| //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a semantic tree transformation that takes a given |
| // AST and rebuilds it, possibly transforming some nodes in the process. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H |
| #define LLVM_CLANG_SEMA_TREETRANSFORM_H |
| |
| #include "TypeLocBuilder.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/Designator.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Ownership.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaDiagnostic.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <algorithm> |
| |
| namespace clang { |
| using namespace sema; |
| |
| /// \brief A semantic tree transformation that allows one to transform one |
| /// abstract syntax tree into another. |
| /// |
| /// A new tree transformation is defined by creating a new subclass \c X of |
| /// \c TreeTransform<X> and then overriding certain operations to provide |
| /// behavior specific to that transformation. For example, template |
| /// instantiation is implemented as a tree transformation where the |
| /// transformation of TemplateTypeParmType nodes involves substituting the |
| /// template arguments for their corresponding template parameters; a similar |
| /// transformation is performed for non-type template parameters and |
| /// template template parameters. |
| /// |
| /// This tree-transformation template uses static polymorphism to allow |
| /// subclasses to customize any of its operations. Thus, a subclass can |
| /// override any of the transformation or rebuild operators by providing an |
| /// operation with the same signature as the default implementation. The |
| /// overridding function should not be virtual. |
| /// |
| /// Semantic tree transformations are split into two stages, either of which |
| /// can be replaced by a subclass. The "transform" step transforms an AST node |
| /// or the parts of an AST node using the various transformation functions, |
| /// then passes the pieces on to the "rebuild" step, which constructs a new AST |
| /// node of the appropriate kind from the pieces. The default transformation |
| /// routines recursively transform the operands to composite AST nodes (e.g., |
| /// the pointee type of a PointerType node) and, if any of those operand nodes |
| /// were changed by the transformation, invokes the rebuild operation to create |
| /// a new AST node. |
| /// |
| /// Subclasses can customize the transformation at various levels. The |
| /// most coarse-grained transformations involve replacing TransformType(), |
| /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(), |
| /// TransformTemplateName(), or TransformTemplateArgument() with entirely |
| /// new implementations. |
| /// |
| /// For more fine-grained transformations, subclasses can replace any of the |
| /// \c TransformXXX functions (where XXX is the name of an AST node, e.g., |
| /// PointerType, StmtExpr) to alter the transformation. As mentioned previously, |
| /// replacing TransformTemplateTypeParmType() allows template instantiation |
| /// to substitute template arguments for their corresponding template |
| /// parameters. Additionally, subclasses can override the \c RebuildXXX |
| /// functions to control how AST nodes are rebuilt when their operands change. |
| /// By default, \c TreeTransform will invoke semantic analysis to rebuild |
| /// AST nodes. However, certain other tree transformations (e.g, cloning) may |
| /// be able to use more efficient rebuild steps. |
| /// |
| /// There are a handful of other functions that can be overridden, allowing one |
| /// to avoid traversing nodes that don't need any transformation |
| /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their |
| /// operands have not changed (\c AlwaysRebuild()), and customize the |
| /// default locations and entity names used for type-checking |
| /// (\c getBaseLocation(), \c getBaseEntity()). |
| template<typename Derived> |
| class TreeTransform { |
| /// \brief Private RAII object that helps us forget and then re-remember |
| /// the template argument corresponding to a partially-substituted parameter |
| /// pack. |
| class ForgetPartiallySubstitutedPackRAII { |
| Derived &Self; |
| TemplateArgument Old; |
| |
| public: |
| ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) { |
