTypeSourceInfo(); |
| T = DI->getType(); |
| } else if (D->isPackExpansion()) { |
| // The non-type template parameter pack's type is a pack expansion of types. |
| // Determine whether we need to expand this parameter pack into separate |
| // types. |
| PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>(); |
| TypeLoc Pattern = Expansion.getPatternLoc(); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| Optional<unsigned> OrigNumExpansions |
| = Expansion.getTypePtr()->getNumExpansions(); |
| Optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), |
| Pattern.getSourceRange(), |
| Unexpanded, |
| TemplateArgs, |
| Expand, RetainExpansion, |
| NumExpansions)) |
| return 0; |
| |
| if (Expand) { |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); |
| TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, |
| D->getLocation(), |
| D->getDeclName()); |
| if (!NewDI) |
| return 0; |
| |
| ExpandedParameterPackTypesAsWritten.push_back(NewDI); |
| QualType NewT = SemaRef.CheckNonTypeTemplateParameterType( |
| NewDI->getType(), |
| D->getLocation()); |
| if (NewT.isNull()) |
| return 0; |
| ExpandedParameterPackTypes.push_back(NewT); |
| } |
| |
| // Note that we have an expanded parameter pack. The "type" of this |
| // expanded parameter pack is the original expansion type, but callers |
| // will end up using the expanded parameter pack types for type-checking. |
| IsExpandedParameterPack = true; |
| DI = D->getTypeSourceInfo(); |
| T = DI->getType(); |
| } else { |
| // We cannot fully expand the pack expansion now, so substitute into the |
| // pattern and create a new pack expansion type. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); |
| TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, |
| D->getLocation(), |
| D->getDeclName()); |
| if (!NewPattern) |
| return 0; |
| |
| DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), |
| NumExpansions); |
| if (!DI) |
| return 0; |
| |
| T = DI->getType(); |
| } |
| } else { |
| // Simple case: substitution into a parameter that is not a parameter pack. |
| DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (!DI) |
| return 0; |
| |
| // Check that this type is acceptable for a non-type template parameter. |
| T = SemaRef.CheckNonTypeTemplateParameterType(DI->getType(), |
| D->getLocation()); |
| if (T.isNull()) { |
| T = SemaRef.Context.IntTy; |
| Invalid = true; |
| } |
| } |
| |
| NonTypeTemplateParmDecl *Param; |
| if (IsExpandedParameterPack) |
| Param = NonTypeTemplateParmDecl::Create(SemaRef.Context, Owner, |
| D->getInnerLocStart(), |
| D->getLocation(), |
| D->getDepth() - TemplateArgs.getNumLevels(), |
| D->getPosition(), |
| D->getIdentifier(), T, |
| DI, |
| ExpandedParameterPackTypes.data(), |
| ExpandedParameterPackTypes.size(), |
| ExpandedParameterPackTypesAsWritten.data()); |
| else |
| Param = NonTypeTemplateParmDecl::Create(SemaRef.Context, Owner, |
| D->getInnerLocStart(), |
| D->getLocation(), |
| D->getDepth() - TemplateArgs.getNumLevels(), |
| D->getPosition(), |
| D->getIdentifier(), T, |
| D->isParameterPack(), DI); |
| |
| Param->setAccess(AS_public); |
| if (Invalid) |
| Param->setInvalidDecl(); |
| |
| Param->setDefaultArgument(D->getDefaultArgument(), false); |
| |
| // Introduce this template parameter's instantiation into the instantiation |
| // scope. |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); |
| return Param; |
| } |
| |
| static void collectUnexpandedParameterPacks( |
| Sema &S, |
| TemplateParameterList *Params, |
| SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) { |
| for (TemplateParameterList::const_iterator I = Params->begin(), |
| E = Params->end(); I != E; ++I) { |
| if ((*I)->isTemplateParameterPack()) |
| continue; |
| if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*I)) |
| S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), |
| Unexpanded); |
| if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(*I)) |
| collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), |
| Unexpanded); |
| } |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( |
| TemplateTemplateParmDecl *D) { |
| // Instantiate the template parameter list of the template template parameter. |
| TemplateParameterList *TempParams = D->getTemplateParameters(); |
| TemplateParameterList *InstParams; |
| SmallVector<TemplateParameterList*, 8> ExpandedParams; |
| |
| bool IsExpandedParameterPack = false; |
| |
| if (D->isExpandedParameterPack()) { |
| // The template template parameter pack is an already-expanded pack |
| // expansion of template parameters. Substitute into each of the expanded |
| // parameters. |
| ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); |
| for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); |
| I != N; ++I) { |
| LocalInstantiationScope Scope(SemaRef); |
| TemplateParameterList *Expansion = |
| SubstTemplateParams(D->getExpansionTemplateParameters(I)); |
| if (!Expansion) |
| return 0; |
| ExpandedParams.push_back(Expansion); |
| } |
| |
| IsExpandedParameterPack = true; |
| InstParams = TempParams; |
| } else if (D->isPackExpansion()) { |
| // The template template parameter pack expands to a pack of template |
| // template parameters. Determine whether we need to expand this parameter |
| // pack into separate parameters. |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), |
| Unexpanded); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| Optional<unsigned> NumExpansions; |
| if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), |
| TempParams->getSourceRange(), |
| Unexpanded, |
| TemplateArgs, |
| Expand, RetainExpansion, |
| NumExpansions)) |
| return 0; |
| |
| if (Expand) { |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); |
| LocalInstantiationScope Scope(SemaRef); |
| TemplateParameterList *Expansion = SubstTemplateParams(TempParams); |
| if (!Expansion) |
| return 0; |
| ExpandedParams.push_back(Expansion); |
| } |
| |
| // Note that we have an expanded parameter pack. The "type" of this |
| // expanded parameter pack is the original expansion type, but callers |
| // will end up using the expanded parameter pack types for type-checking. |
| IsExpandedParameterPack = true; |
| InstParams = TempParams; |
| } else { |
| // We cannot fully expand the pack expansion now, so just substitute |
| // into the pattern. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); |
| |
| LocalInstantiationScope Scope(SemaRef); |
| InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return 0; |
| } |
| } else { |
| // Perform the actual substitution of template parameters within a new, |
| // local instantiation scope. |
| LocalInstantiationScope Scope(SemaRef); |
| InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return 0; |
| } |
| |
| // Build the template template parameter. |
| TemplateTemplateParmDecl *Param; |
| if (IsExpandedParameterPack) |
| Param = TemplateTemplateParmDecl::Create(SemaRef.Context, Owner, |
| D->getLocation(), |
| D->getDepth() - TemplateArgs.getNumLevels(), |
| D->getPosition(), |
| D->getIdentifier(), InstParams, |
| ExpandedParams); |
| else |
| Param = TemplateTemplateParmDecl::Create(SemaRef.Context, Owner, |
| D->getLocation(), |
| D->getDepth() - TemplateArgs.getNumLevels(), |
| D->getPosition(), |
| D->isParameterPack(), |
| D->getIdentifier(), InstParams); |
| Param->setDefaultArgument(D->getDefaultArgument(), false); |
| Param->setAccess(AS_public); |
| |
| // Introduce this template parameter's instantiation into the instantiation |
| // scope. |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); |
| |
| return Param; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { |
| // Using directives are never dependent (and never contain any types or |
| // expressions), so they require no explicit instantiation work. |
| |
| UsingDirectiveDecl *Inst |
| = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getNamespaceKeyLocation(), |
| D->getQualifierLoc(), |
| D->getIdentLocation(), |
| D->getNominatedNamespace(), |
| D->getCommonAncestor()); |
| |
| // Add the using directive to its declaration context |
| // only if this is not a function or method. |
| if (!Owner->isFunctionOrMethod()) |
| Owner->addDecl(Inst); |
| |
| return Inst; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { |
| |
| // The nested name specifier may be dependent, for example |
