| //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These classes wrap the information about a call or function |
| // definition used to handle ABI compliancy. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCall.h" |
| #include "CGCXXABI.h" |
| #include "ABIInfo.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "TargetInfo.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "llvm/Attributes.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| /***/ |
| |
| static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { |
| switch (CC) { |
| default: return llvm::CallingConv::C; |
| case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; |
| case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; |
| case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; |
| case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; |
| case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; |
| // TODO: add support for CC_X86Pascal to llvm |
| } |
| } |
| |
| /// Derives the 'this' type for codegen purposes, i.e. ignoring method |
| /// qualification. |
| /// FIXME: address space qualification? |
| static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { |
| QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); |
| return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); |
| } |
| |
| /// Returns the canonical formal type of the given C++ method. |
| static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { |
| return MD->getType()->getCanonicalTypeUnqualified() |
| .getAs<FunctionProtoType>(); |
| } |
| |
| /// Returns the "extra-canonicalized" return type, which discards |
| /// qualifiers on the return type. Codegen doesn't care about them, |
| /// and it makes ABI code a little easier to be able to assume that |
| /// all parameter and return types are top-level unqualified. |
| static CanQualType GetReturnType(QualType RetTy) { |
| return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); |
| } |
| |
| /// Arrange the argument and result information for a value of the |
| /// given unprototyped function type. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFunctionType(CanQual<FunctionNoProtoType> FTNP) { |
| // When translating an unprototyped function type, always use a |
| // variadic type. |
| return arrangeFunctionType(FTNP->getResultType().getUnqualifiedType(), |
| ArrayRef<CanQualType>(), |
| FTNP->getExtInfo(), |
| RequiredArgs(0)); |
| } |
| |
| /// Arrange the argument and result information for a value of the |
| /// given function type, on top of any implicit parameters already |
| /// stored. |
| static const CGFunctionInfo &arrangeFunctionType(CodeGenTypes &CGT, |
| SmallVectorImpl<CanQualType> &argTypes, |
| CanQual<FunctionProtoType> FTP) { |
| RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size()); |
| // FIXME: Kill copy. |
| for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) |
| argTypes.push_back(FTP->getArgType(i)); |
| CanQualType resultType = FTP->getResultType().getUnqualifiedType(); |
| return CGT.arrangeFunctionType(resultType, argTypes, |
| FTP->getExtInfo(), required); |
| } |
| |
| /// Arrange the argument and result information for a value of the |
| /// given function type. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFunctionType(CanQual<FunctionProtoType> FTP) { |
| SmallVector<CanQualType, 16> argTypes; |
| return ::arrangeFunctionType(*this, argTypes, FTP); |
| } |
| |
| static CallingConv getCallingConventionForDecl(const Decl *D) { |
| // Set the appropriate calling convention for the Function. |
| if (D->hasAttr<StdCallAttr>()) |
| return CC_X86StdCall; |
| |
| if (D->hasAttr<FastCallAttr>()) |
| return CC_X86FastCall; |
| |
| if (D->hasAttr<ThisCallAttr>()) |
| return CC_X86ThisCall; |
| |
| if (D->hasAttr<PascalAttr>()) |
| return CC_X86Pascal; |
| |
| if (PcsAttr *PCS = D->getAttr<PcsAttr>()) |
| return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); |
| |
| return CC_C; |
| } |
| |
| /// Arrange the argument and result information for a call to an |
| /// unknown C++ non-static member function of the given abstract type. |
| /// The member function must be an ordinary function, i.e. not a |
| /// constructor or destructor. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, |
| const FunctionProtoType *FTP) { |
| SmallVector<CanQualType, 16> argTypes; |
| |
| // Add the 'this' pointer. |
| argTypes.push_back(GetThisType(Context, RD)); |
| |
| return ::arrangeFunctionType(*this, argTypes, |
| FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); |
| } |
| |
| /// Arrange the argument and result information for a declaration or |
| /// definition of the given C++ non-static member function. The |
| /// member function must be an ordinary function, i.e. not a |
| /// constructor or destructor. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { |
| assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); |
| assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); |
| |
| CanQual<FunctionProtoType> prototype = GetFormalType(MD); |
| |
| if (MD->isInstance()) { |
| // The abstract case is perfectly fine. |
| return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr()); |
| } |
| |
| return arrangeFunctionType(prototype); |
| } |
| |
| /// Arrange the argument and result information for a declaration |
| /// or definition to the given constructor variant. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D, |
| CXXCtorType ctorKind) { |
| SmallVector<CanQualType, 16> argTypes; |
| argTypes.push_back(GetThisType(Context, D->getParent())); |
| CanQualType resultType = Context.VoidTy; |
| |
| TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes); |
| |
| CanQual<FunctionProtoType> FTP = GetFormalType(D); |
| |
| RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size()); |
| |
| // Add the formal parameters. |
| for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) |
| argTypes.push_back(FTP->getArgType(i)); |
| |
| return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(), required); |
| } |
| |
| /// Arrange the argument and result information for a declaration, |
| /// definition, or call to the given destructor variant. It so |
| /// happens that all three cases produce the same information. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D, |
| CXXDtorType dtorKind) { |
| SmallVector<CanQualType, 2> argTypes; |
| argTypes.push_back(GetThisType(Context, D->getParent())); |
| CanQualType resultType = Context.VoidTy; |
| |
| TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes); |
| |
| CanQual<FunctionProtoType> FTP = GetFormalType(D); |
| assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); |
| |
| return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(), |
| RequiredArgs::All); |
| } |
| |
| /// Arrange the argument and result information for the declaration or |
| /// definition of the given function. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) |
| if (MD->isInstance()) |
| return arrangeCXXMethodDeclaration(MD); |
| |
| CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); |
| |
| assert(isa<FunctionType>(FTy)); |
| |
| // When declaring a function without a prototype, always use a |
| // non-variadic type. |
| if (isa<FunctionNoProtoType>(FTy)) { |
| CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); |
| return arrangeFunctionType(noProto->getResultType(), |
| ArrayRef<CanQualType>(), |
| noProto->getExtInfo(), |
| RequiredArgs::All); |
| } |
| |
| assert(isa<FunctionProtoType>(FTy)); |
| return arrangeFunctionType(FTy.getAs<FunctionProtoType>()); |
| } |
| |
| /// Arrange the argument and result information for the declaration or |
| /// definition of an Objective-C method. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { |
| // It happens that this is the same as a call with no optional |
| // arguments, except also using the formal 'self' type. |
| return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); |
| } |
| |
| /// Arrange the argument and result information for the function type |
| /// through which to perform a send to the given Objective-C method, |
| /// using the given receiver type. The receiver type is not always |
| /// the 'self' type of the method or even an Objective-C pointer type. |
| /// This is *not* the right method for actually performing such a |
| /// message send, due to the possibility of optional arguments. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, |
| QualType receiverType) { |
| SmallVector<CanQualType, 16> argTys; |
| argTys.push_back(Context.getCanonicalParamType(receiverType)); |
| argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); |
| // FIXME: Kill copy? |
| for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), |
| e = MD->param_end(); i != e; ++i) { |
| argTys.push_back(Context.getCanonicalParamType((*i)->getType())); |
| } |
| |
| FunctionType::ExtInfo einfo; |
| einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); |
| |
| if (getContext().getLangOpts().ObjCAutoRefCount && |
| MD->hasAttr<NSReturnsRetainedAttr>()) |
| einfo = einfo.withProducesResult(true); |
| |
| RequiredArgs required = |
| (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); |
| |
| return arrangeFunctionType(GetReturnType(MD->getResultType()), argTys, |
| einfo, required); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { |
| // FIXME: Do we need to handle ObjCMethodDecl? |
| const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); |
| |
| if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) |
| return arrangeCXXConstructorDeclaration(CD, GD.getCtorType()); |
| |
| if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) |
| return arrangeCXXDestructor(DD, GD.getDtorType()); |
| |
| return arrangeFunctionDeclaration(FD); |
| } |
| |