| Old = Self.ForgetPartiallySubstitutedPack(); |
| } |
| |
| ~ForgetPartiallySubstitutedPackRAII() { |
| Self.RememberPartiallySubstitutedPack(Old); |
| } |
| }; |
| |
| protected: |
| Sema &SemaRef; |
| |
| /// \brief The set of local declarations that have been transformed, for |
| /// cases where we are forced to build new declarations within the transformer |
| /// rather than in the subclass (e.g., lambda closure types). |
| llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls; |
| |
| public: |
| /// \brief Initializes a new tree transformer. |
| TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { } |
| |
| /// \brief Retrieves a reference to the derived class. |
| Derived &getDerived() { return static_cast<Derived&>(*this); } |
| |
| /// \brief Retrieves a reference to the derived class. |
| const Derived &getDerived() const { |
| return static_cast<const Derived&>(*this); |
| } |
| |
| static inline ExprResult Owned(Expr *E) { return E; } |
| static inline StmtResult Owned(Stmt *S) { return S; } |
| |
| /// \brief Retrieves a reference to the semantic analysis object used for |
| /// this tree transform. |
| Sema &getSema() const { return SemaRef; } |
| |
| /// \brief Whether the transformation should always rebuild AST nodes, even |
| /// if none of the children have changed. |
| /// |
| /// Subclasses may override this function to specify when the transformation |
| /// should rebuild all AST nodes. |
| bool AlwaysRebuild() { return false; } |
| |
| /// \brief Returns the location of the entity being transformed, if that |
| /// information was not available elsewhere in the AST. |
| /// |
| /// By default, returns no source-location information. Subclasses can |
| /// provide an alternative implementation that provides better location |
| /// information. |
| SourceLocation getBaseLocation() { return SourceLocation(); } |
| |
| /// \brief Returns the name of the entity being transformed, if that |
| /// information was not available elsewhere in the AST. |
| /// |
| /// By default, returns an empty name. Subclasses can provide an alternative |
| /// implementation with a more precise name. |
| DeclarationName getBaseEntity() { return DeclarationName(); } |
| |
| /// \brief Sets the "base" location and entity when that |
| /// information is known based on another transformation. |
| /// |
| /// By default, the source location and entity are ignored. Subclasses can |
| /// override this function to provide a customized implementation. |
| void setBase(SourceLocation Loc, DeclarationName Entity) { } |
| |
| /// \brief RAII object that temporarily sets the base location and entity |
| /// used for reporting diagnostics in types. |
| class TemporaryBase { |
| TreeTransform &Self; |
| SourceLocation OldLocation; |
| DeclarationName OldEntity; |
| |
| public: |
| TemporaryBase(TreeTransform &Self, SourceLocation Location, |
| DeclarationName Entity) : Self(Self) { |
| OldLocation = Self.getDerived().getBaseLocation(); |
| OldEntity = Self.getDerived().getBaseEntity(); |
| |
| if (Location.isValid()) |
| Self.getDerived().setBase(Location, Entity); |
| } |
| |
| ~TemporaryBase() { |
| Self.getDerived().setBase(OldLocation, OldEntity); |
| } |
| }; |
| |
| /// \brief Determine whether the given type \p T has already been |
| /// transformed. |
| /// |
| /// Subclasses can provide an alternative implementation of this routine |
| /// to short-circuit evaluation when it is known that a given type will |
| /// not change. For example, template instantiation need not traverse |
| /// non-dependent types. |
| bool AlreadyTransformed(QualType T) { |
| return T.isNull(); |
| } |
| |
| /// \brief Determine whether the given call argument should be dropped, e.g., |
| /// because it is a default argument. |
| /// |
| /// Subclasses can provide an alternative implementation of this routine to |
| /// determine which kinds of call arguments get dropped. By default, |
| /// CXXDefaultArgument nodes are dropped (prior to transformation). |
| bool DropCallArgument(Expr *E) { |
| return E->isDefaultArgument(); |
| } |
| |
| /// \brief Determine whether we should expand a pack expansion with the |
| /// given set of parameter packs into separate arguments by repeatedly |
| /// transforming the pattern. |
| /// |
| /// By default, the transformer never tries to expand pack expansions. |