| // template <typename T> struct t { |
| // struct s1 { T f1(); }; |
| // struct s2 : s1 { using s1::f1; }; |
| // }; |
| // template struct t<int>; |
| // Here, in using s1::f1, s1 refers to t<T>::s1; |
| // we need to substitute for t<int>::s1. |
| NestedNameSpecifierLoc QualifierLoc |
| = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), |
| TemplateArgs); |
| if (!QualifierLoc) |
| return 0; |
| |
| // The name info is non-dependent, so no transformation |
| // is required. |
| DeclarationNameInfo NameInfo = D->getNameInfo(); |
| |
| // We only need to do redeclaration lookups if we're in a class |
| // scope (in fact, it's not really even possible in non-class |
| // scopes). |
| bool CheckRedeclaration = Owner->isRecord(); |
| |
| LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, |
| Sema::ForRedeclaration); |
| |
| UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, |
| D->getUsingLocation(), |
| QualifierLoc, |
| NameInfo, |
| D->isTypeName()); |
| |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| if (CheckRedeclaration) { |
| Prev.setHideTags(false); |
| SemaRef.LookupQualifiedName(Prev, Owner); |
| |
| // Check for invalid redeclarations. |
| if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLocation(), |
| D->isTypeName(), SS, |
| D->getLocation(), Prev)) |
| NewUD->setInvalidDecl(); |
| |
| } |
| |
| if (!NewUD->isInvalidDecl() && |
| SemaRef.CheckUsingDeclQualifier(D->getUsingLocation(), SS, |
| D->getLocation())) |
| NewUD->setInvalidDecl(); |
| |
| SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); |
| NewUD->setAccess(D->getAccess()); |
| Owner->addDecl(NewUD); |
| |
| // Don't process the shadow decls for an invalid decl. |
| if (NewUD->isInvalidDecl()) |
| return NewUD; |
| |
| if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) { |
| if (SemaRef.CheckInheritingConstructorUsingDecl(NewUD)) |
| NewUD->setInvalidDecl(); |
| return NewUD; |
| } |
| |
| bool isFunctionScope = Owner->isFunctionOrMethod(); |
| |
| // Process the shadow decls. |
| for (UsingDecl::shadow_iterator I = D->shadow_begin(), E = D->shadow_end(); |
| I != E; ++I) { |
| UsingShadowDecl *Shadow = *I; |
| NamedDecl *InstTarget = |
| cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( |
| Shadow->getLocation(), |
| Shadow->getTargetDecl(), |
| TemplateArgs)); |
| if (!InstTarget) |
| return 0; |
| |
| if (CheckRedeclaration && |
| SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev)) |
| continue; |
| |
| UsingShadowDecl *InstShadow |
| = SemaRef.BuildUsingShadowDecl(/*Scope*/ 0, NewUD, InstTarget); |
| SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); |
| |
| if (isFunctionScope) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); |
| } |
| |
| return NewUD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { |
| // Ignore these; we handle them in bulk when processing the UsingDecl. |
| return 0; |
| } |
| |
| Decl * TemplateDeclInstantiator |
| ::VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) { |
| NestedNameSpecifierLoc QualifierLoc |
| = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), |
| TemplateArgs); |
| if (!QualifierLoc) |
| return 0; |
| |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| // Since NameInfo refers to a typename, it cannot be a C++ special name. |
| // Hence, no transformation is required for it. |
| DeclarationNameInfo NameInfo(D->getDeclName(), D->getLocation()); |
| NamedDecl *UD = |
| SemaRef.BuildUsingDeclaration(/*Scope*/ 0, D->getAccess(), |
| D->getUsingLoc(), SS, NameInfo, 0, |
| /*instantiation*/ true, |
| /*typename*/ true, D->getTypenameLoc()); |
| if (UD) |
| SemaRef.Context.setInstantiatedFromUsingDecl(cast<UsingDecl>(UD), D); |
| |
| return UD; |
| } |
| |
| Decl * TemplateDeclInstantiator |
| ::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) { |
| NestedNameSpecifierLoc QualifierLoc |
| = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs); |
| if (!QualifierLoc) |
| return 0; |
| |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| DeclarationNameInfo NameInfo |
| = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); |
| |
| NamedDecl *UD = |
| SemaRef.BuildUsingDeclaration(/*Scope*/ 0, D->getAccess(), |
| D->getUsingLoc(), SS, NameInfo, 0, |
| /*instantiation*/ true, |
| /*typename*/ false, SourceLocation()); |
| if (UD) |
| SemaRef.Context.setInstantiatedFromUsingDecl(cast<UsingDecl>(UD), D); |
| |
| return UD; |
| } |
| |
| |
| Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl( |
| ClassScopeFunctionSpecializationDecl *Decl) { |
| CXXMethodDecl *OldFD = Decl->getSpecialization(); |
| CXXMethodDecl *NewFD = cast<CXXMethodDecl>(VisitCXXMethodDecl(OldFD, |
| 0, true)); |
| |
| LookupResult Previous(SemaRef, NewFD->getNameInfo(), Sema::LookupOrdinaryName, |
| Sema::ForRedeclaration); |
| |
| TemplateArgumentListInfo TemplateArgs; |
| TemplateArgumentListInfo* TemplateArgsPtr = 0; |
| if (Decl->hasExplicitTemplateArgs()) { |
| TemplateArgs = Decl->templateArgs(); |
| TemplateArgsPtr = &TemplateArgs; |
| } |
| |
| SemaRef.LookupQualifiedName(Previous, SemaRef.CurContext); |
| if (SemaRef.CheckFunctionTemplateSpecialization(NewFD, TemplateArgsPtr, |
| Previous)) { |
| NewFD->setInvalidDecl(); |
| return NewFD; |
| } |
| |
| // Associate the specialization with the pattern. |
| FunctionDecl *Specialization = cast<FunctionDecl>(Previous.getFoundDecl()); |
| assert(Specialization && "Class scope Specialization is null"); |
| SemaRef.Context.setClassScopeSpecializationPattern(Specialization, OldFD); |
| |
| return NewFD; |
| } |
| |
| Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); |
| if (D->isInvalidDecl()) |
| return 0; |
| |
| return Instantiator.Visit(D); |
| } |
| |
| /// \brief Instantiates a nested template parameter list in the current |
| /// instantiation context. |
| /// |
| /// \param L The parameter list to instantiate |
| /// |
| /// \returns NULL if there was an error |
| TemplateParameterList * |
| TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { |
| // Get errors for all the parameters before bailing out. |
| bool Invalid = false; |
| |
| unsigned N = L->size(); |
| typedef SmallVector<NamedDecl *, 8> ParamVector; |
| ParamVector Params; |
| Params.reserve(N); |
| for (TemplateParameterList::iterator PI = L->begin(), PE = L->end(); |
| PI != PE; ++PI) { |
| NamedDecl *D = cast_or_null<NamedDecl>(Visit(*PI)); |
| Params.push_back(D); |
| Invalid = Invalid || !D || D->isInvalidDecl(); |
| } |
| |
| // Clean up if we had an error. |
| if (Invalid) |
| return NULL; |
| |
| TemplateParameterList *InstL |
| = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), |
| L->getLAngleLoc(), &Params.front(), N, |
| L->getRAngleLoc()); |
| return InstL; |
| } |
| |
| /// \brief Instantiate the declaration of a class template partial |
| /// specialization. |
| /// |
| /// \param ClassTemplate the (instantiated) class template that is partially |
| // specialized by the instantiation of \p PartialSpec. |
| /// |
| /// \param PartialSpec the (uninstantiated) class template partial |
| /// specialization that we are instantiating. |
| /// |
| /// \returns The instantiated partial specialization, if successful; otherwise, |
| /// NULL to indicate an error. |
| ClassTemplatePartialSpecializationDecl * |
| TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( |
| ClassTemplateDecl *ClassTemplate, |
| ClassTemplatePartialSpecializationDecl *PartialSpec) { |
| // Create a local instantiation scope for this class template partial |
| // specialization, which will contain the instantiations of the template |
| // parameters. |
| LocalInstantiationScope Scope(SemaRef); |
| |
| // Substitute into the template parameters of the class template partial |
| // specialization. |
| TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return 0; |
| |
| // Substitute into the template arguments of the class template partial |
| // specialization. |
| TemplateArgumentListInfo InstTemplateArgs; // no angle locations |
| if (SemaRef.Subst(PartialSpec->getTemplateArgsAsWritten(), |
| PartialSpec->getNumTemplateArgsAsWritten(), |
| InstTemplateArgs, TemplateArgs)) |
| return 0; |
| |
| // Check that the template argument list is well-formed for this |
| // class template. |
| SmallVector<TemplateArgument, 4> Converted; |