| /// Figure out the rules for calling a function with the given formal |
| /// type using the given arguments. The arguments are necessary |
| /// because the function might be unprototyped, in which case it's |
| /// target-dependent in crazy ways. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFunctionCall(const CallArgList &args, |
| const FunctionType *fnType) { |
| RequiredArgs required = RequiredArgs::All; |
| if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { |
| if (proto->isVariadic()) |
| required = RequiredArgs(proto->getNumArgs()); |
| } else if (CGM.getTargetCodeGenInfo() |
| .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) { |
| required = RequiredArgs(0); |
| } |
| |
| return arrangeFunctionCall(fnType->getResultType(), args, |
| fnType->getExtInfo(), required); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFunctionCall(QualType resultType, |
| const CallArgList &args, |
| const FunctionType::ExtInfo &info, |
| RequiredArgs required) { |
| // FIXME: Kill copy. |
| SmallVector<CanQualType, 16> argTypes; |
| for (CallArgList::const_iterator i = args.begin(), e = args.end(); |
| i != e; ++i) |
| argTypes.push_back(Context.getCanonicalParamType(i->Ty)); |
| return arrangeFunctionType(GetReturnType(resultType), argTypes, info, |
| required); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFunctionDeclaration(QualType resultType, |
| const FunctionArgList &args, |
| const FunctionType::ExtInfo &info, |
| bool isVariadic) { |
| // FIXME: Kill copy. |
| SmallVector<CanQualType, 16> argTypes; |
| for (FunctionArgList::const_iterator i = args.begin(), e = args.end(); |
| i != e; ++i) |
| argTypes.push_back(Context.getCanonicalParamType((*i)->getType())); |
| |
| RequiredArgs required = |
| (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); |
| return arrangeFunctionType(GetReturnType(resultType), argTypes, info, |
| required); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { |
| return arrangeFunctionType(getContext().VoidTy, ArrayRef<CanQualType>(), |
| FunctionType::ExtInfo(), RequiredArgs::All); |
| } |
| |
| /// Arrange the argument and result information for an abstract value |
| /// of a given function type. This is the method which all of the |
| /// above functions ultimately defer to. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFunctionType(CanQualType resultType, |
| ArrayRef<CanQualType> argTypes, |
| const FunctionType::ExtInfo &info, |
| RequiredArgs required) { |
| #ifndef NDEBUG |
| for (ArrayRef<CanQualType>::const_iterator |
| I = argTypes.begin(), E = argTypes.end(); I != E; ++I) |
| assert(I->isCanonicalAsParam()); |
| #endif |
| |
| unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); |
| |
| // Lookup or create unique function info. |
| llvm::FoldingSetNodeID ID; |
| CGFunctionInfo::Profile(ID, info, required, resultType, argTypes); |
| |
| void *insertPos = 0; |
| CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); |
| if (FI) |
| return *FI; |
| |
| // Construct the function info. We co-allocate the ArgInfos. |
| FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required); |
| FunctionInfos.InsertNode(FI, insertPos); |
| |
| bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted; |
| assert(inserted && "Recursively being processed?"); |
| |
| // Compute ABI information. |
| getABIInfo().computeInfo(*FI); |
| |
| // Loop over all of the computed argument and return value info. If any of |
| // them are direct or extend without a specified coerce type, specify the |
| // default now. |
| ABIArgInfo &retInfo = FI->getReturnInfo(); |
| if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0) |
| retInfo.setCoerceToType(ConvertType(FI->getReturnType())); |
| |
| for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); |
| I != E; ++I) |
| if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) |
| I->info.setCoerceToType(ConvertType(I->type)); |
| |
| bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; |
| assert(erased && "Not in set?"); |
| |
| return *FI; |
| } |
| |
| CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, |
| const FunctionType::ExtInfo &info, |
| CanQualType resultType, |
| ArrayRef<CanQualType> argTypes, |
| RequiredArgs required) { |
| void *buffer = operator new(sizeof(CGFunctionInfo) + |
| sizeof(ArgInfo) * (argTypes.size() + 1)); |
| CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); |
| FI->CallingConvention = llvmCC; |
| FI->EffectiveCallingConvention = llvmCC; |
| FI->ASTCallingConvention = info.getCC(); |
| FI->NoReturn = info.getNoReturn(); |
| FI->ReturnsRetained = info.getProducesResult(); |
| FI->Required = required; |
| FI->HasRegParm = info.getHasRegParm(); |
| FI->RegParm = info.getRegParm(); |
| FI->NumArgs = argTypes.size(); |
| FI->getArgsBuffer()[0].type = resultType; |
| for (unsigned i = 0, e = argTypes.size(); i != e; ++i) |
| FI->getArgsBuffer()[i + 1].type = argTypes[i]; |
| return FI; |
| } |
| |
| /***/ |
| |
| void CodeGenTypes::GetExpandedTypes(QualType type, |
| SmallVectorImpl<llvm::Type*> &expandedTypes) { |
| if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { |
| uint64_t NumElts = AT->getSize().getZExtValue(); |
| for (uint64_t Elt = 0; Elt < NumElts; ++Elt) |
| GetExpandedTypes(AT->getElementType(), expandedTypes); |
| } else if (const RecordType *RT = type->getAs<RecordType>()) { |
| const RecordDecl *RD = RT->getDecl(); |
| assert(!RD->hasFlexibleArrayMember() && |
| "Cannot expand structure with flexible array."); |
| if (RD->isUnion()) { |
| // Unions can be here only in degenerative cases - all the fields are same |
| // after flattening. Thus we have to use the "largest" field. |
| const FieldDecl *LargestFD = 0; |
| CharUnits UnionSize = CharUnits::Zero(); |
| |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| const FieldDecl *FD = *i; |
| assert(!FD->isBitField() && |
| "Cannot expand structure with bit-field members."); |
| CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); |
| if (UnionSize < FieldSize) { |
| UnionSize = FieldSize; |
| LargestFD = FD; |
| } |
| } |
| if (LargestFD) |
| GetExpandedTypes(LargestFD->getType(), expandedTypes); |
| } else { |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| assert(!i->isBitField() && |
| "Cannot expand structure with bit-field members."); |
| GetExpandedTypes(i->getType(), expandedTypes); |
| } |
| } |
| } else if (const ComplexType *CT = type->getAs<ComplexType>()) { |
| llvm::Type *EltTy = ConvertType(CT->getElementType()); |
| expandedTypes.push_back(EltTy); |
| expandedTypes.push_back(EltTy); |
| } else |
| expandedTypes.push_back(ConvertType(type)); |
| } |
| |
| llvm::Function::arg_iterator |
| CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, |
| llvm::Function::arg_iterator AI) { |
| assert(LV.isSimple() && |
| "Unexpected non-simple lvalue during struct expansion."); |
| |
| if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { |
| unsigned NumElts = AT->getSize().getZExtValue(); |
| QualType EltTy = AT->getElementType(); |
| for (unsigned Elt = 0; Elt < NumElts; ++Elt) { |
| llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt); |
| LValue LV = MakeAddrLValue(EltAddr, EltTy); |
| AI = ExpandTypeFromArgs(EltTy, LV, AI); |
| } |
| } else if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| RecordDecl *RD = RT->getDecl(); |
| if (RD->isUnion()) { |
| // Unions can be here only in degenerative cases - all the fields are same |
| // after flattening. Thus we have to use the "largest" field. |
| const FieldDecl *LargestFD = 0; |
| CharUnits UnionSize = CharUnits::Zero(); |
| |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| const FieldDecl *FD = *i; |
| assert(!FD->isBitField() && |
| "Cannot expand structure with bit-field members."); |
| CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); |
| if (UnionSize < FieldSize) { |
| UnionSize = FieldSize; |
| LargestFD = FD; |
| } |
| } |
| if (LargestFD) { |
| // FIXME: What are the right qualifiers here? |
| LValue SubLV = EmitLValueForField(LV, LargestFD); |
| AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI); |
| } |
| } else { |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| FieldDecl *FD = *i; |
| QualType FT = FD->getType(); |
| |
| // FIXME: What are the right qualifiers here? |
| LValue SubLV = EmitLValueForField(LV, FD); |
| AI = ExpandTypeFromArgs(FT, SubLV, AI); |
| } |
| } |
| } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { |
| QualType EltTy = CT->getElementType(); |
| llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); |
| EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); |
| llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); |
| EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); |
| } else { |
| EmitStoreThroughLValue(RValue::get(AI), LV); |
| ++AI; |
| } |
| |
| return AI; |
| } |
| |
| /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are |
| /// accessing some number of bytes out of it, try to gep into the struct to get |
| /// at its inner goodness. Dive as deep as possible without entering an element |
| /// with an in-memory size smaller than DstSize. |
| static llvm::Value * |
| EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, |
| llvm::StructType *SrcSTy, |
| uint64_t DstSize, CodeGenFunction &CGF) { |
| // We can't dive into a zero-element struct. |
| if (SrcSTy->getNumElements() == 0) return SrcPtr; |
| |
| llvm::Type *FirstElt = SrcSTy->getElementType(0); |
| |
| // If the first elt is at least as large as what we're looking for, or if the |
| // first element is the same size as the whole struct, we can enter it. |
| uint64_t FirstEltSize = |
| CGF.CGM.getTargetData().getTypeAllocSize(FirstElt); |
| if (FirstEltSize < DstSize && |
| FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy)) |
| return SrcPtr; |
| |