| /// Subclasses can override this routine to provide different behavior. |
| /// |
| /// \param EllipsisLoc The location of the ellipsis that identifies the |
| /// pack expansion. |
| /// |
| /// \param PatternRange The source range that covers the entire pattern of |
| /// the pack expansion. |
| /// |
| /// \param Unexpanded The set of unexpanded parameter packs within the |
| /// pattern. |
| /// |
| /// \param ShouldExpand Will be set to \c true if the transformer should |
| /// expand the corresponding pack expansions into separate arguments. When |
| /// set, \c NumExpansions must also be set. |
| /// |
| /// \param RetainExpansion Whether the caller should add an unexpanded |
| /// pack expansion after all of the expanded arguments. This is used |
| /// when extending explicitly-specified template argument packs per |
| /// C++0x [temp.arg.explicit]p9. |
| /// |
| /// \param NumExpansions The number of separate arguments that will be in |
| /// the expanded form of the corresponding pack expansion. This is both an |
| /// input and an output parameter, which can be set by the caller if the |
| /// number of expansions is known a priori (e.g., due to a prior substitution) |
| /// and will be set by the callee when the number of expansions is known. |
| /// The callee must set this value when \c ShouldExpand is \c true; it may |
| /// set this value in other cases. |
| /// |
| /// \returns true if an error occurred (e.g., because the parameter packs |
| /// are to be instantiated with arguments of different lengths), false |
| /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) |
| /// must be set. |
| bool TryExpandParameterPacks(SourceLocation EllipsisLoc, |
| SourceRange PatternRange, |
| ArrayRef<UnexpandedParameterPack> Unexpanded, |
| bool &ShouldExpand, |
| bool &RetainExpansion, |
| Optional<unsigned> &NumExpansions) { |
| ShouldExpand = false; |
| return false; |
| } |
| |
| /// \brief "Forget" about the partially-substituted pack template argument, |
| /// when performing an instantiation that must preserve the parameter pack |
| /// use. |
| /// |
| /// This routine is meant to be overridden by the template instantiator. |
| TemplateArgument ForgetPartiallySubstitutedPack() { |
| return TemplateArgument(); |
| } |
| |
| /// \brief "Remember" the partially-substituted pack template argument |
| /// after performing an instantiation that must preserve the parameter pack |
| /// use. |
| /// |
| /// This routine is meant to be overridden by the template instantiator. |
| void RememberPartiallySubstitutedPack(TemplateArgument Arg) { } |
| |
| /// \brief Note to the derived class when a function parameter pack is |
| /// being expanded. |
| void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { } |
| |
| /// \brief Transforms the given type into another type. |
| /// |
| /// By default, this routine transforms a type by creating a |
| /// TypeSourceInfo for it and delegating to the appropriate |
| /// function. This is expensive, but we don't mind, because |
| /// this method is deprecated anyway; all users should be |
| /// switched to storing TypeSourceInfos. |
| /// |
| /// \returns the transformed type. |
| QualType TransformType(QualType T); |
| |
| /// \brief Transforms the given type-with-location into a new |
| /// type-with-location. |
| /// |
| /// By default, this routine transforms a type by delegating to the |
| /// appropriate TransformXXXType to build a new type. Subclasses |
| /// may override this function (to take over all type |
| /// transformations) or some set of the TransformXXXType functions |
| /// to alter the transformation. |
| TypeSourceInfo *TransformType(TypeSourceInfo *DI); |
| |
| /// \brief Transform the given type-with-location into a new |
| /// type, collecting location information in the given builder |
| /// as necessary. |
| /// |
| QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL); |
| |
| /// \brief Transform the given statement. |
| /// |
| /// By default, this routine transforms a statement by delegating to the |
| /// appropriate TransformXXXStmt function to transform a specific kind of |
| /// statement or the TransformExpr() function to transform an expression. |
| /// Subclasses may override this function to transform statements using some |
| /// other mechanism. |
| /// |