| if (SemaRef.CheckTemplateArgumentList(ClassTemplate, |
| PartialSpec->getLocation(), |
| InstTemplateArgs, |
| false, |
| Converted)) |
| return 0; |
| |
| // Figure out where to insert this class template partial specialization |
| // in the member template's set of class template partial specializations. |
| void *InsertPos = 0; |
| ClassTemplateSpecializationDecl *PrevDecl |
| = ClassTemplate->findPartialSpecialization(Converted.data(), |
| Converted.size(), InsertPos); |
| |
| // Build the canonical type that describes the converted template |
| // arguments of the class template partial specialization. |
| QualType CanonType |
| = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate), |
| Converted.data(), |
| Converted.size()); |
| |
| // Build the fully-sugared type for this class template |
| // specialization as the user wrote in the specialization |
| // itself. This means that we'll pretty-print the type retrieved |
| // from the specialization's declaration the way that the user |
| // actually wrote the specialization, rather than formatting the |
| // name based on the "canonical" representation used to store the |
| // template arguments in the specialization. |
| TypeSourceInfo *WrittenTy |
| = SemaRef.Context.getTemplateSpecializationTypeInfo( |
| TemplateName(ClassTemplate), |
| PartialSpec->getLocation(), |
| InstTemplateArgs, |
| CanonType); |
| |
| if (PrevDecl) { |
| // We've already seen a partial specialization with the same template |
| // parameters and template arguments. This can happen, for example, when |
| // substituting the outer template arguments ends up causing two |
| // class template partial specializations of a member class template |
| // to have identical forms, e.g., |
| // |
| // template<typename T, typename U> |
| // struct Outer { |
| // template<typename X, typename Y> struct Inner; |
| // template<typename Y> struct Inner<T, Y>; |
| // template<typename Y> struct Inner<U, Y>; |
| // }; |
| // |
| // Outer<int, int> outer; // error: the partial specializations of Inner |
| // // have the same signature. |
| SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) |
| << WrittenTy->getType(); |
| SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) |
| << SemaRef.Context.getTypeDeclType(PrevDecl); |
| return 0; |
| } |
| |
| |
| // Create the class template partial specialization declaration. |
| ClassTemplatePartialSpecializationDecl *InstPartialSpec |
| = ClassTemplatePartialSpecializationDecl::Create(SemaRef.Context, |
| PartialSpec->getTagKind(), |
| Owner, |
| PartialSpec->getLocStart(), |
| PartialSpec->getLocation(), |
| InstParams, |
| ClassTemplate, |
| Converted.data(), |
| Converted.size(), |
| InstTemplateArgs, |
| CanonType, |
| 0, |
| ClassTemplate->getNextPartialSpecSequenceNumber()); |
| // Substitute the nested name specifier, if any. |
| if (SubstQualifier(PartialSpec, InstPartialSpec)) |
| return 0; |
| |
| InstPartialSpec->setInstantiatedFromMember(PartialSpec); |
| InstPartialSpec->setTypeAsWritten(WrittenTy); |
| |
| // Add this partial specialization to the set of class template partial |
| // specializations. |
| ClassTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/0); |
| return InstPartialSpec; |
| } |
| |
| TypeSourceInfo* |
| TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, |
| SmallVectorImpl<ParmVarDecl *> &Params) { |
| TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); |
| assert(OldTInfo && "substituting function without type source info"); |
| assert(Params.empty() && "parameter vector is non-empty at start"); |
| |
| CXXRecordDecl *ThisContext = 0; |
| unsigned ThisTypeQuals = 0; |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| ThisContext = Method->getParent(); |
| ThisTypeQuals = Method->getTypeQualifiers(); |
| } |
| |
| TypeSourceInfo *NewTInfo |
| = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs, |
| D->getTypeSpecStartLoc(), |
| D->getDeclName(), |
| ThisContext, ThisTypeQuals); |
| if (!NewTInfo) |
| return 0; |
| |
| if (NewTInfo != OldTInfo) { |
| // Get parameters from the new type info. |
| TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); |
| if (FunctionProtoTypeLoc OldProtoLoc = |
| OldTL.getAs<FunctionProtoTypeLoc>()) { |
| TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); |
| FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>(); |
| unsigned NewIdx = 0; |
| for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumArgs(); |
| OldIdx != NumOldParams; ++OldIdx) { |
| ParmVarDecl *OldParam = OldProtoLoc.getArg(OldIdx); |
| LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; |
| |
| Optional<unsigned> NumArgumentsInExpansion; |
| if (OldParam->isParameterPack()) |
| NumArgumentsInExpansion = |
| SemaRef.getNumArgumentsInExpansion(OldParam->getType(), |
| TemplateArgs); |
| if (!NumArgumentsInExpansion) { |
| // Simple case: normal parameter, or a parameter pack that's |
| // instantiated to a (still-dependent) parameter pack. |
| ParmVarDecl *NewParam = NewProtoLoc.getArg(NewIdx++); |
| Params.push_back(NewParam); |
| Scope->InstantiatedLocal(OldParam, NewParam); |
| } else { |
| // Parameter pack expansion: make the instantiation an argument pack. |
| Scope->MakeInstantiatedLocalArgPack(OldParam); |
| for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { |
| ParmVarDecl *NewParam = NewProtoLoc.getArg(NewIdx++); |
| Params.push_back(NewParam); |
| Scope->InstantiatedLocalPackArg(OldParam, NewParam); |
| } |
| } |
| } |
| } |
| } else { |
| // The function type itself was not dependent and therefore no |
| // substitution occurred. However, we still need to instantiate |
| // the function parameters themselves. |
| TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); |
| if (FunctionProtoTypeLoc OldProtoLoc = |
| OldTL.getAs<FunctionProtoTypeLoc>()) { |
| for (unsigned i = 0, i_end = OldProtoLoc.getNumArgs(); i != i_end; ++i) { |
| ParmVarDecl *Parm = VisitParmVarDecl(OldProtoLoc.getArg(i)); |
| if (!Parm) |
| return 0; |
| Params.push_back(Parm); |
| } |
| } |
| } |
| return NewTInfo; |
| } |
| |
| /// Introduce the instantiated function parameters into the local |
| /// instantiation scope, and set the parameter names to those used |
| /// in the template. |
| static void addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function, |
| const FunctionDecl *PatternDecl, |
| LocalInstantiationScope &Scope, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| unsigned FParamIdx = 0; |
| for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { |
| const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); |
| if (!PatternParam->isParameterPack()) { |
| // Simple case: not a parameter pack. |
| assert(FParamIdx < Function->getNumParams()); |
| ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); |
| FunctionParam->setDeclName(PatternParam->getDeclName()); |
| Scope.InstantiatedLocal(PatternParam, FunctionParam); |
| ++FParamIdx; |
| continue; |
| } |
| |
| // Expand the parameter pack. |
| Scope.MakeInstantiatedLocalArgPack(PatternParam); |
| Optional<unsigned> NumArgumentsInExpansion |
| = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); |
| assert(NumArgumentsInExpansion && |
| "should only be called when all template arguments are known"); |
| for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { |
| ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); |
| FunctionParam->setDeclName(PatternParam->getDeclName()); |
| Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); |
| ++FParamIdx; |
| } |
| } |
| } |
| |
| static void InstantiateExceptionSpec(Sema &SemaRef, FunctionDecl *New, |
| const FunctionProtoType *Proto, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| assert(Proto->getExceptionSpecType() != EST_Uninstantiated); |
| |
| // C++11 [expr.prim.general]p3: |
| // If a declaration declares a member function or member function |
| // template of a class X, the expression this is a prvalue of type |
| // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq |
| // and the end of the function-definition, member-declarator, or |
| // declarator. |
| CXXRecordDecl *ThisContext = 0; |
| unsigned ThisTypeQuals = 0; |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(New)) { |
| ThisContext = Method->getParent(); |
| ThisTypeQuals = Method->getTypeQualifiers(); |