| // GEP into the first element. |
| SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); |
| |
| // If the first element is a struct, recurse. |
| llvm::Type *SrcTy = |
| cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); |
| if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) |
| return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); |
| |
| return SrcPtr; |
| } |
| |
| /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both |
| /// are either integers or pointers. This does a truncation of the value if it |
| /// is too large or a zero extension if it is too small. |
| static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, |
| llvm::Type *Ty, |
| CodeGenFunction &CGF) { |
| if (Val->getType() == Ty) |
| return Val; |
| |
| if (isa<llvm::PointerType>(Val->getType())) { |
| // If this is Pointer->Pointer avoid conversion to and from int. |
| if (isa<llvm::PointerType>(Ty)) |
| return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); |
| |
| // Convert the pointer to an integer so we can play with its width. |
| Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); |
| } |
| |
| llvm::Type *DestIntTy = Ty; |
| if (isa<llvm::PointerType>(DestIntTy)) |
| DestIntTy = CGF.IntPtrTy; |
| |
| if (Val->getType() != DestIntTy) |
| Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); |
| |
| if (isa<llvm::PointerType>(Ty)) |
| Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); |
| return Val; |
| } |
| |
| |
| |
| /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as |
| /// a pointer to an object of type \arg Ty. |
| /// |
| /// This safely handles the case when the src type is smaller than the |
| /// destination type; in this situation the values of bits which not |
| /// present in the src are undefined. |
| static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, |
| llvm::Type *Ty, |
| CodeGenFunction &CGF) { |
| llvm::Type *SrcTy = |
| cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); |
| |
| // If SrcTy and Ty are the same, just do a load. |
| if (SrcTy == Ty) |
| return CGF.Builder.CreateLoad(SrcPtr); |
| |
| uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); |
| |
| if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { |
| SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); |
| SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); |
| } |
| |
| uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); |
| |
| // If the source and destination are integer or pointer types, just do an |
| // extension or truncation to the desired type. |
| if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && |
| (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { |
| llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); |
| return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); |
| } |
| |
| // If load is legal, just bitcast the src pointer. |
| if (SrcSize >= DstSize) { |
| // Generally SrcSize is never greater than DstSize, since this means we are |
| // losing bits. However, this can happen in cases where the structure has |
| // additional padding, for example due to a user specified alignment. |
| // |
| // FIXME: Assert that we aren't truncating non-padding bits when have access |
| // to that information. |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); |
| llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); |
| // FIXME: Use better alignment / avoid requiring aligned load. |
| Load->setAlignment(1); |
| return Load; |
| } |
| |
| // Otherwise do coercion through memory. This is stupid, but |
| // simple. |
| llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); |
| llvm::StoreInst *Store = |
| CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); |
| // FIXME: Use better alignment / avoid requiring aligned store. |
| Store->setAlignment(1); |
| return CGF.Builder.CreateLoad(Tmp); |
| } |
| |
| // Function to store a first-class aggregate into memory. We prefer to |
| // store the elements rather than the aggregate to be more friendly to |
| // fast-isel. |
| // FIXME: Do we need to recurse here? |
| static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, |
| llvm::Value *DestPtr, bool DestIsVolatile, |
| bool LowAlignment) { |
| // Prefer scalar stores to first-class aggregate stores. |
| if (llvm::StructType *STy = |
| dyn_cast<llvm::StructType>(Val->getType())) { |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); |
| llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); |
| llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, |
| DestIsVolatile); |
| if (LowAlignment) |
| SI->setAlignment(1); |
| } |
| } else { |
| llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); |
| if (LowAlignment) |
| SI->setAlignment(1); |
| } |
| } |
| |
| /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, |
| /// where the source and destination may have different types. |
| /// |
| /// This safely handles the case when the src type is larger than the |
| /// destination type; the upper bits of the src will be lost. |
| static void CreateCoercedStore(llvm::Value *Src, |
| llvm::Value *DstPtr, |
| bool DstIsVolatile, |
| CodeGenFunction &CGF) { |
| llvm::Type *SrcTy = Src->getType(); |
| llvm::Type *DstTy = |
| cast<llvm::PointerType>(DstPtr->getType())->getElementType(); |
| if (SrcTy == DstTy) { |
| CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); |
| return; |
| } |
| |
| uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); |
| |
| if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { |
| DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); |
| DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); |
| } |
| |
| // If the source and destination are integer or pointer types, just do an |
| // extension or truncation to the desired type. |
| if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && |
| (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { |
| Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); |
| CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); |
| return; |
| } |
| |
| uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); |
| |
| // If store is legal, just bitcast the src pointer. |
| if (SrcSize <= DstSize) { |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); |
| // FIXME: Use better alignment / avoid requiring aligned store. |
| BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); |
| } else { |
| // Otherwise do coercion through memory. This is stupid, but |
| // simple. |
| |
| // Generally SrcSize is never greater than DstSize, since this means we are |
| // losing bits. However, this can happen in cases where the structure has |
| // additional padding, for example due to a user specified alignment. |
| // |
| // FIXME: Assert that we aren't truncating non-padding bits when have access |
| // to that information. |
| llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); |
| CGF.Builder.CreateStore(Src, Tmp); |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); |
| llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); |
| // FIXME: Use better alignment / avoid requiring aligned load. |
| Load->setAlignment(1); |
| CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile); |
| } |
| } |
| |
| /***/ |
| |
| bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { |
| return FI.getReturnInfo().isIndirect(); |
| } |
| |
| bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { |
| if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { |
| switch (BT->getKind()) { |
| default: |
| return false; |
| case BuiltinType::Float: |
| return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float); |
| case BuiltinType::Double: |
| return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double); |
| case BuiltinType::LongDouble: |
| return getContext().getTargetInfo().useObjCFPRetForRealType( |
| TargetInfo::LongDouble); |
| } |
| } |
| |
| return false; |
| } |
| |
| bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { |
| if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { |
| if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { |
| if (BT->getKind() == BuiltinType::LongDouble) |
| return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble(); |
| } |
| } |
| |
| return false; |
| } |
| |
| llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { |
| const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); |
| return GetFunctionType(FI); |
| } |
| |
| llvm::FunctionType * |
| CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { |
| |
| bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; |
| assert(Inserted && "Recursively being processed?"); |
| |
| SmallVector<llvm::Type*, 8> argTypes; |
| llvm::Type *resultType = 0; |
| |
| const ABIArgInfo &retAI = FI.getReturnInfo(); |
| switch (retAI.getKind()) { |
| case ABIArgInfo::Expand: |
| llvm_unreachable("Invalid ABI kind for return argument"); |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: |
| resultType = retAI.getCoerceToType(); |
| break; |
| |
| case ABIArgInfo::Indirect: { |
| assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); |
| resultType = llvm::Type::getVoidTy(getLLVMContext()); |
| |
| QualType ret = FI.getReturnType(); |
| llvm::Type *ty = ConvertType(ret); |
| unsigned addressSpace = Context.getTargetAddressSpace(ret); |
| argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); |
| break; |
| } |
| |
| case ABIArgInfo::Ignore: |
| resultType = llvm::Type::getVoidTy(getLLVMContext()); |
| break; |
| } |
| |
| for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), |
| ie = FI.arg_end(); it != ie; ++it) { |
| const ABIArgInfo &argAI = it->info; |
| |
| switch (argAI.getKind()) { |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Indirect: { |
| // indirect arguments are always on the stack, which is addr space #0. |