| /// \returns the transformed statement. |
| StmtResult TransformStmt(Stmt *S); |
| |
| /// \brief Transform the given expression. |
| /// |
| /// By default, this routine transforms an expression by delegating to the |
| /// appropriate TransformXXXExpr function to build a new expression. |
| /// Subclasses may override this function to transform expressions using some |
| /// other mechanism. |
| /// |
| /// \returns the transformed expression. |
| ExprResult TransformExpr(Expr *E); |
| |
| /// \brief Transform the given initializer. |
| /// |
| /// By default, this routine transforms an initializer by stripping off the |
| /// semantic nodes added by initialization, then passing the result to |
| /// TransformExpr or TransformExprs. |
| /// |
| /// \returns the transformed initializer. |
| ExprResult TransformInitializer(Expr *Init, bool CXXDirectInit); |
| |
| /// \brief Transform the given list of expressions. |
| /// |
| /// This routine transforms a list of expressions by invoking |
| /// \c TransformExpr() for each subexpression. However, it also provides |
| /// support for variadic templates by expanding any pack expansions (if the |
| /// derived class permits such expansion) along the way. When pack expansions |
| /// are present, the number of outputs may not equal the number of inputs. |
| /// |
| /// \param Inputs The set of expressions to be transformed. |
| /// |
| /// \param NumInputs The number of expressions in \c Inputs. |
| /// |
| /// \param IsCall If \c true, then this transform is being performed on |
| /// function-call arguments, and any arguments that should be dropped, will |
| /// be. |
| /// |
| /// \param Outputs The transformed input expressions will be added to this |
| /// vector. |
| /// |
| /// \param ArgChanged If non-NULL, will be set \c true if any argument changed |
| /// due to transformation. |
| /// |
| /// \returns true if an error occurred, false otherwise. |
| bool TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall, |
| SmallVectorImpl<Expr *> &Outputs, |
| bool *ArgChanged = 0); |
| |
| /// \brief Transform the given declaration, which is referenced from a type |
| /// or expression. |
| /// |
| /// By default, acts as the identity function on declarations, unless the |
| /// transformer has had to transform the declaration itself. Subclasses |
| /// may override this function to provide alternate behavior. |
| Decl *TransformDecl(SourceLocation Loc, Decl *D) { |
| llvm::DenseMap<Decl *, Decl *>::iterator Known |
| = TransformedLocalDecls.find(D); |
| if (Known != TransformedLocalDecls.end()) |
| return Known->second; |
| |
| return D; |
| } |
| |
| /// \brief Transform the attributes associated with the given declaration and |
| /// place them on the new declaration. |
| /// |
| /// By default, this operation does nothing. Subclasses may override this |
| /// behavior to transform attributes. |
| void transformAttrs(Decl *Old, Decl *New) { } |
| |
| /// \brief Note that a local declaration has been transformed by this |
| /// transformer. |
| /// |
| /// Local declarations are typically transformed via a call to |
| /// TransformDefinition. However, in some cases (e.g., lambda expressions), |
| /// the transformer itself has to transform the declarations. This routine |
| /// can be overridden by a subclass that keeps track of such mappings. |
| void transformedLocalDecl(Decl *Old, Decl *New) { |
| TransformedLocalDecls[Old] = New; |
| } |
| |
| /// \brief Transform the definition of the given declaration. |
| /// |
| /// By default, invokes TransformDecl() to transform the declaration. |
| /// Subclasses may override this function to provide alternate behavior. |
| Decl *TransformDefinition(SourceLocation Loc, Decl *D) { |
| return getDerived().TransformDecl(Loc, D); |
| } |
| |
| /// \brief Transform the given declaration, which was the first part of a |
| /// nested-name-specifier in a member access expression. |
| /// |
| /// This specific declaration transformation only applies to the first |
| /// identifier in a nested-name-specifier of a member access expression, e.g., |
| /// the \c T in \c x->T::member |
| /// |
| /// By default, invokes TransformDecl() to transform the declaration. |
| /// Subclasses may override this function to provide alternate behavior. |
| NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) { |