| } |
| Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals, |
| SemaRef.getLangOpts().CPlusPlus11); |
| |
| // The function has an exception specification or a "noreturn" |
| // attribute. Substitute into each of the exception types. |
| SmallVector<QualType, 4> Exceptions; |
| for (unsigned I = 0, N = Proto->getNumExceptions(); I != N; ++I) { |
| // FIXME: Poor location information! |
| if (const PackExpansionType *PackExpansion |
| = Proto->getExceptionType(I)->getAs<PackExpansionType>()) { |
| // We have a pack expansion. Instantiate it. |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(), |
| Unexpanded); |
| assert(!Unexpanded.empty() && |
| "Pack expansion without parameter packs?"); |
| |
| bool Expand = false; |
| bool RetainExpansion = false; |
| Optional<unsigned> NumExpansions |
| = PackExpansion->getNumExpansions(); |
| if (SemaRef.CheckParameterPacksForExpansion(New->getLocation(), |
| SourceRange(), |
| Unexpanded, |
| TemplateArgs, |
| Expand, |
| RetainExpansion, |
| NumExpansions)) |
| break; |
| |
| if (!Expand) { |
| // We can't expand this pack expansion into separate arguments yet; |
| // just substitute into the pattern and create a new pack expansion |
| // type. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); |
| QualType T = SemaRef.SubstType(PackExpansion->getPattern(), |
| TemplateArgs, |
| New->getLocation(), New->getDeclName()); |
| if (T.isNull()) |
| break; |
| |
| T = SemaRef.Context.getPackExpansionType(T, NumExpansions); |
| Exceptions.push_back(T); |
| continue; |
| } |
| |
| // Substitute into the pack expansion pattern for each template |
| bool Invalid = false; |
| for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, ArgIdx); |
| |
| QualType T = SemaRef.SubstType(PackExpansion->getPattern(), |
| TemplateArgs, |
| New->getLocation(), New->getDeclName()); |
| if (T.isNull()) { |
| Invalid = true; |
| break; |
| } |
| |
| Exceptions.push_back(T); |
| } |
| |
| if (Invalid) |
| break; |
| |
| continue; |
| } |
| |
| QualType T |
| = SemaRef.SubstType(Proto->getExceptionType(I), TemplateArgs, |
| New->getLocation(), New->getDeclName()); |
| if (T.isNull() || |
| SemaRef.CheckSpecifiedExceptionType(T, New->getLocation())) |
| continue; |
| |
| Exceptions.push_back(T); |
| } |
| Expr *NoexceptExpr = 0; |
| if (Expr *OldNoexceptExpr = Proto->getNoexceptExpr()) { |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, |
| Sema::ConstantEvaluated); |
| ExprResult E = SemaRef.SubstExpr(OldNoexceptExpr, TemplateArgs); |
| if (E.isUsable()) |
| E = SemaRef.CheckBooleanCondition(E.get(), E.get()->getLocStart()); |
| |
| if (E.isUsable()) { |
| NoexceptExpr = E.take(); |
| if (!NoexceptExpr->isTypeDependent() && |
| !NoexceptExpr->isValueDependent()) |
| NoexceptExpr |
| = SemaRef.VerifyIntegerConstantExpression(NoexceptExpr, |
| 0, diag::err_noexcept_needs_constant_expression, |
| /*AllowFold*/ false).take(); |
| } |
| } |
| |
| // Rebuild the function type |
| const FunctionProtoType *NewProto |
| = New->getType()->getAs<FunctionProtoType>(); |
| assert(NewProto && "Template instantiation without function prototype?"); |
| |
| FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo(); |
| EPI.ExceptionSpecType = Proto->getExceptionSpecType(); |
| EPI.NumExceptions = Exceptions.size(); |
| EPI.Exceptions = Exceptions.data(); |
| EPI.NoexceptExpr = NoexceptExpr; |
| |
| New->setType(SemaRef.Context.getFunctionType(NewProto->getResultType(), |
| ArrayRef<QualType>(NewProto->arg_type_begin(), |
| NewProto->getNumArgs()), |
| EPI)); |
| } |
| |
| void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, |
| FunctionDecl *Decl) { |
| const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>(); |
| if (Proto->getExceptionSpecType() != EST_Uninstantiated) |
| return; |
| |
| InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, |
| InstantiatingTemplate::ExceptionSpecification()); |
| if (Inst) { |
| // We hit the instantiation depth limit. Clear the exception specification |
| // so that our callers don't have to cope with EST_Uninstantiated. |
| FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
| EPI.ExceptionSpecType = EST_None; |
| Decl->setType(Context.getFunctionType(Proto->getResultType(), |
| ArrayRef<QualType>(Proto->arg_type_begin(), |
| Proto->getNumArgs()), |
| EPI)); |
| return; |
| } |
| |
| // Enter the scope of this instantiation. We don't use |
| // PushDeclContext because we don't have a scope. |
| Sema::ContextRAII savedContext(*this, Decl); |
| LocalInstantiationScope Scope(*this); |
| |
| MultiLevelTemplateArgumentList TemplateArgs = |
| getTemplateInstantiationArgs(Decl, 0, /*RelativeToPrimary*/true); |
| |
| FunctionDecl *Template = Proto->getExceptionSpecTemplate(); |
| addInstantiatedParametersToScope(*this, Decl, Template, Scope, TemplateArgs); |
| |
| ::InstantiateExceptionSpec(*this, Decl, |
| Template->getType()->castAs<FunctionProtoType>(), |
| TemplateArgs); |
| } |
| |
| /// \brief Initializes the common fields of an instantiation function |
| /// declaration (New) from the corresponding fields of its template (Tmpl). |
| /// |
| /// \returns true if there was an error |
| bool |
| TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, |
| FunctionDecl *Tmpl) { |
| if (Tmpl->isDeleted()) |
| New->setDeletedAsWritten(); |
| |
| // If we are performing substituting explicitly-specified template arguments |
| // or deduced template arguments into a function template and we reach this |
| // point, we are now past the point where SFINAE applies and have committed |
| // to keeping the new function template specialization. We therefore |
| // convert the active template instantiation for the function template |
| // into a template instantiation for this specific function template |
| // specialization, which is not a SFINAE context, so that we diagnose any |
| // further errors in the declaration itself. |
| typedef Sema::ActiveTemplateInstantiation ActiveInstType; |
| ActiveInstType &ActiveInst = SemaRef.ActiveTemplateInstantiations.back(); |
| if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || |
| ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { |
| if (FunctionTemplateDecl *FunTmpl |
| = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) { |
| assert(FunTmpl->getTemplatedDecl() == Tmpl && |
| "Deduction from the wrong function template?"); |
| (void) FunTmpl; |
| ActiveInst.Kind = ActiveInstType::TemplateInstantiation; |
| ActiveInst.Entity = New; |
| } |
| } |
| |
| const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); |
| assert(Proto && "Function template without prototype?"); |
| |
| if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { |
| FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
| |
| // DR1330: In C++11, defer instantiation of a non-trivial |
| // exception specification. |
| if (SemaRef.getLangOpts().CPlusPlus11 && |
| EPI.ExceptionSpecType != EST_None && |
| EPI.ExceptionSpecType != EST_DynamicNone && |
| EPI.ExceptionSpecType != EST_BasicNoexcept) { |
| FunctionDecl *ExceptionSpecTemplate = Tmpl; |
| if (EPI.ExceptionSpecType == EST_Uninstantiated) |
| ExceptionSpecTemplate = EPI.ExceptionSpecTemplate; |
| assert(EPI.ExceptionSpecType != EST_Unevaluated && |
| "instantiating implicitly-declared special member"); |
| |
| // Mark the function has having an uninstantiated exception specification. |
| const FunctionProtoType *NewProto |
| = New->getType()->getAs<FunctionProtoType>(); |
| assert(NewProto && "Template instantiation without function prototype?"); |
| EPI = NewProto->getExtProtoInfo(); |
| EPI.ExceptionSpecType = EST_Uninstantiated; |
| EPI.ExceptionSpecDecl = New; |
| EPI.ExceptionSpecTemplate = ExceptionSpecTemplate; |
| New->setType(SemaRef.Context.getFunctionType(NewProto->getResultType(), |
| ArrayRef<QualType>(NewProto->arg_type_begin(), |
| NewProto->getNumArgs()), |
| EPI)); |
| } else { |
| ::InstantiateExceptionSpec(SemaRef, New, Proto, TemplateArgs); |
| } |
| } |
| |
| // Get the definition. Leaves the variable unchanged if undefined. |
| const FunctionDecl *Definition = Tmpl; |
| Tmpl->isDefined(Definition); |
| |
| SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, |
| LateAttrs, StartingScope); |
| |
| return false; |
| } |
| |
| /// \brief Initializes common fields of an instantiated method |