| llvm::Type *LTy = ConvertTypeForMem(it->type); |
| argTypes.push_back(LTy->getPointerTo()); |
| break; |
| } |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| // Insert a padding type to ensure proper alignment. |
| if (llvm::Type *PaddingType = argAI.getPaddingType()) |
| argTypes.push_back(PaddingType); |
| // If the coerce-to type is a first class aggregate, flatten it. Either |
| // way is semantically identical, but fast-isel and the optimizer |
| // generally likes scalar values better than FCAs. |
| llvm::Type *argType = argAI.getCoerceToType(); |
| if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { |
| for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) |
| argTypes.push_back(st->getElementType(i)); |
| } else { |
| argTypes.push_back(argType); |
| } |
| break; |
| } |
| |
| case ABIArgInfo::Expand: |
| GetExpandedTypes(it->type, argTypes); |
| break; |
| } |
| } |
| |
| bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; |
| assert(Erased && "Not in set?"); |
| |
| return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic()); |
| } |
| |
| llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); |
| const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); |
| |
| if (!isFuncTypeConvertible(FPT)) |
| return llvm::StructType::get(getLLVMContext()); |
| |
| const CGFunctionInfo *Info; |
| if (isa<CXXDestructorDecl>(MD)) |
| Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType()); |
| else |
| Info = &arrangeCXXMethodDeclaration(MD); |
| return GetFunctionType(*Info); |
| } |
| |
| void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, |
| const Decl *TargetDecl, |
| AttributeListType &PAL, |
| unsigned &CallingConv) { |
| llvm::Attributes FuncAttrs; |
| llvm::Attributes RetAttrs; |
| |
| CallingConv = FI.getEffectiveCallingConvention(); |
| |
| if (FI.isNoReturn()) |
| FuncAttrs |= llvm::Attribute::NoReturn; |
| |
| // FIXME: handle sseregparm someday... |
| if (TargetDecl) { |
| if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) |
| FuncAttrs |= llvm::Attribute::ReturnsTwice; |
| if (TargetDecl->hasAttr<NoThrowAttr>()) |
| FuncAttrs |= llvm::Attribute::NoUnwind; |
| else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { |
| const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); |
| if (FPT && FPT->isNothrow(getContext())) |
| FuncAttrs |= llvm::Attribute::NoUnwind; |
| } |
| |
| if (TargetDecl->hasAttr<NoReturnAttr>()) |
| FuncAttrs |= llvm::Attribute::NoReturn; |
| |
| if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) |
| FuncAttrs |= llvm::Attribute::ReturnsTwice; |
| |
| // 'const' and 'pure' attribute functions are also nounwind. |
| if (TargetDecl->hasAttr<ConstAttr>()) { |
| FuncAttrs |= llvm::Attribute::ReadNone; |
| FuncAttrs |= llvm::Attribute::NoUnwind; |
| } else if (TargetDecl->hasAttr<PureAttr>()) { |
| FuncAttrs |= llvm::Attribute::ReadOnly; |
| FuncAttrs |= llvm::Attribute::NoUnwind; |
| } |
| if (TargetDecl->hasAttr<MallocAttr>()) |
| RetAttrs |= llvm::Attribute::NoAlias; |
| } |
| |
| if (CodeGenOpts.OptimizeSize) |
| FuncAttrs |= llvm::Attribute::OptimizeForSize; |
| if (CodeGenOpts.DisableRedZone) |
| FuncAttrs |= llvm::Attribute::NoRedZone; |
| if (CodeGenOpts.NoImplicitFloat) |
| FuncAttrs |= llvm::Attribute::NoImplicitFloat; |
| |
| QualType RetTy = FI.getReturnType(); |
| unsigned Index = 1; |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Extend: |
| if (RetTy->hasSignedIntegerRepresentation()) |
| RetAttrs |= llvm::Attribute::SExt; |
| else if (RetTy->hasUnsignedIntegerRepresentation()) |
| RetAttrs |= llvm::Attribute::ZExt; |
| break; |
| case ABIArgInfo::Direct: |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Indirect: |
| PAL.push_back(llvm::AttributeWithIndex::get(Index, |
| llvm::Attribute::StructRet)); |
| ++Index; |
| // sret disables readnone and readonly |
| FuncAttrs &= ~(llvm::Attribute::ReadOnly | |
| llvm::Attribute::ReadNone); |
| break; |
| |
| case ABIArgInfo::Expand: |
| llvm_unreachable("Invalid ABI kind for return argument"); |
| } |
| |
| if (RetAttrs) |
| PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); |
| |
| // FIXME: RegParm should be reduced in case of global register variable. |
| signed RegParm; |
| if (FI.getHasRegParm()) |
| RegParm = FI.getRegParm(); |
| else |
| RegParm = CodeGenOpts.NumRegisterParameters; |
| |
| unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0); |
| for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), |
| ie = FI.arg_end(); it != ie; ++it) { |
| QualType ParamType = it->type; |
| const ABIArgInfo &AI = it->info; |
| llvm::Attributes Attrs; |
| |
| // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we |
| // have the corresponding parameter variable. It doesn't make |
| // sense to do it here because parameters are so messed up. |
| switch (AI.getKind()) { |
| case ABIArgInfo::Extend: |
| if (ParamType->isSignedIntegerOrEnumerationType()) |
| Attrs |= llvm::Attribute::SExt; |
| else if (ParamType->isUnsignedIntegerOrEnumerationType()) |
| Attrs |= llvm::Attribute::ZExt; |
| // FALL THROUGH |
| case ABIArgInfo::Direct: |
| if (RegParm > 0 && |
| (ParamType->isIntegerType() || ParamType->isPointerType() || |
| ParamType->isReferenceType())) { |
| RegParm -= |
| (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; |
| if (RegParm >= 0) |
| Attrs |= llvm::Attribute::InReg; |
| } |
| // FIXME: handle sseregparm someday... |
| |
| // Increment Index if there is padding. |
| Index += (AI.getPaddingType() != 0); |
| |
| if (llvm::StructType *STy = |
| dyn_cast<llvm::StructType>(AI.getCoerceToType())) |
| Index += STy->getNumElements()-1; // 1 will be added below. |
| break; |
| |
| case ABIArgInfo::Indirect: |
| if (AI.getIndirectByVal()) |
| Attrs |= llvm::Attribute::ByVal; |
| |
| Attrs |= |
| llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); |
| // byval disables readnone and readonly. |
| FuncAttrs &= ~(llvm::Attribute::ReadOnly | |
| llvm::Attribute::ReadNone); |
| break; |
| |
| case ABIArgInfo::Ignore: |
| // Skip increment, no matching LLVM parameter. |
| continue; |
| |
| case ABIArgInfo::Expand: { |
| SmallVector<llvm::Type*, 8> types; |
| // FIXME: This is rather inefficient. Do we ever actually need to do |
| // anything here? The result should be just reconstructed on the other |
| // side, so extension should be a non-issue. |
| getTypes().GetExpandedTypes(ParamType, types); |
| Index += types.size(); |
| continue; |
| } |
| } |
| |
| if (Attrs) |
| PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs)); |
| ++Index; |
| } |
| if (FuncAttrs) |
| PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); |
| } |
| |
| /// An argument came in as a promoted argument; demote it back to its |
| /// declared type. |
| static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, |
| const VarDecl *var, |
| llvm::Value *value) { |
| llvm::Type *varType = CGF.ConvertType(var->getType()); |
| |
| // This can happen with promotions that actually don't change the |
| // underlying type, like the enum promotions. |
| if (value->getType() == varType) return value; |
| |
| assert((varType->isIntegerTy() || varType->isFloatingPointTy()) |
| && "unexpected promotion type"); |
| |
| if (isa<llvm::IntegerType>(varType)) |
| return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); |
| |
| return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); |
| } |
| |
| void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, |
| llvm::Function *Fn, |
| const FunctionArgList &Args) { |
| // If this is an implicit-return-zero function, go ahead and |
| // initialize the return value. TODO: it might be nice to have |
| // a more general mechanism for this that didn't require synthesized |
| // return statements. |
| if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { |
| if (FD->hasImplicitReturnZero()) { |
| QualType RetTy = FD->getResultType().getUnqualifiedType(); |
| llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); |
| llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); |
| Builder.CreateStore(Zero, ReturnValue); |
| } |
| } |
| |
| // FIXME: We no longer need the types from FunctionArgList; lift up and |
| // simplify. |
| |
| // Emit allocs for param decls. Give the LLVM Argument nodes names. |
| llvm::Function::arg_iterator AI = Fn->arg_begin(); |
| |
| // Name the struct return argument. |
| if (CGM.ReturnTypeUsesSRet(FI)) { |
| AI->setName("agg.result"); |
| AI->addAttr(llvm::Attribute::NoAlias); |
| ++AI; |
| } |
| |
| assert(FI.arg_size() == Args.size() && |
| "Mismatch between function signature & arguments."); |
| unsigned ArgNo = 1; |
| CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); |
| for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); |
| i != e; ++i, ++info_it, ++ArgNo) { |
| const VarDecl *Arg = *i; |
| QualType Ty = info_it->type; |
| const ABIArgInfo &ArgI = info_it->info; |
| |
| bool isPromoted = |
| isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); |
| |
| switch (ArgI.getKind()) { |
| case ABIArgInfo::Indirect: { |
| llvm::Value *V = AI; |
| |
| if (hasAggregateLLVMType(Ty)) { |
| // Aggregates and complex variables are accessed by reference. All we |
| // need to do is realign the value, if requested |
| if (ArgI.getIndirectRealign()) { |
| llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); |
| |
| // Copy from the incoming argument pointer to the temporary with the |
| // appropriate alignment. |
| // |
| // FIXME: We should have a common utility for generating an aggregate |
| // copy. |
| llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); |
| CharUnits Size = getContext().getTypeSizeInChars(Ty); |
| llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); |
| llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); |