| return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D)); |
| } |
| |
| /// \brief Transform the given nested-name-specifier with source-location |
| /// information. |
| /// |
| /// By default, transforms all of the types and declarations within the |
| /// nested-name-specifier. Subclasses may override this function to provide |
| /// alternate behavior. |
| NestedNameSpecifierLoc TransformNestedNameSpecifierLoc( |
| NestedNameSpecifierLoc NNS, |
| QualType ObjectType = QualType(), |
| NamedDecl *FirstQualifierInScope = 0); |
| |
| /// \brief Transform the given declaration name. |
| /// |
| /// By default, transforms the types of conversion function, constructor, |
| /// and destructor names and then (if needed) rebuilds the declaration name. |
| /// Identifiers and selectors are returned unmodified. Sublcasses may |
| /// override this function to provide alternate behavior. |
| DeclarationNameInfo |
| TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo); |
| |
| /// \brief Transform the given template name. |
| /// |
| /// \param SS The nested-name-specifier that qualifies the template |
| /// name. This nested-name-specifier must already have been transformed. |
| /// |
| /// \param Name The template name to transform. |
| /// |
| /// \param NameLoc The source location of the template name. |
| /// |
| /// \param ObjectType If we're translating a template name within a member |
| /// access expression, this is the type of the object whose member template |
| /// is being referenced. |
| /// |
| /// \param FirstQualifierInScope If the first part of a nested-name-specifier |
| /// also refers to a name within the current (lexical) scope, this is the |
| /// declaration it refers to. |
| /// |
| /// By default, transforms the template name by transforming the declarations |
| /// and nested-name-specifiers that occur within the template name. |
| /// Subclasses may override this function to provide alternate behavior. |
| TemplateName TransformTemplateName(CXXScopeSpec &SS, |
| TemplateName Name, |
| SourceLocation NameLoc, |
| QualType ObjectType = QualType(), |
| NamedDecl *FirstQualifierInScope = 0); |
| |
| /// \brief Transform the given template argument. |
| /// |
| /// By default, this operation transforms the type, expression, or |
| /// declaration stored within the template argument and constructs a |
| /// new template argument from the transformed result. Subclasses may |
| /// override this function to provide alternate behavior. |
| /// |
| /// Returns true if there was an error. |
| bool TransformTemplateArgument(const TemplateArgumentLoc &Input, |
| TemplateArgumentLoc &Output); |
| |
| /// \brief Transform the given set of template arguments. |
| /// |
| /// By default, this operation transforms all of the template arguments |
| /// in the input set using \c TransformTemplateArgument(), and appends |
| /// the transformed arguments to the output list. |
| /// |
| /// Note that this overload of \c TransformTemplateArguments() is merely |
| /// a convenience function. Subclasses that wish to override this behavior |
| /// should override the iterator-based member template version. |
| /// |
| /// \param Inputs The set of template arguments to be transformed. |
| /// |
| /// \param NumInputs The number of template arguments in \p Inputs. |
| /// |
| /// \param Outputs The set of transformed template arguments output by this |
| /// routine. |
| /// |
| /// Returns true if an error occurred. |
| bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs, |
| unsigned NumInputs, |
| TemplateArgumentListInfo &Outputs) { |
| return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs); |
| } |
| |
| /// \brief Transform the given set of template arguments. |
| /// |
| /// By default, this operation transforms all of the template arguments |
| /// in the input set using \c TransformTemplateArgument(), and appends |
| /// the transformed arguments to the output list. |
| /// |
| /// \param First An iterator to the first template argument. |
| /// |
| /// \param Last An iterator one step past the last template argument. |
| /// |
| /// \param Outputs The set of transformed template arguments output by this |
| /// routine. |
| /// |
| /// Returns true if an error occurred. |
| template<typename InputIterator> |