| /// declaration (New) from the corresponding fields of its template |
| /// (Tmpl). |
| /// |
| /// \returns true if there was an error |
| bool |
| TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, |
| CXXMethodDecl *Tmpl) { |
| if (InitFunctionInstantiation(New, Tmpl)) |
| return true; |
| |
| New->setAccess(Tmpl->getAccess()); |
| if (Tmpl->isVirtualAsWritten()) |
| New->setVirtualAsWritten(true); |
| |
| // FIXME: attributes |
| // FIXME: New needs a pointer to Tmpl |
| return false; |
| } |
| |
| /// \brief Instantiate the definition of the given function from its |
| /// template. |
| /// |
| /// \param PointOfInstantiation the point at which the instantiation was |
| /// required. Note that this is not precisely a "point of instantiation" |
| /// for the function, but it's close. |
| /// |
| /// \param Function the already-instantiated declaration of a |
| /// function template specialization or member function of a class template |
| /// specialization. |
| /// |
| /// \param Recursive if true, recursively instantiates any functions that |
| /// are required by this instantiation. |
| /// |
| /// \param DefinitionRequired if true, then we are performing an explicit |
| /// instantiation where the body of the function is required. Complain if |
| /// there is no such body. |
| void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, |
| FunctionDecl *Function, |
| bool Recursive, |
| bool DefinitionRequired) { |
| if (Function->isInvalidDecl() || Function->isDefined()) |
| return; |
| |
| // Never instantiate an explicit specialization except if it is a class scope |
| // explicit specialization. |
| if (Function->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
| !Function->getClassScopeSpecializationPattern()) |
| return; |
| |
| // Find the function body that we'll be substituting. |
| const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); |
| assert(PatternDecl && "instantiating a non-template"); |
| |
| Stmt *Pattern = PatternDecl->getBody(PatternDecl); |
| assert(PatternDecl && "template definition is not a template"); |
| if (!Pattern) { |
| // Try to find a defaulted definition |
| PatternDecl->isDefined(PatternDecl); |
| } |
| assert(PatternDecl && "template definition is not a template"); |
| |
| // Postpone late parsed template instantiations. |
| if (PatternDecl->isLateTemplateParsed() && |
| !LateTemplateParser) { |
| PendingInstantiations.push_back( |
| std::make_pair(Function, PointOfInstantiation)); |
| return; |
| } |
| |
| // Call the LateTemplateParser callback if there a need to late parse |
| // a templated function definition. |
| if (!Pattern && PatternDecl->isLateTemplateParsed() && |
| LateTemplateParser) { |
| LateTemplateParser(OpaqueParser, PatternDecl); |
| Pattern = PatternDecl->getBody(PatternDecl); |
| } |
| |
| if (!Pattern && !PatternDecl->isDefaulted()) { |
| if (DefinitionRequired) { |
| if (Function->getPrimaryTemplate()) |
| Diag(PointOfInstantiation, |
| diag::err_explicit_instantiation_undefined_func_template) |
| << Function->getPrimaryTemplate(); |
| else |
| Diag(PointOfInstantiation, |
| diag::err_explicit_instantiation_undefined_member) |
| << 1 << Function->getDeclName() << Function->getDeclContext(); |
| |
| if (PatternDecl) |
| Diag(PatternDecl->getLocation(), |
| diag::note_explicit_instantiation_here); |
| Function->setInvalidDecl(); |
| } else if (Function->getTemplateSpecializationKind() |
| == TSK_ExplicitInstantiationDefinition) { |
| PendingInstantiations.push_back( |
| std::make_pair(Function, PointOfInstantiation)); |
| } |
| |
| return; |
| } |
| |
| // C++0x [temp.explicit]p9: |
| // Except for inline functions, other explicit instantiation declarations |
| // have the effect of suppressing the implicit instantiation of the entity |
| // to which they refer. |
| if (Function->getTemplateSpecializationKind() |
| == TSK_ExplicitInstantiationDeclaration && |
| !PatternDecl->isInlined()) |
| return; |
| |
| if (PatternDecl->isInlined()) |
| Function->setImplicitlyInline(); |
| |
| InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); |
| if (Inst) |
| return; |
| |
| // Copy the inner loc start from the pattern. |
| Function->setInnerLocStart(PatternDecl->getInnerLocStart()); |
| |
| // If we're performing recursive template instantiation, create our own |
| // queue of pending implicit instantiations that we will instantiate later, |
| // while we're still within our own instantiation context. |
| SmallVector<VTableUse, 16> SavedVTableUses; |
| std::deque<PendingImplicitInstantiation> SavedPendingInstantiations; |
| if (Recursive) { |
| VTableUses.swap(SavedVTableUses); |
| PendingInstantiations.swap(SavedPendingInstantiations); |
| } |
| |
| EnterExpressionEvaluationContext EvalContext(*this, |
| Sema::PotentiallyEvaluated); |
| |
| // Introduce a new scope where local variable instantiations will be |
| // recorded, unless we're actually a member function within a local |
| // class, in which case we need to merge our results with the parent |
| // scope (of the enclosing function). |
| bool MergeWithParentScope = false; |
| if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) |
| MergeWithParentScope = Rec->isLocalClass(); |
| |
| LocalInstantiationScope Scope(*this, MergeWithParentScope); |
| |
| if (PatternDecl->isDefaulted()) |
| SetDeclDefaulted(Function, PatternDecl->getLocation()); |
| else { |
| ActOnStartOfFunctionDef(0, Function); |
| |
| // Enter the scope of this instantiation. We don't use |
| // PushDeclContext because we don't have a scope. |
| Sema::ContextRAII savedContext(*this, Function); |
| |
| MultiLevelTemplateArgumentList TemplateArgs = |
| getTemplateInstantiationArgs(Function, 0, false, PatternDecl); |
| |
| addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope, |
| TemplateArgs); |
| |
| // If this is a constructor, instantiate the member initializers. |
| if (const CXXConstructorDecl *Ctor = |
| dyn_cast<CXXConstructorDecl>(PatternDecl)) { |
| InstantiateMemInitializers(cast<CXXConstructorDecl>(Function), Ctor, |
| TemplateArgs); |
| } |
| |
| // Instantiate the function body. |
| StmtResult Body = SubstStmt(Pattern, TemplateArgs); |
| |
| if (Body.isInvalid()) |
| Function->setInvalidDecl(); |
| |
| ActOnFinishFunctionBody(Function, Body.get(), |
| /*IsInstantiation=*/true); |
| |
| PerformDependentDiagnostics(PatternDecl, TemplateArgs); |
| |
| savedContext.pop(); |
| } |
| |
| DeclGroupRef DG(Function); |
| Consumer.HandleTopLevelDecl(DG); |
| |
| // This class may have local implicit instantiations that need to be |
| // instantiation within this scope. |
| PerformPendingInstantiations(/*LocalOnly=*/true); |
| Scope.Exit(); |
| |
| if (Recursive) { |
| // Define any pending vtables. |
| DefineUsedVTables(); |
| |
| // Instantiate any pending implicit instantiations found during the |
| // instantiation of this template. |
| PerformPendingInstantiations(); |
| |
| // Restore the set of pending vtables. |
| assert(VTableUses.empty() && |
| "VTableUses should be empty before it is discarded."); |
| VTableUses.swap(SavedVTableUses); |
| |
| // Restore the set of pending implicit instantiations. |
| assert(PendingInstantiations.empty() && |
| "PendingInstantiations should be empty before it is discarded."); |
| PendingInstantiations.swap(SavedPendingInstantiations); |
| } |
| } |
| |
| /// \brief Instantiate the definition of the given variable from its |
| /// template. |
| /// |
| /// \param PointOfInstantiation the point at which the instantiation was |
| /// required. Note that this is not precisely a "point of instantiation" |
| /// for the function, but it's close. |
| /// |
| /// \param Var the already-instantiated declaration of a static member |
| /// variable of a class template specialization. |
| /// |
| /// \param Recursive if true, recursively instantiates any functions that |
| /// are required by this instantiation. |
| /// |
| /// \param DefinitionRequired if true, then we are performing an explicit |
| /// instantiation where an out-of-line definition of the member variable |
| /// is required. Complain if there is no such definition. |
| void Sema::InstantiateStaticDataMemberDefinition( |
| SourceLocation PointOfInstantiation, |
| VarDecl *Var, |
| bool Recursive, |
| bool DefinitionRequired) { |
| if (Var->isInvalidDecl()) |