| Builder.CreateMemCpy(Dst, |
| Src, |
| llvm::ConstantInt::get(IntPtrTy, |
| Size.getQuantity()), |
| ArgI.getIndirectAlign(), |
| false); |
| V = AlignedTemp; |
| } |
| } else { |
| // Load scalar value from indirect argument. |
| CharUnits Alignment = getContext().getTypeAlignInChars(Ty); |
| V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); |
| |
| if (isPromoted) |
| V = emitArgumentDemotion(*this, Arg, V); |
| } |
| EmitParmDecl(*Arg, V, ArgNo); |
| break; |
| } |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| // Skip the dummy padding argument. |
| if (ArgI.getPaddingType()) |
| ++AI; |
| |
| // If we have the trivial case, handle it with no muss and fuss. |
| if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && |
| ArgI.getCoerceToType() == ConvertType(Ty) && |
| ArgI.getDirectOffset() == 0) { |
| assert(AI != Fn->arg_end() && "Argument mismatch!"); |
| llvm::Value *V = AI; |
| |
| if (Arg->getType().isRestrictQualified()) |
| AI->addAttr(llvm::Attribute::NoAlias); |
| |
| // Ensure the argument is the correct type. |
| if (V->getType() != ArgI.getCoerceToType()) |
| V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); |
| |
| if (isPromoted) |
| V = emitArgumentDemotion(*this, Arg, V); |
| |
| EmitParmDecl(*Arg, V, ArgNo); |
| break; |
| } |
| |
| llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); |
| |
| // The alignment we need to use is the max of the requested alignment for |
| // the argument plus the alignment required by our access code below. |
| unsigned AlignmentToUse = |
| CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType()); |
| AlignmentToUse = std::max(AlignmentToUse, |
| (unsigned)getContext().getDeclAlign(Arg).getQuantity()); |
| |
| Alloca->setAlignment(AlignmentToUse); |
| llvm::Value *V = Alloca; |
| llvm::Value *Ptr = V; // Pointer to store into. |
| |
| // If the value is offset in memory, apply the offset now. |
| if (unsigned Offs = ArgI.getDirectOffset()) { |
| Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); |
| Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); |
| Ptr = Builder.CreateBitCast(Ptr, |
| llvm::PointerType::getUnqual(ArgI.getCoerceToType())); |
| } |
| |
| // If the coerce-to type is a first class aggregate, we flatten it and |
| // pass the elements. Either way is semantically identical, but fast-isel |
| // and the optimizer generally likes scalar values better than FCAs. |
| llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); |
| if (STy && STy->getNumElements() > 1) { |
| uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy); |
| llvm::Type *DstTy = |
| cast<llvm::PointerType>(Ptr->getType())->getElementType(); |
| uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy); |
| |
| if (SrcSize <= DstSize) { |
| Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); |
| |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| assert(AI != Fn->arg_end() && "Argument mismatch!"); |
| AI->setName(Arg->getName() + ".coerce" + Twine(i)); |
| llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); |
| Builder.CreateStore(AI++, EltPtr); |
| } |
| } else { |
| llvm::AllocaInst *TempAlloca = |
| CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); |
| TempAlloca->setAlignment(AlignmentToUse); |
| llvm::Value *TempV = TempAlloca; |
| |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| assert(AI != Fn->arg_end() && "Argument mismatch!"); |
| AI->setName(Arg->getName() + ".coerce" + Twine(i)); |
| llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); |
| Builder.CreateStore(AI++, EltPtr); |
| } |
| |
| Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); |
| } |
| } else { |
| // Simple case, just do a coerced store of the argument into the alloca. |
| assert(AI != Fn->arg_end() && "Argument mismatch!"); |
| AI->setName(Arg->getName() + ".coerce"); |
| CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); |
| } |
| |
| |
| // Match to what EmitParmDecl is expecting for this type. |
| if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); |
| if (isPromoted) |
| V = emitArgumentDemotion(*this, Arg, V); |
| } |
| EmitParmDecl(*Arg, V, ArgNo); |
| continue; // Skip ++AI increment, already done. |
| } |
| |
| case ABIArgInfo::Expand: { |
| // If this structure was expanded into multiple arguments then |
| // we need to create a temporary and reconstruct it from the |
| // arguments. |
| llvm::AllocaInst *Alloca = CreateMemTemp(Ty); |
| CharUnits Align = getContext().getDeclAlign(Arg); |
| Alloca->setAlignment(Align.getQuantity()); |
| LValue LV = MakeAddrLValue(Alloca, Ty, Align); |
| llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); |
| EmitParmDecl(*Arg, Alloca, ArgNo); |
| |
| // Name the arguments used in expansion and increment AI. |
| unsigned Index = 0; |
| for (; AI != End; ++AI, ++Index) |
| AI->setName(Arg->getName() + "." + Twine(Index)); |
| continue; |
| } |
| |
| case ABIArgInfo::Ignore: |
| // Initialize the local variable appropriately. |
| if (hasAggregateLLVMType(Ty)) |
| EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); |
| else |
| EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), |
| ArgNo); |
| |
| // Skip increment, no matching LLVM parameter. |
| continue; |
| } |
| |
| ++AI; |
| } |
| assert(AI == Fn->arg_end() && "Argument mismatch!"); |
| } |
| |
| static void eraseUnusedBitCasts(llvm::Instruction *insn) { |
| while (insn->use_empty()) { |
| llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); |
| if (!bitcast) return; |
| |
| // This is "safe" because we would have used a ConstantExpr otherwise. |
| insn = cast<llvm::Instruction>(bitcast->getOperand(0)); |
| bitcast->eraseFromParent(); |
| } |
| } |
| |
| /// Try to emit a fused autorelease of a return result. |
| static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, |
| llvm::Value *result) { |
| // We must be immediately followed the cast. |
| llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); |
| if (BB->empty()) return 0; |
| if (&BB->back() != result) return 0; |
| |
| llvm::Type *resultType = result->getType(); |
| |
| // result is in a BasicBlock and is therefore an Instruction. |
| llvm::Instruction *generator = cast<llvm::Instruction>(result); |
| |
| SmallVector<llvm::Instruction*,4> insnsToKill; |
| |
| // Look for: |
| // %generator = bitcast %type1* %generator2 to %type2* |
| while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { |
| // We would have emitted this as a constant if the operand weren't |
| // an Instruction. |
| generator = cast<llvm::Instruction>(bitcast->getOperand(0)); |
| |
| // Require the generator to be immediately followed by the cast. |
| if (generator->getNextNode() != bitcast) |
| return 0; |
| |
| insnsToKill.push_back(bitcast); |
| } |
| |
| // Look for: |
| // %generator = call i8* @objc_retain(i8* %originalResult) |
| // or |
| // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) |
| llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); |
| if (!call) return 0; |
| |
| bool doRetainAutorelease; |
| |
| if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { |
| doRetainAutorelease = true; |
| } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() |
| .objc_retainAutoreleasedReturnValue) { |
| doRetainAutorelease = false; |
| |
| // Look for an inline asm immediately preceding the call and kill it, too. |
| llvm::Instruction *prev = call->getPrevNode(); |
| if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev)) |
| if (asmCall->getCalledValue() |
| == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) |
| insnsToKill.push_back(prev); |
| } else { |
| return 0; |
| } |
| |
| result = call->getArgOperand(0); |
| insnsToKill.push_back(call); |
| |
| // Keep killing bitcasts, for sanity. Note that we no longer care |
| // about precise ordering as long as there's exactly one use. |
| while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { |
| if (!bitcast->hasOneUse()) break; |
| insnsToKill.push_back(bitcast); |
| result = bitcast->getOperand(0); |
| } |
| |
| // Delete all the unnecessary instructions, from latest to earliest. |
| for (SmallVectorImpl<llvm::Instruction*>::iterator |
| i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) |
| (*i)->eraseFromParent(); |
| |
| // Do the fused retain/autorelease if we were asked to. |
| if (doRetainAutorelease) |
| result = CGF.EmitARCRetainAutoreleaseReturnValue(result); |
| |
| // Cast back to the result type. |
| return CGF.Builder.CreateBitCast(result, resultType); |
| } |
| |
| /// If this is a +1 of the value of an immutable 'self', remove it. |
| static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, |
| llvm::Value *result) { |
| // This is only applicable to a method with an immutable 'self'. |
| const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl); |
| if (!method) return 0; |
| const VarDecl *self = method->getSelfDecl(); |
| if (!self->getType().isConstQualified()) return 0; |
| |
| // Look for a retain call. |
| llvm::CallInst *retainCall = |
| dyn_cast<llvm::CallInst>(result->stripPointerCasts()); |
| if (!retainCall || |
| retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) |
| return 0; |
| |
| // Look for an ordinary load of 'self'. |
| llvm::Value *retainedValue = retainCall->getArgOperand(0); |
| llvm::LoadInst *load = |
| dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); |
| if (!load || load->isAtomic() || load->isVolatile() || |
| load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) |
| return 0; |
| |
| // Okay! Burn it all down. This relies for correctness on the |
| // assumption that the retain is emitted as part of the return and |
| // that thereafter everything is used "linearly". |
| llvm::Type *resultType = result->getType(); |
| eraseUnusedBitCasts(cast<llvm::Instruction>(result)); |