| bool TransformTemplateArguments(InputIterator First, |
| InputIterator Last, |
| TemplateArgumentListInfo &Outputs); |
| |
| /// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument. |
| void InventTemplateArgumentLoc(const TemplateArgument &Arg, |
| TemplateArgumentLoc &ArgLoc); |
| |
| /// \brief Fakes up a TypeSourceInfo for a type. |
| TypeSourceInfo *InventTypeSourceInfo(QualType T) { |
| return SemaRef.Context.getTrivialTypeSourceInfo(T, |
| getDerived().getBaseLocation()); |
| } |
| |
| #define ABSTRACT_TYPELOC(CLASS, PARENT) |
| #define TYPELOC(CLASS, PARENT) \ |
| QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T); |
| #include "clang/AST/TypeLocNodes.def" |
| |
| QualType TransformFunctionProtoType(TypeLocBuilder &TLB, |
| FunctionProtoTypeLoc TL, |
| CXXRecordDecl *ThisContext, |
| unsigned ThisTypeQuals); |
| |
| StmtResult |
| TransformSEHHandler(Stmt *Handler); |
| |
| QualType |
| TransformTemplateSpecializationType(TypeLocBuilder &TLB, |
| TemplateSpecializationTypeLoc TL, |
| TemplateName Template); |
| |
| QualType |
| TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, |
| DependentTemplateSpecializationTypeLoc TL, |
| TemplateName Template, |
| CXXScopeSpec &SS); |
| |
| QualType |
| TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, |
| DependentTemplateSpecializationTypeLoc TL, |
| NestedNameSpecifierLoc QualifierLoc); |
| |
| /// \brief Transforms the parameters of a function type into the |
| /// given vectors. |
| /// |
| /// The result vectors should be kept in sync; null entries in the |
| /// variables vector are acceptable. |
| /// |
| /// Return true on error. |
| bool TransformFunctionTypeParams(SourceLocation Loc, |
| ParmVarDecl **Params, unsigned NumParams, |
| const QualType *ParamTypes, |
| SmallVectorImpl<QualType> &PTypes, |
| SmallVectorImpl<ParmVarDecl*> *PVars); |
| |
| /// \brief Transforms a single function-type parameter. Return null |
| /// on error. |
| /// |
| /// \param indexAdjustment - A number to add to the parameter's |
| /// scope index; can be negative |
| ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm, |
| int indexAdjustment, |
| Optional<unsigned> NumExpansions, |
| bool ExpectParameterPack); |
| |
| QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL); |
| |
| StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr); |
| ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E); |
| |
| /// \brief Transform the captures and body of a lambda expression. |
| ExprResult TransformLambdaScope(LambdaExpr *E, CXXMethodDecl *CallOperator); |
| |
| ExprResult TransformAddressOfOperand(Expr *E); |
| ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E, |
| bool IsAddressOfOperand); |
| |
| #define STMT(Node, Parent) \ |
| StmtResult Transform##Node(Node *S); |
| #define EXPR(Node, Parent) \ |
| ExprResult Transform##Node(Node *E); |
| #define ABSTRACT_STMT(Stmt) |
| #include "clang/AST/StmtNodes.inc" |
| |
| /// \brief Build a new pointer type given its pointee type. |
| /// |
| /// By default, performs semantic analysis when building the pointer type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil); |
| |
| /// \brief Build a new block pointer type given its pointee type. |
| /// |
| /// By default, performs semantic analysis when building the block pointer |
| /// type. Subclasses may override this routine to provide different behavior. |
| QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil); |
| |
| /// \brief Build a new reference type given the type it references. |
| /// |
| /// By default, performs semantic analysis when building the |
| /// reference type. Subclasses may override this routine to provide |
| /// different behavior. |
| /// |
| /// \param LValue whether the type was written with an lvalue sigil |
| /// or an rvalue sigil. |
| QualType RebuildReferenceType(QualType ReferentType, |
| bool LValue, |
| SourceLocation Sigil); |
| |
| /// \brief Build a new member pointer type given the pointee type and the |
| /// class type it refers into. |
| /// |
| /// By default, performs semantic analysis when building the member pointer |
| /// type. Subclasses may override this routine to provide different behavior. |
| QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType, |
| SourceLocation Sigil); |
| |
| /// \brief Build a new array type given the element type, size |