| return; |
| |
| // Find the out-of-line definition of this static data member. |
| VarDecl *Def = Var->getInstantiatedFromStaticDataMember(); |
| assert(Def && "This data member was not instantiated from a template?"); |
| assert(Def->isStaticDataMember() && "Not a static data member?"); |
| Def = Def->getOutOfLineDefinition(); |
| |
| if (!Def) { |
| // We did not find an out-of-line definition of this static data member, |
| // so we won't perform any instantiation. Rather, we rely on the user to |
| // instantiate this definition (or provide a specialization for it) in |
| // another translation unit. |
| if (DefinitionRequired) { |
| Def = Var->getInstantiatedFromStaticDataMember(); |
| Diag(PointOfInstantiation, |
| diag::err_explicit_instantiation_undefined_member) |
| << 2 << Var->getDeclName() << Var->getDeclContext(); |
| Diag(Def->getLocation(), diag::note_explicit_instantiation_here); |
| } else if (Var->getTemplateSpecializationKind() |
| == TSK_ExplicitInstantiationDefinition) { |
| PendingInstantiations.push_back( |
| std::make_pair(Var, PointOfInstantiation)); |
| } |
| |
| return; |
| } |
| |
| TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind(); |
| |
| // Never instantiate an explicit specialization. |
| if (TSK == TSK_ExplicitSpecialization) |
| return; |
| |
| // C++0x [temp.explicit]p9: |
| // Except for inline functions, other explicit instantiation declarations |
| // have the effect of suppressing the implicit instantiation of the entity |
| // to which they refer. |
| if (TSK == TSK_ExplicitInstantiationDeclaration) |
| return; |
| |
| // Make sure to pass the instantiated variable to the consumer at the end. |
| struct PassToConsumerRAII { |
| ASTConsumer &Consumer; |
| VarDecl *Var; |
| |
| PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) |
| : Consumer(Consumer), Var(Var) { } |
| |
| ~PassToConsumerRAII() { |
| Consumer.HandleCXXStaticMemberVarInstantiation(Var); |
| } |
| } PassToConsumerRAII(Consumer, Var); |
| |
| // If we already have a definition, we're done. |
| if (VarDecl *Def = Var->getDefinition()) { |
| // We may be explicitly instantiating something we've already implicitly |
| // instantiated. |
| Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), |
| PointOfInstantiation); |
| return; |
| } |
| |
| InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); |
| if (Inst) |
| return; |
| |
| // If we're performing recursive template instantiation, create our own |
| // queue of pending implicit instantiations that we will instantiate later, |
| // while we're still within our own instantiation context. |
| SmallVector<VTableUse, 16> SavedVTableUses; |
| std::deque<PendingImplicitInstantiation> SavedPendingInstantiations; |
| if (Recursive) { |
| VTableUses.swap(SavedVTableUses); |
| PendingInstantiations.swap(SavedPendingInstantiations); |
| } |
| |
| // Enter the scope of this instantiation. We don't use |
| // PushDeclContext because we don't have a scope. |
| ContextRAII previousContext(*this, Var->getDeclContext()); |
| LocalInstantiationScope Local(*this); |
| |
| VarDecl *OldVar = Var; |
| Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), |
| getTemplateInstantiationArgs(Var))); |
| |
| previousContext.pop(); |
| |
| if (Var) { |
| PassToConsumerRAII.Var = Var; |
| MemberSpecializationInfo *MSInfo = OldVar->getMemberSpecializationInfo(); |
| assert(MSInfo && "Missing member specialization information?"); |
| Var->setTemplateSpecializationKind(MSInfo->getTemplateSpecializationKind(), |
| MSInfo->getPointOfInstantiation()); |
| } |
| Local.Exit(); |
| |
| if (Recursive) { |
| // Define any newly required vtables. |
| DefineUsedVTables(); |
| |
| // Instantiate any pending implicit instantiations found during the |
| // instantiation of this template. |
| PerformPendingInstantiations(); |
| |
| // Restore the set of pending vtables. |
| assert(VTableUses.empty() && |
| "VTableUses should be empty before it is discarded, " |
| "while instantiating static data member."); |
| VTableUses.swap(SavedVTableUses); |
| |
| // Restore the set of pending implicit instantiations. |
| assert(PendingInstantiations.empty() && |
| "PendingInstantiations should be empty before it is discarded, " |
| "while instantiating static data member."); |
| PendingInstantiations.swap(SavedPendingInstantiations); |
| } |
| } |
| |
| void |
| Sema::InstantiateMemInitializers(CXXConstructorDecl *New, |
| const CXXConstructorDecl *Tmpl, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| |
| SmallVector<CXXCtorInitializer*, 4> NewInits; |
| bool AnyErrors = Tmpl->isInvalidDecl(); |
| |
| // Instantiate all the initializers. |
| for (CXXConstructorDecl::init_const_iterator Inits = Tmpl->init_begin(), |
| InitsEnd = Tmpl->init_end(); |
| Inits != InitsEnd; ++Inits) { |
| CXXCtorInitializer *Init = *Inits; |
| |
| // Only instantiate written initializers, let Sema re-construct implicit |
| // ones. |
| if (!Init->isWritten()) |
| continue; |
| |
| SourceLocation EllipsisLoc; |
| |
| if (Init->isPackExpansion()) { |
| // This is a pack expansion. We should expand it now. |
| TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| collectUnexpandedParameterPacks(BaseTL, Unexpanded); |
| bool ShouldExpand = false; |
| bool RetainExpansion = false; |
| Optional<unsigned> NumExpansions; |
| if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), |
| BaseTL.getSourceRange(), |
| Unexpanded, |
| TemplateArgs, ShouldExpand, |
| RetainExpansion, |
| NumExpansions)) { |
| AnyErrors = true; |
| New->setInvalidDecl(); |
| continue; |
| } |
| assert(ShouldExpand && "Partial instantiation of base initializer?"); |
| |
| // Loop over all of the arguments in the argument pack(s), |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); |
| |
| // Instantiate the initializer. |
| ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, |
| /*CXXDirectInit=*/true); |
| if (TempInit.isInvalid()) { |
| AnyErrors = true; |
| break; |
| } |
| |
| // Instantiate the base type. |
| TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), |
| TemplateArgs, |
| Init->getSourceLocation(), |
| New->getDeclName()); |
| if (!BaseTInfo) { |
| AnyErrors = true; |
| break; |
| } |
| |
| // Build the initializer. |
| MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), |
| BaseTInfo, TempInit.take(), |
| New->getParent(), |
| SourceLocation()); |
| if (NewInit.isInvalid()) { |
| AnyErrors = true; |
| break; |
| } |
| |
| NewInits.push_back(NewInit.get()); |
| } |
| |
| continue; |
| } |
| |
| // Instantiate the initializer. |
| ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, |
| /*CXXDirectInit=*/true); |
| if (TempInit.isInvalid()) { |
| AnyErrors = true; |
| continue; |
| } |
| |
| MemInitResult NewInit; |
| if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { |
| TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), |
| TemplateArgs, |
| Init->getSourceLocation(), |
| New->getDeclName()); |
| if (!TInfo) { |
| AnyErrors = true; |
| New->setInvalidDecl(); |
| continue; |
| } |
| |
| if (Init->isBaseInitializer()) |
| NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.take(), |
| New->getParent(), EllipsisLoc); |
| else |
| NewInit = BuildDelegatingInitializer(TInfo, TempInit.take(), |
| cast<CXXRecordDecl>(CurContext->getParent())); |
| } else if (Init->isMemberInitializer()) { |
| FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( |
| Init->getMemberLocation(), |
| Init->getMember(), |
| TemplateArgs)); |
| if (!Member) { |
| AnyErrors = true; |
| New->setInvalidDecl(); |
| continue; |
| } |
| |
| NewInit = BuildMemberInitializer(Member, TempInit.take(), |
| Init->getSourceLocation()); |
| } else if (Init->isIndirectMemberInitializer()) { |
| IndirectFieldDecl *IndirectMember = |
| cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( |
| Init->getMemberLocation(), |
| Init->getIndirectMember(), TemplateArgs)); |
| |
| if (!IndirectMember) { |
| AnyErrors = true; |
| New->setInvalidDecl(); |
| continue; |
| } |
| |
| NewInit = BuildMemberInitializer(IndirectMember, TempInit.take(), |
| Init->getSourceLocation()); |
| } |
| |
| if (NewInit.isInvalid()) { |
| AnyErrors = true; |
| New->setInvalidDecl(); |
| } else { |
| NewInits.push_back(NewInit.get()); |
| } |
| } |
| |
| // Assign all the initializers to the new constructor. |