| assert(retainCall->use_empty()); |
| retainCall->eraseFromParent(); |
| eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); |
| |
| return CGF.Builder.CreateBitCast(load, resultType); |
| } |
| |
| /// Emit an ARC autorelease of the result of a function. |
| /// |
| /// \return the value to actually return from the function |
| static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, |
| llvm::Value *result) { |
| // If we're returning 'self', kill the initial retain. This is a |
| // heuristic attempt to "encourage correctness" in the really unfortunate |
| // case where we have a return of self during a dealloc and we desperately |
| // need to avoid the possible autorelease. |
| if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) |
| return self; |
| |
| // At -O0, try to emit a fused retain/autorelease. |
| if (CGF.shouldUseFusedARCCalls()) |
| if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) |
| return fused; |
| |
| return CGF.EmitARCAutoreleaseReturnValue(result); |
| } |
| |
| /// Heuristically search for a dominating store to the return-value slot. |
| static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { |
| // If there are multiple uses of the return-value slot, just check |
| // for something immediately preceding the IP. Sometimes this can |
| // happen with how we generate implicit-returns; it can also happen |
| // with noreturn cleanups. |
| if (!CGF.ReturnValue->hasOneUse()) { |
| llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); |
| if (IP->empty()) return 0; |
| llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); |
| if (!store) return 0; |
| if (store->getPointerOperand() != CGF.ReturnValue) return 0; |
| assert(!store->isAtomic() && !store->isVolatile()); // see below |
| return store; |
| } |
| |
| llvm::StoreInst *store = |
| dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back()); |
| if (!store) return 0; |
| |
| // These aren't actually possible for non-coerced returns, and we |
| // only care about non-coerced returns on this code path. |
| assert(!store->isAtomic() && !store->isVolatile()); |
| |
| // Now do a first-and-dirty dominance check: just walk up the |
| // single-predecessors chain from the current insertion point. |
| llvm::BasicBlock *StoreBB = store->getParent(); |
| llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); |
| while (IP != StoreBB) { |
| if (!(IP = IP->getSinglePredecessor())) |
| return 0; |
| } |
| |
| // Okay, the store's basic block dominates the insertion point; we |
| // can do our thing. |
| return store; |
| } |
| |
| void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { |
| // Functions with no result always return void. |
| if (ReturnValue == 0) { |
| Builder.CreateRetVoid(); |
| return; |
| } |
| |
| llvm::DebugLoc RetDbgLoc; |
| llvm::Value *RV = 0; |
| QualType RetTy = FI.getReturnType(); |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Indirect: { |
| unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); |
| if (RetTy->isAnyComplexType()) { |
| ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); |
| StoreComplexToAddr(RT, CurFn->arg_begin(), false); |
| } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| // Do nothing; aggregrates get evaluated directly into the destination. |
| } else { |
| EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), |
| false, Alignment, RetTy); |
| } |
| break; |
| } |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: |
| if (RetAI.getCoerceToType() == ConvertType(RetTy) && |
| RetAI.getDirectOffset() == 0) { |
| // The internal return value temp always will have pointer-to-return-type |
| // type, just do a load. |
| |
| // If there is a dominating store to ReturnValue, we can elide |
| // the load, zap the store, and usually zap the alloca. |
| if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { |
| // Get the stored value and nuke the now-dead store. |
| RetDbgLoc = SI->getDebugLoc(); |
| RV = SI->getValueOperand(); |
| SI->eraseFromParent(); |
| |
| // If that was the only use of the return value, nuke it as well now. |
| if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { |
| cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); |
| ReturnValue = 0; |
| } |
| |
| // Otherwise, we have to do a simple load. |
| } else { |
| RV = Builder.CreateLoad(ReturnValue); |
| } |
| } else { |
| llvm::Value *V = ReturnValue; |
| // If the value is offset in memory, apply the offset now. |
| if (unsigned Offs = RetAI.getDirectOffset()) { |
| V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); |
| V = Builder.CreateConstGEP1_32(V, Offs); |
| V = Builder.CreateBitCast(V, |
| llvm::PointerType::getUnqual(RetAI.getCoerceToType())); |
| } |
| |
| RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); |
| } |
| |
| // In ARC, end functions that return a retainable type with a call |
| // to objc_autoreleaseReturnValue. |
| if (AutoreleaseResult) { |
| assert(getLangOpts().ObjCAutoRefCount && |
| !FI.isReturnsRetained() && |
| RetTy->isObjCRetainableType()); |
| RV = emitAutoreleaseOfResult(*this, RV); |
| } |
| |
| break; |
| |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Expand: |
| llvm_unreachable("Invalid ABI kind for return argument"); |
| } |
| |
| llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); |
| if (!RetDbgLoc.isUnknown()) |
| Ret->setDebugLoc(RetDbgLoc); |
| } |
| |
| void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, |
| const VarDecl *param) { |
| // StartFunction converted the ABI-lowered parameter(s) into a |
| // local alloca. We need to turn that into an r-value suitable |
| // for EmitCall. |
| llvm::Value *local = GetAddrOfLocalVar(param); |
| |
| QualType type = param->getType(); |
| |
| // For the most part, we just need to load the alloca, except: |
| // 1) aggregate r-values are actually pointers to temporaries, and |
| // 2) references to aggregates are pointers directly to the aggregate. |
| // I don't know why references to non-aggregates are different here. |
| if (const ReferenceType *ref = type->getAs<ReferenceType>()) { |
| if (hasAggregateLLVMType(ref->getPointeeType())) |
| return args.add(RValue::getAggregate(local), type); |
| |
| // Locals which are references to scalars are represented |
| // with allocas holding the pointer. |
| return args.add(RValue::get(Builder.CreateLoad(local)), type); |
| } |
| |
| if (type->isAnyComplexType()) { |
| ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false); |
| return args.add(RValue::getComplex(complex), type); |
| } |
| |
| if (hasAggregateLLVMType(type)) |
| return args.add(RValue::getAggregate(local), type); |
| |
| unsigned alignment = getContext().getDeclAlign(param).getQuantity(); |
| llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type); |
| return args.add(RValue::get(value), type); |
| } |
| |
| static bool isProvablyNull(llvm::Value *addr) { |
| return isa<llvm::ConstantPointerNull>(addr); |
| } |
| |
| static bool isProvablyNonNull(llvm::Value *addr) { |
| return isa<llvm::AllocaInst>(addr); |
| } |
| |
| /// Emit the actual writing-back of a writeback. |
| static void emitWriteback(CodeGenFunction &CGF, |
| const CallArgList::Writeback &writeback) { |
| llvm::Value *srcAddr = writeback.Address; |
| assert(!isProvablyNull(srcAddr) && |
| "shouldn't have writeback for provably null argument"); |
| |
| llvm::BasicBlock *contBB = 0; |
| |
| // If the argument wasn't provably non-null, we need to null check |
| // before doing the store. |
| bool provablyNonNull = isProvablyNonNull(srcAddr); |
| if (!provablyNonNull) { |
| llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); |
| contBB = CGF.createBasicBlock("icr.done"); |
| |
| llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); |
| CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); |
| CGF.EmitBlock(writebackBB); |
| } |
| |
| // Load the value to writeback. |
| llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); |
| |
| // Cast it back, in case we're writing an id to a Foo* or something. |
| value = CGF.Builder.CreateBitCast(value, |
| cast<llvm::PointerType>(srcAddr->getType())->getElementType(), |
| "icr.writeback-cast"); |
| |
| // Perform the writeback. |
| QualType srcAddrType = writeback.AddressType; |
| CGF.EmitStoreThroughLValue(RValue::get(value), |
| CGF.MakeAddrLValue(srcAddr, srcAddrType)); |
| |
| // Jump to the continuation block. |
| if (!provablyNonNull) |
| CGF.EmitBlock(contBB); |
| } |
| |
| static void emitWritebacks(CodeGenFunction &CGF, |
| const CallArgList &args) { |
| for (CallArgList::writeback_iterator |
| i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) |
| emitWriteback(CGF, *i); |
| } |
| |
| /// Emit an argument that's being passed call-by-writeback. That is, |
| /// we are passing the address of |
| static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, |
| const ObjCIndirectCopyRestoreExpr *CRE) { |
| llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); |
| |
| // The dest and src types don't necessarily match in LLVM terms |
| // because of the crazy ObjC compatibility rules. |
| |
| llvm::PointerType *destType = |
| cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); |
| |
| // If the address is a constant null, just pass the appropriate null. |
| if (isProvablyNull(srcAddr)) { |
| args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), |
| CRE->getType()); |
| return; |
| } |
| |
| QualType srcAddrType = |
| CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); |
| |
| // Create the temporary. |
| llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), |
| "icr.temp"); |
| |
| // Zero-initialize it if we're not doing a copy-initialization. |
| bool shouldCopy = CRE->shouldCopy(); |
| if (!shouldCopy) { |
| llvm::Value *null = |