| /// modifier, size of the array (if known), size expression, and index type |
| /// qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| /// Also by default, all of the other Rebuild*Array |
| QualType RebuildArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| const llvm::APInt *Size, |
| Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// \brief Build a new constant array type given the element type, size |
| /// modifier, (known) size of the array, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildConstantArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| const llvm::APInt &Size, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// \brief Build a new incomplete array type given the element type, size |
| /// modifier, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildIncompleteArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// \brief Build a new variable-length array type given the element type, |
| /// size modifier, size expression, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildVariableArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// \brief Build a new dependent-sized array type given the element type, |
| /// size modifier, size expression, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildDependentSizedArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// \brief Build a new vector type given the element type and |
| /// number of elements. |
| /// |
| /// By default, performs semantic analysis when building the vector type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildVectorType(QualType ElementType, unsigned NumElements, |
| VectorType::VectorKind VecKind); |
| |
| /// \brief Build a new extended vector type given the element type and |
| /// number of elements. |
| /// |
| /// By default, performs semantic analysis when building the vector type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements, |
| SourceLocation AttributeLoc); |
| |
| /// \brief Build a new potentially dependently-sized extended vector type |
| /// given the element type and number of elements. |
| /// |
| /// By default, performs semantic analysis when building the vector type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildDependentSizedExtVectorType(QualType ElementType, |
| Expr *SizeExpr, |
| SourceLocation AttributeLoc); |
| |
| /// \brief Build a new function type. |
| /// |
| /// By default, performs semantic analysis when building the function type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildFunctionProtoType(QualType T, |
| llvm::MutableArrayRef<QualType> ParamTypes, |
| const FunctionProtoType::ExtProtoInfo &EPI); |
| |
| /// \brief Build a new unprototyped function type. |
| QualType RebuildFunctionNoProtoType(QualType ResultType); |
| |
| /// \brief Rebuild an unresolved typename type, given the decl that |
| /// the UnresolvedUsingTypenameDecl was transformed to. |
| QualType RebuildUnresolvedUsingType(Decl *D); |
| |
| /// \brief Build a new typedef type. |
| QualType RebuildTypedefType(TypedefNameDecl *Typedef) { |
| return SemaRef.Context.getTypeDeclType(Typedef); |
| } |
| |
| /// \brief Build a new class/struct/union type. |
| QualType RebuildRecordType(RecordDecl *Record) { |
| return SemaRef.Context.getTypeDeclType(Record); |
| } |
| |
| /// \brief Build a new Enum type. |
| QualType RebuildEnumType(EnumDecl *Enum) { |
| return SemaRef.Context.getTypeDeclType(Enum); |
| } |
| |
| /// \brief Build a new typeof(expr) type. |
| /// |
| /// By default, performs semantic analysis when building the typeof type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc); |
| |
| /// \brief Build a new typeof(type) type. |
| /// |
| /// By default, builds a new TypeOfType with the given underlying type. |
| QualType RebuildTypeOfType(QualType Underlying); |
| |
| /// \brief Build a new unary transform type. |
| QualType RebuildUnaryTransformType(QualType BaseType, |
| UnaryTransformType::UTTKind UKind, |
| SourceLocation Loc); |
| |
| /// \brief Build a new C++0x decltype type. |
| /// |
| /// By default, performs semantic analysis when building the decltype type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc); |
| |
| /// \brief Build a new C++0x auto type. |
| /// |
| /// By default, builds a new AutoType with the given deduced type. |