| ActOnMemInitializers(New, |
| /*FIXME: ColonLoc */ |
| SourceLocation(), |
| NewInits, |
| AnyErrors); |
| } |
| |
| // TODO: this could be templated if the various decl types used the |
| // same method name. |
| static bool isInstantiationOf(ClassTemplateDecl *Pattern, |
| ClassTemplateDecl *Instance) { |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromMemberTemplate(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool isInstantiationOf(FunctionTemplateDecl *Pattern, |
| FunctionTemplateDecl *Instance) { |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromMemberTemplate(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool |
| isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, |
| ClassTemplatePartialSpecializationDecl *Instance) { |
| Pattern |
| = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); |
| do { |
| Instance = cast<ClassTemplatePartialSpecializationDecl>( |
| Instance->getCanonicalDecl()); |
| if (Pattern == Instance) |
| return true; |
| Instance = Instance->getInstantiatedFromMember(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool isInstantiationOf(CXXRecordDecl *Pattern, |
| CXXRecordDecl *Instance) { |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromMemberClass(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool isInstantiationOf(FunctionDecl *Pattern, |
| FunctionDecl *Instance) { |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromMemberFunction(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool isInstantiationOf(EnumDecl *Pattern, |
| EnumDecl *Instance) { |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromMemberEnum(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool isInstantiationOf(UsingShadowDecl *Pattern, |
| UsingShadowDecl *Instance, |
| ASTContext &C) { |
| return C.getInstantiatedFromUsingShadowDecl(Instance) == Pattern; |
| } |
| |
| static bool isInstantiationOf(UsingDecl *Pattern, |
| UsingDecl *Instance, |
| ASTContext &C) { |
| return C.getInstantiatedFromUsingDecl(Instance) == Pattern; |
| } |
| |
| static bool isInstantiationOf(UnresolvedUsingValueDecl *Pattern, |
| UsingDecl *Instance, |
| ASTContext &C) { |
| return C.getInstantiatedFromUsingDecl(Instance) == Pattern; |
| } |
| |
| static bool isInstantiationOf(UnresolvedUsingTypenameDecl *Pattern, |
| UsingDecl *Instance, |
| ASTContext &C) { |
| return C.getInstantiatedFromUsingDecl(Instance) == Pattern; |
| } |
| |
| static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, |
| VarDecl *Instance) { |
| assert(Instance->isStaticDataMember()); |
| |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromStaticDataMember(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| // Other is the prospective instantiation |
| // D is the prospective pattern |
| static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { |
| if (D->getKind() != Other->getKind()) { |
| if (UnresolvedUsingTypenameDecl *UUD |
| = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { |
| if (UsingDecl *UD = dyn_cast<UsingDecl>(Other)) { |
| return isInstantiationOf(UUD, UD, Ctx); |
| } |
| } |
| |
| if (UnresolvedUsingValueDecl *UUD |
| = dyn_cast<UnresolvedUsingValueDecl>(D)) { |
| if (UsingDecl *UD = dyn_cast<UsingDecl>(Other)) { |
| return isInstantiationOf(UUD, UD, Ctx); |
| } |
| } |
| |
| return false; |
| } |
| |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Other)) |
| return isInstantiationOf(cast<CXXRecordDecl>(D), Record); |
| |
| if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Other)) |
| return isInstantiationOf(cast<FunctionDecl>(D), Function); |
| |
| if (EnumDecl *Enum = dyn_cast<EnumDecl>(Other)) |
| return isInstantiationOf(cast<EnumDecl>(D), Enum); |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(Other)) |
| if (Var->isStaticDataMember()) |
| return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); |
| |
| if (ClassTemplateDecl *Temp = dyn_cast<ClassTemplateDecl>(Other)) |
| return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); |
| |
| if (FunctionTemplateDecl *Temp = dyn_cast<FunctionTemplateDecl>(Other)) |
| return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); |
| |
| if (ClassTemplatePartialSpecializationDecl *PartialSpec |
| = dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) |
| return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), |
| PartialSpec); |
| |
| if (FieldDecl *Field = dyn_cast<FieldDecl>(Other)) { |
| if (!Field->getDeclName()) { |
| // This is an unnamed field. |
| return Ctx.getInstantiatedFromUnnamedFieldDecl(Field) == |
| cast<FieldDecl>(D); |
| } |
| } |
| |
| if (UsingDecl *Using = dyn_cast<UsingDecl>(Other)) |
| return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); |
| |
| if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(Other)) |
| return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); |
| |
| return D->getDeclName() && isa<NamedDecl>(Other) && |
| D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); |
| } |
| |
| template<typename ForwardIterator> |
| static NamedDecl *findInstantiationOf(ASTContext &Ctx, |
| NamedDecl *D, |
| ForwardIterator first, |
| ForwardIterator last) { |
| for (; first != last; ++first) |
| if (isInstantiationOf(Ctx, D, *first)) |
| return cast<NamedDecl>(*first); |
| |
| return 0; |
| } |
| |
| /// \brief Finds the instantiation of the given declaration context |
| /// within the current instantiation. |
| /// |
| /// \returns NULL if there was an error |
| DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { |
| Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs); |
| return cast_or_null<DeclContext>(ID); |
| } else return DC; |
| } |
| |
| /// \brief Find the instantiation of the given declaration within the |
| /// current instantiation. |
| /// |
| /// This routine is intended to be used when \p D is a declaration |
| /// referenced from within a template, that needs to mapped into the |
| /// corresponding declaration within an instantiation. For example, |
| /// given: |
| /// |
| /// \code |
| /// template<typename T> |
| /// struct X { |
| /// enum Kind { |
| /// KnownValue = sizeof(T) |
| /// }; |
| /// |
| /// bool getKind() const { return KnownValue; } |
| /// }; |
| /// |
| /// template struct X<int>; |
| /// \endcode |
| /// |
| /// In the instantiation of X<int>::getKind(), we need to map the |
| /// EnumConstantDecl for KnownValue (which refers to |
| /// X<T>::\<Kind>\::KnownValue) to its instantiation |
| /// (X<int>::\<Kind>\::KnownValue). InstantiateCurrentDeclRef() performs |
| /// this mapping from within the instantiation of X<int>. |
| NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| DeclContext *ParentDC = D->getDeclContext(); |
| if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || |
| isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || |
| (ParentDC->isFunctionOrMethod() && ParentDC->isDependentContext()) || |
| (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) { |
| // D is a local of some kind. Look into the map of local |
| // declarations to their instantiations. |
| typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; |
| llvm::PointerUnion<Decl *, DeclArgumentPack *> *Found |
| = CurrentInstantiationScope->findInstantiationOf(D); |
| |
| if (Found) { |
| if (Decl *FD = Found->dyn_cast<Decl *>()) |
| return cast<NamedDecl>(FD); |
| |
| int PackIdx = ArgumentPackSubstitutionIndex; |
| assert(PackIdx != -1 && "found declaration pack but not pack expanding"); |
| return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]); |
| } |
| |
| // If we didn't find the decl, then we must have a label decl that hasn't |
| // been found yet. Lazily instantiate it and return it now. |
| assert(isa<LabelDecl>(D)); |
| |
| Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); |
| assert(Inst && "Failed to instantiate label??"); |
| |
| CurrentInstantiationScope->InstantiatedLocal(D, Inst); |
| return cast<LabelDecl>(Inst); |
| } |
| |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { |
| if (!Record->isDependentContext()) |
| return D; |
| |
| // Determine whether this record is the "templated" declaration describing |
| // a class template or class template partial specialization. |
| ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); |
| if (ClassTemplate) |
| ClassTemplate = ClassTemplate->getCanonicalDecl(); |