| llvm::ConstantPointerNull::get( |
| cast<llvm::PointerType>(destType->getElementType())); |
| CGF.Builder.CreateStore(null, temp); |
| } |
| |
| llvm::BasicBlock *contBB = 0; |
| |
| // If the address is *not* known to be non-null, we need to switch. |
| llvm::Value *finalArgument; |
| |
| bool provablyNonNull = isProvablyNonNull(srcAddr); |
| if (provablyNonNull) { |
| finalArgument = temp; |
| } else { |
| llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); |
| |
| finalArgument = CGF.Builder.CreateSelect(isNull, |
| llvm::ConstantPointerNull::get(destType), |
| temp, "icr.argument"); |
| |
| // If we need to copy, then the load has to be conditional, which |
| // means we need control flow. |
| if (shouldCopy) { |
| contBB = CGF.createBasicBlock("icr.cont"); |
| llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); |
| CGF.Builder.CreateCondBr(isNull, contBB, copyBB); |
| CGF.EmitBlock(copyBB); |
| } |
| } |
| |
| // Perform a copy if necessary. |
| if (shouldCopy) { |
| LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); |
| RValue srcRV = CGF.EmitLoadOfLValue(srcLV); |
| assert(srcRV.isScalar()); |
| |
| llvm::Value *src = srcRV.getScalarVal(); |
| src = CGF.Builder.CreateBitCast(src, destType->getElementType(), |
| "icr.cast"); |
| |
| // Use an ordinary store, not a store-to-lvalue. |
| CGF.Builder.CreateStore(src, temp); |
| } |
| |
| // Finish the control flow if we needed it. |
| if (shouldCopy && !provablyNonNull) |
| CGF.EmitBlock(contBB); |
| |
| args.addWriteback(srcAddr, srcAddrType, temp); |
| args.add(RValue::get(finalArgument), CRE->getType()); |
| } |
| |
| void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, |
| QualType type) { |
| if (const ObjCIndirectCopyRestoreExpr *CRE |
| = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { |
| assert(getContext().getLangOpts().ObjCAutoRefCount); |
| assert(getContext().hasSameType(E->getType(), type)); |
| return emitWritebackArg(*this, args, CRE); |
| } |
| |
| assert(type->isReferenceType() == E->isGLValue() && |
| "reference binding to unmaterialized r-value!"); |
| |
| if (E->isGLValue()) { |
| assert(E->getObjectKind() == OK_Ordinary); |
| return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0), |
| type); |
| } |
| |
| if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() && |
| isa<ImplicitCastExpr>(E) && |
| cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { |
| LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); |
| assert(L.isSimple()); |
| args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); |
| return; |
| } |
| |
| args.add(EmitAnyExprToTemp(E), type); |
| } |
| |
| // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC |
| // optimizer it can aggressively ignore unwind edges. |
| void |
| CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { |
| if (CGM.getCodeGenOpts().OptimizationLevel != 0 && |
| !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) |
| Inst->setMetadata("clang.arc.no_objc_arc_exceptions", |
| CGM.getNoObjCARCExceptionsMetadata()); |
| } |
| |
| /// Emits a call or invoke instruction to the given function, depending |
| /// on the current state of the EH stack. |
| llvm::CallSite |
| CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, |
| ArrayRef<llvm::Value *> Args, |
| const Twine &Name) { |
| llvm::BasicBlock *InvokeDest = getInvokeDest(); |
| |
| llvm::Instruction *Inst; |
| if (!InvokeDest) |
| Inst = Builder.CreateCall(Callee, Args, Name); |
| else { |
| llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); |
| Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); |
| EmitBlock(ContBB); |
| } |
| |
| // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC |
| // optimizer it can aggressively ignore unwind edges. |
| if (CGM.getLangOpts().ObjCAutoRefCount) |
| AddObjCARCExceptionMetadata(Inst); |
| |
| return Inst; |
| } |
| |
| llvm::CallSite |
| CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, |
| const Twine &Name) { |
| return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); |
| } |
| |
| static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, |
| llvm::FunctionType *FTy) { |
| if (ArgNo < FTy->getNumParams()) |
| assert(Elt->getType() == FTy->getParamType(ArgNo)); |
| else |
| assert(FTy->isVarArg()); |
| ++ArgNo; |
| } |
| |
| void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, |
| SmallVector<llvm::Value*,16> &Args, |
| llvm::FunctionType *IRFuncTy) { |
| if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { |
| unsigned NumElts = AT->getSize().getZExtValue(); |
| QualType EltTy = AT->getElementType(); |
| llvm::Value *Addr = RV.getAggregateAddr(); |
| for (unsigned Elt = 0; Elt < NumElts; ++Elt) { |
| llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); |
| LValue LV = MakeAddrLValue(EltAddr, EltTy); |
| RValue EltRV; |
| if (EltTy->isAnyComplexType()) |
| // FIXME: Volatile? |
| EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false)); |
| else if (CodeGenFunction::hasAggregateLLVMType(EltTy)) |
| EltRV = LV.asAggregateRValue(); |
| else |
| EltRV = EmitLoadOfLValue(LV); |
| ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); |
| } |
| } else if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| RecordDecl *RD = RT->getDecl(); |
| assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); |
| LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty); |
| |
| if (RD->isUnion()) { |
| const FieldDecl *LargestFD = 0; |
| CharUnits UnionSize = CharUnits::Zero(); |
| |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| const FieldDecl *FD = *i; |
| assert(!FD->isBitField() && |
| "Cannot expand structure with bit-field members."); |
| CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); |
| if (UnionSize < FieldSize) { |
| UnionSize = FieldSize; |
| LargestFD = FD; |
| } |
| } |
| if (LargestFD) { |
| RValue FldRV = EmitRValueForField(LV, LargestFD); |
| ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy); |
| } |
| } else { |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| FieldDecl *FD = *i; |
| |
| RValue FldRV = EmitRValueForField(LV, FD); |
| ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy); |
| } |
| } |
| } else if (Ty->isAnyComplexType()) { |
| ComplexPairTy CV = RV.getComplexVal(); |
| Args.push_back(CV.first); |
| Args.push_back(CV.second); |
| } else { |
| assert(RV.isScalar() && |
| "Unexpected non-scalar rvalue during struct expansion."); |
| |
| // Insert a bitcast as needed. |
| llvm::Value *V = RV.getScalarVal(); |
| if (Args.size() < IRFuncTy->getNumParams() && |
| V->getType() != IRFuncTy->getParamType(Args.size())) |
| V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); |
| |
| Args.push_back(V); |
| } |
| } |
| |
| |
| RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, |
| llvm::Value *Callee, |
| ReturnValueSlot ReturnValue, |
| const CallArgList &CallArgs, |
| const Decl *TargetDecl, |
| llvm::Instruction **callOrInvoke) { |
| // FIXME: We no longer need the types from CallArgs; lift up and simplify. |
| SmallVector<llvm::Value*, 16> Args; |
| |
| // Handle struct-return functions by passing a pointer to the |
| // location that we would like to return into. |
| QualType RetTy = CallInfo.getReturnType(); |
| const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); |
| |
| // IRArgNo - Keep track of the argument number in the callee we're looking at. |
| unsigned IRArgNo = 0; |
| llvm::FunctionType *IRFuncTy = |
| cast<llvm::FunctionType>( |
| cast<llvm::PointerType>(Callee->getType())->getElementType()); |
| |
| // If the call returns a temporary with struct return, create a temporary |
| // alloca to hold the result, unless one is given to us. |
| if (CGM.ReturnTypeUsesSRet(CallInfo)) { |
| llvm::Value *Value = ReturnValue.getValue(); |
| if (!Value) |
| Value = CreateMemTemp(RetTy); |
| Args.push_back(Value); |
| checkArgMatches(Value, IRArgNo, IRFuncTy); |
| } |
| |
| assert(CallInfo.arg_size() == CallArgs.size() && |
| "Mismatch between function signature & arguments."); |
| CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); |
| for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); |
| I != E; ++I, ++info_it) { |
| const ABIArgInfo &ArgInfo = info_it->info; |
| RValue RV = I->RV; |
| |
| unsigned TypeAlign = |
| getContext().getTypeAlignInChars(I->Ty).getQuantity(); |
| switch (ArgInfo.getKind()) { |
| case ABIArgInfo::Indirect: { |
| if (RV.isScalar() || RV.isComplex()) { |
| // Make a temporary alloca to pass the argument. |
| llvm::AllocaInst *AI = CreateMemTemp(I->Ty); |
| if (ArgInfo.getIndirectAlign() > AI->getAlignment()) |
| AI->setAlignment(ArgInfo.getIndirectAlign()); |
| Args.push_back(AI); |
| |
| if (RV.isScalar()) |
| EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, |
| TypeAlign, I->Ty); |
| else |
| StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); |
| |
| // Validate argument match. |
| checkArgMatches(AI, IRArgNo, IRFuncTy); |
| } else { |
| // We want to avoid creating an unnecessary temporary+copy here; |
| // however, we need one in two cases: |
| // 1. If the argument is not byval, and we are required to copy the |
| // source. (This case doesn't occur on any common architecture.) |
| // 2. If the argument is byval, RV is not sufficiently aligned, and |
| // we cannot force it to be sufficiently aligned. |
| llvm::Value *Addr = RV.getAggregateAddr(); |
| unsigned Align = ArgInfo.getIndirectAlign(); |
| const llvm::TargetData *TD = &CGM.getTargetData(); |
| if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || |
| (ArgInfo.getIndirectByVal() && TypeAlign < Align && |
| llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) { |
| // Create an aligned temporary, and copy to it. |
| llvm::AllocaInst *AI = CreateMemTemp(I->Ty); |
| if (Align > AI->getAlignment()) |
| AI->setAlignment(Align); |