| else if (ClassTemplatePartialSpecializationDecl *PartialSpec |
| = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) |
| ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl(); |
| |
| // Walk the current context to find either the record or an instantiation of |
| // it. |
| DeclContext *DC = CurContext; |
| while (!DC->isFileContext()) { |
| // If we're performing substitution while we're inside the template |
| // definition, we'll find our own context. We're done. |
| if (DC->Equals(Record)) |
| return Record; |
| |
| if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) { |
| // Check whether we're in the process of instantiating a class template |
| // specialization of the template we're mapping. |
| if (ClassTemplateSpecializationDecl *InstSpec |
| = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){ |
| ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); |
| if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) |
| return InstRecord; |
| } |
| |
| // Check whether we're in the process of instantiating a member class. |
| if (isInstantiationOf(Record, InstRecord)) |
| return InstRecord; |
| } |
| |
| |
| // Move to the outer template scope. |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) { |
| if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){ |
| DC = FD->getLexicalDeclContext(); |
| continue; |
| } |
| } |
| |
| DC = DC->getParent(); |
| } |
| |
| // Fall through to deal with other dependent record types (e.g., |
| // anonymous unions in class templates). |
| } |
| |
| if (!ParentDC->isDependentContext()) |
| return D; |
| |
| ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); |
| if (!ParentDC) |
| return 0; |
| |
| if (ParentDC != D->getDeclContext()) { |
| // We performed some kind of instantiation in the parent context, |
| // so now we need to look into the instantiated parent context to |
| // find the instantiation of the declaration D. |
| |
| // If our context used to be dependent, we may need to instantiate |
| // it before performing lookup into that context. |
| bool IsBeingInstantiated = false; |
| if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { |
| if (!Spec->isDependentContext()) { |
| QualType T = Context.getTypeDeclType(Spec); |
| const RecordType *Tag = T->getAs<RecordType>(); |
| assert(Tag && "type of non-dependent record is not a RecordType"); |
| if (Tag->isBeingDefined()) |
| IsBeingInstantiated = true; |
| if (!Tag->isBeingDefined() && |
| RequireCompleteType(Loc, T, diag::err_incomplete_type)) |
| return 0; |
| |
| ParentDC = Tag->getDecl(); |
| } |
| } |
| |
| NamedDecl *Result = 0; |
| if (D->getDeclName()) { |
| DeclContext::lookup_result Found = ParentDC->lookup(D->getDeclName()); |
| Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); |
| } else { |
| // Since we don't have a name for the entity we're looking for, |
| // our only option is to walk through all of the declarations to |
| // find that name. This will occur in a few cases: |
| // |
| // - anonymous struct/union within a template |
| // - unnamed class/struct/union/enum within a template |
| // |
| // FIXME: Find a better way to find these instantiations! |
| Result = findInstantiationOf(Context, D, |
| ParentDC->decls_begin(), |
| ParentDC->decls_end()); |
| } |
| |
| if (!Result) { |
| if (isa<UsingShadowDecl>(D)) { |
| // UsingShadowDecls can instantiate to nothing because of using hiding. |
| } else if (Diags.hasErrorOccurred()) { |
| // We've already complained about something, so most likely this |
| // declaration failed to instantiate. There's no point in complaining |
| // further, since this is normal in invalid code. |
| } else if (IsBeingInstantiated) { |
| // The class in which this member exists is currently being |
| // instantiated, and we haven't gotten around to instantiating this |
| // member yet. This can happen when the code uses forward declarations |
| // of member classes, and introduces ordering dependencies via |
| // template instantiation. |
| Diag(Loc, diag::err_member_not_yet_instantiated) |
| << D->getDeclName() |
| << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); |
| Diag(D->getLocation(), diag::note_non_instantiated_member_here); |
| } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { |
| // This enumeration constant was found when the template was defined, |
| // but can't be found in the instantiation. This can happen if an |
| // unscoped enumeration member is explicitly specialized. |
| EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext()); |
| EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum, |
| TemplateArgs)); |
| assert(Spec->getTemplateSpecializationKind() == |
| TSK_ExplicitSpecialization); |
| Diag(Loc, diag::err_enumerator_does_not_exist) |
| << D->getDeclName() |
| << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext())); |
| Diag(Spec->getLocation(), diag::note_enum_specialized_here) |
| << Context.getTypeDeclType(Spec); |
| } else { |
| // We should have found something, but didn't. |
| llvm_unreachable("Unable to find instantiation of declaration!"); |
| } |
| } |
| |
| D = Result; |
| } |
| |
| return D; |
| } |
| |
| /// \brief Performs template instantiation for all implicit template |
| /// instantiations we have seen until this point. |
| void Sema::PerformPendingInstantiations(bool LocalOnly) { |
| // Load pending instantiations from the external source. |
| if (!LocalOnly && ExternalSource) { |
| SmallVector<PendingImplicitInstantiation, 4> Pending; |
| ExternalSource->ReadPendingInstantiations(Pending); |
| PendingInstantiations.insert(PendingInstantiations.begin(), |
| Pending.begin(), Pending.end()); |
| } |
| |
| while (!PendingLocalImplicitInstantiations.empty() || |
| (!LocalOnly && !PendingInstantiations.empty())) { |
| PendingImplicitInstantiation Inst; |
| |
| if (PendingLocalImplicitInstantiations.empty()) { |
| Inst = PendingInstantiations.front(); |
| PendingInstantiations.pop_front(); |
| } else { |
| Inst = PendingLocalImplicitInstantiations.front(); |
| PendingLocalImplicitInstantiations.pop_front(); |
| } |
| |
| // Instantiate function definitions |
| if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { |
| PrettyDeclStackTraceEntry CrashInfo(*this, Function, SourceLocation(), |
| "instantiating function definition"); |
| bool DefinitionRequired = Function->getTemplateSpecializationKind() == |
| TSK_ExplicitInstantiationDefinition; |
| InstantiateFunctionDefinition(/*FIXME:*/Inst.second, Function, true, |
| DefinitionRequired); |
| continue; |
| } |
| |
| // Instantiate static data member definitions. |
| VarDecl *Var = cast<VarDecl>(Inst.first); |
| assert(Var->isStaticDataMember() && "Not a static data member?"); |
| |
| // Don't try to instantiate declarations if the most recent redeclaration |
| // is invalid. |
| if (Var->getMostRecentDecl()->isInvalidDecl()) |
| continue; |
| |
| // Check if the most recent declaration has changed the specialization kind |
| // and removed the need for implicit instantiation. |
| switch (Var->getMostRecentDecl()->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| llvm_unreachable("Cannot instantitiate an undeclared specialization."); |
| case TSK_ExplicitInstantiationDeclaration: |
| case TSK_ExplicitSpecialization: |
| continue; // No longer need to instantiate this type. |
| case TSK_ExplicitInstantiationDefinition: |
| // We only need an instantiation if the pending instantiation *is* the |
| // explicit instantiation. |
| if (Var != Var->getMostRecentDecl()) continue; |
| case TSK_ImplicitInstantiation: |
| break; |
| } |
| |
| PrettyDeclStackTraceEntry CrashInfo(*this, Var, Var->getLocation(), |
| "instantiating static data member " |
| "definition"); |
| |
| bool DefinitionRequired = Var->getTemplateSpecializationKind() == |
| TSK_ExplicitInstantiationDefinition; |
| InstantiateStaticDataMemberDefinition(/*FIXME:*/Inst.second, Var, true, |
| DefinitionRequired); |
| } |
| } |
| |
| void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| for (DeclContext::ddiag_iterator I = Pattern->ddiag_begin(), |
| E = Pattern->ddiag_end(); I != E; ++I) { |
| DependentDiagnostic *DD = *I; |
| |
| switch (DD->getKind()) { |
| case DependentDiagnostic::Access: |
| HandleDependentAccessCheck(*DD, TemplateArgs); |
| break; |
| } |
| } |
| } |