| Args.push_back(AI); |
| EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); |
| |
| // Validate argument match. |
| checkArgMatches(AI, IRArgNo, IRFuncTy); |
| } else { |
| // Skip the extra memcpy call. |
| Args.push_back(Addr); |
| |
| // Validate argument match. |
| checkArgMatches(Addr, IRArgNo, IRFuncTy); |
| } |
| } |
| break; |
| } |
| |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| // Insert a padding argument to ensure proper alignment. |
| if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { |
| Args.push_back(llvm::UndefValue::get(PaddingType)); |
| ++IRArgNo; |
| } |
| |
| if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && |
| ArgInfo.getCoerceToType() == ConvertType(info_it->type) && |
| ArgInfo.getDirectOffset() == 0) { |
| llvm::Value *V; |
| if (RV.isScalar()) |
| V = RV.getScalarVal(); |
| else |
| V = Builder.CreateLoad(RV.getAggregateAddr()); |
| |
| // If the argument doesn't match, perform a bitcast to coerce it. This |
| // can happen due to trivial type mismatches. |
| if (IRArgNo < IRFuncTy->getNumParams() && |
| V->getType() != IRFuncTy->getParamType(IRArgNo)) |
| V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); |
| Args.push_back(V); |
| |
| checkArgMatches(V, IRArgNo, IRFuncTy); |
| break; |
| } |
| |
| // FIXME: Avoid the conversion through memory if possible. |
| llvm::Value *SrcPtr; |
| if (RV.isScalar()) { |
| SrcPtr = CreateMemTemp(I->Ty, "coerce"); |
| EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty); |
| } else if (RV.isComplex()) { |
| SrcPtr = CreateMemTemp(I->Ty, "coerce"); |
| StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); |
| } else |
| SrcPtr = RV.getAggregateAddr(); |
| |
| // If the value is offset in memory, apply the offset now. |
| if (unsigned Offs = ArgInfo.getDirectOffset()) { |
| SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); |
| SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); |
| SrcPtr = Builder.CreateBitCast(SrcPtr, |
| llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); |
| |
| } |
| |
| // If the coerce-to type is a first class aggregate, we flatten it and |
| // pass the elements. Either way is semantically identical, but fast-isel |
| // and the optimizer generally likes scalar values better than FCAs. |
| if (llvm::StructType *STy = |
| dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { |
| SrcPtr = Builder.CreateBitCast(SrcPtr, |
| llvm::PointerType::getUnqual(STy)); |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); |
| llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); |
| // We don't know what we're loading from. |
| LI->setAlignment(1); |
| Args.push_back(LI); |
| |
| // Validate argument match. |
| checkArgMatches(LI, IRArgNo, IRFuncTy); |
| } |
| } else { |
| // In the simple case, just pass the coerced loaded value. |
| Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), |
| *this)); |
| |
| // Validate argument match. |
| checkArgMatches(Args.back(), IRArgNo, IRFuncTy); |
| } |
| |
| break; |
| } |
| |
| case ABIArgInfo::Expand: |
| ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); |
| IRArgNo = Args.size(); |
| break; |
| } |
| } |
| |
| // If the callee is a bitcast of a function to a varargs pointer to function |
| // type, check to see if we can remove the bitcast. This handles some cases |
| // with unprototyped functions. |
| if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) |
| if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { |
| llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); |
| llvm::FunctionType *CurFT = |
| cast<llvm::FunctionType>(CurPT->getElementType()); |
| llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); |
| |
| if (CE->getOpcode() == llvm::Instruction::BitCast && |
| ActualFT->getReturnType() == CurFT->getReturnType() && |
| ActualFT->getNumParams() == CurFT->getNumParams() && |
| ActualFT->getNumParams() == Args.size() && |
| (CurFT->isVarArg() || !ActualFT->isVarArg())) { |
| bool ArgsMatch = true; |
| for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) |
| if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { |
| ArgsMatch = false; |
| break; |
| } |
| |
| // Strip the cast if we can get away with it. This is a nice cleanup, |
| // but also allows us to inline the function at -O0 if it is marked |
| // always_inline. |
| if (ArgsMatch) |
| Callee = CalleeF; |
| } |
| } |
| |
| unsigned CallingConv; |
| CodeGen::AttributeListType AttributeList; |
| CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); |
| llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList); |
| |
| llvm::BasicBlock *InvokeDest = 0; |
| if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) |
| InvokeDest = getInvokeDest(); |
| |
| llvm::CallSite CS; |
| if (!InvokeDest) { |
| CS = Builder.CreateCall(Callee, Args); |
| } else { |
| llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); |
| CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); |
| EmitBlock(Cont); |
| } |
| if (callOrInvoke) |
| *callOrInvoke = CS.getInstruction(); |
| |
| CS.setAttributes(Attrs); |
| CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); |
| |
| // add metadata for __attribute__((alloc_size(foo))) |
| if (TargetDecl) { |
| if (const AllocSizeAttr* Attr = TargetDecl->getAttr<AllocSizeAttr>()) { |
| SmallVector<llvm::Value*, 4> Args; |
| llvm::IntegerType *Ty = llvm::IntegerType::getInt32Ty(getLLVMContext()); |
| bool isMethod = false; |
| if (const CXXMethodDecl *MDecl = dyn_cast<CXXMethodDecl>(TargetDecl)) |
| isMethod = MDecl->isInstance(); |
| |
| for (AllocSizeAttr::args_iterator I = Attr->args_begin(), |
| E = Attr->args_end(); I != E; ++I) { |
| Args.push_back(llvm::ConstantInt::get(Ty, *I + isMethod)); |
| } |
| |
| llvm::MDNode *MD = llvm::MDNode::get(getLLVMContext(), Args); |
| CS.getInstruction()->setMetadata("alloc_size", MD); |
| } |
| } |
| |
| // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC |
| // optimizer it can aggressively ignore unwind edges. |
| if (CGM.getLangOpts().ObjCAutoRefCount) |
| AddObjCARCExceptionMetadata(CS.getInstruction()); |
| |
| // If the call doesn't return, finish the basic block and clear the |
| // insertion point; this allows the rest of IRgen to discard |
| // unreachable code. |
| if (CS.doesNotReturn()) { |
| Builder.CreateUnreachable(); |
| Builder.ClearInsertionPoint(); |
| |
| // FIXME: For now, emit a dummy basic block because expr emitters in |
| // generally are not ready to handle emitting expressions at unreachable |
| // points. |
| EnsureInsertPoint(); |
| |
| // Return a reasonable RValue. |
| return GetUndefRValue(RetTy); |
| } |
| |
| llvm::Instruction *CI = CS.getInstruction(); |
| if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) |
| CI->setName("call"); |
| |
| // Emit any writebacks immediately. Arguably this should happen |
| // after any return-value munging. |
| if (CallArgs.hasWritebacks()) |
| emitWritebacks(*this, CallArgs); |
| |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Indirect: { |
| unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); |
| if (RetTy->isAnyComplexType()) |
| return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); |
| if (CodeGenFunction::hasAggregateLLVMType(RetTy)) |
| return RValue::getAggregate(Args[0]); |
| return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy)); |
| } |
| |
| case ABIArgInfo::Ignore: |
| // If we are ignoring an argument that had a result, make sure to |
| // construct the appropriate return value for our caller. |
| return GetUndefRValue(RetTy); |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| llvm::Type *RetIRTy = ConvertType(RetTy); |
| if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { |
| if (RetTy->isAnyComplexType()) { |
| llvm::Value *Real = Builder.CreateExtractValue(CI, 0); |
| llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| llvm::Value *DestPtr = ReturnValue.getValue(); |
| bool DestIsVolatile = ReturnValue.isVolatile(); |
| |
| if (!DestPtr) { |
| DestPtr = CreateMemTemp(RetTy, "agg.tmp"); |
| DestIsVolatile = false; |
| } |
| BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); |
| return RValue::getAggregate(DestPtr); |
| } |
| |
| // If the argument doesn't match, perform a bitcast to coerce it. This |
| // can happen due to trivial type mismatches. |
| llvm::Value *V = CI; |
| if (V->getType() != RetIRTy) |
| V = Builder.CreateBitCast(V, RetIRTy); |
| return RValue::get(V); |
| } |
| |
| llvm::Value *DestPtr = ReturnValue.getValue(); |
| bool DestIsVolatile = ReturnValue.isVolatile(); |
| |
| if (!DestPtr) { |
| DestPtr = CreateMemTemp(RetTy, "coerce"); |
| DestIsVolatile = false; |
| } |
| |
| // If the value is offset in memory, apply the offset now. |
| llvm::Value *StorePtr = DestPtr; |
| if (unsigned Offs = RetAI.getDirectOffset()) { |
| StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); |
| StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); |
| StorePtr = Builder.CreateBitCast(StorePtr, |
| llvm::PointerType::getUnqual(RetAI.getCoerceToType())); |
| } |
| CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); |
| |
| unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); |
| if (RetTy->isAnyComplexType()) |
| return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); |
| if (CodeGenFunction::hasAggregateLLVMType(RetTy)) |
| return RValue::getAggregate(DestPtr); |
| return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy)); |
| } |
| |
| case ABIArgInfo::Expand: |
| llvm_unreachable("Invalid ABI kind for return argument"); |
| } |
| |
| llvm_unreachable("Unhandled ABIArgInfo::Kind"); |
| } |
| |
| /* VarArg handling */ |
| |
| llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { |
| return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); |
| } |