| QualType RebuildAutoType(QualType Deduced) { |
| return SemaRef.Context.getAutoType(Deduced); |
| } |
| |
| /// \brief Build a new template specialization type. |
| /// |
| /// By default, performs semantic analysis when building the template |
| /// specialization type. Subclasses may override this routine to provide |
| /// different behavior. |
| QualType RebuildTemplateSpecializationType(TemplateName Template, |
| SourceLocation TemplateLoc, |
| TemplateArgumentListInfo &Args); |
| |
| /// \brief Build a new parenthesized type. |
| /// |
| /// By default, builds a new ParenType type from the inner type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildParenType(QualType InnerType) { |
| return SemaRef.Context.getParenType(InnerType); |
| } |
| |
| /// \brief Build a new qualified name type. |
| /// |
| /// By default, builds a new ElaboratedType type from the keyword, |
| /// the nested-name-specifier and the named type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildElaboratedType(SourceLocation KeywordLoc, |
| ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifierLoc QualifierLoc, |
| QualType Named) { |
| return SemaRef.Context.getElaboratedType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| Named); |
| } |
| |
| /// \brief Build a new typename type that refers to a template-id. |
| /// |
| /// By default, builds a new DependentNameType type from the |
| /// nested-name-specifier and the given type. Subclasses may override |
| /// this routine to provide different behavior. |
| QualType RebuildDependentTemplateSpecializationType( |
| ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifierLoc QualifierLoc, |
| const IdentifierInfo *Name, |
| SourceLocation NameLoc, |
| TemplateArgumentListInfo &Args) { |
| // Rebuild the template name. |
| // TODO: avoid TemplateName abstraction |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| TemplateName InstName |
| = getDerived().RebuildTemplateName(SS, *Name, NameLoc, QualType(), 0); |
| |
| if (InstName.isNull()) |
| return QualType(); |
| |
| // If it's still dependent, make a dependent specialization. |
| if (InstName.getAsDependentTemplateName()) |
| return SemaRef.Context.getDependentTemplateSpecializationType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| Name, |
| Args); |
| |
| // Otherwise, make an elaborated type wrapping a non-dependent |
| // specialization. |
| QualType T = |
| getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args); |
| if (T.isNull()) return QualType(); |
| |
| if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == 0) |
| return T; |
| |
| return SemaRef.Context.getElaboratedType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| T); |
| } |
| |
| /// \brief Build a new typename type that refers to an identifier. |
| /// |
| /// By default, performs semantic analysis when building the typename type |
| /// (or elaborated type). Subclasses may override this routine to provide |
| /// different behavior. |
| QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword, |
| SourceLocation KeywordLoc, |
| NestedNameSpecifierLoc QualifierLoc, |
| const IdentifierInfo *Id, |
| SourceLocation IdLoc) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| if (QualifierLoc.getNestedNameSpecifier()->isDependent()) { |
| // If the name is still dependent, just build a new dependent name type. |
| if (!SemaRef.computeDeclContext(SS)) |
| return SemaRef.Context.getDependentNameType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| Id); |
| } |
| |
| if (Keyword == ETK_None || Keyword == ETK_Typename) |
| return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, |
| *Id, IdLoc); |
| |
| TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword); |
| |
| // We had a dependent elaborated-type-specifier that has been transformed |
| // into a non-dependent elaborated-type-specifier. Find the tag we're |
| // referring to. |
| LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); |
| DeclContext *DC = SemaRef.computeDeclContext(SS, false); |
| if (!DC) |
| return QualType(); |
| |
| if (SemaRef.RequireCompleteDeclContext(SS, DC)) |
| return QualType(); |
| |
| TagDecl *Tag = 0; |
| SemaRef.LookupQualifiedName(Result, DC); |
| switch (Result.getResultKind()) { |
| case LookupResult::NotFound: |
| case LookupResult::NotFoundInCurrentInstantiation: |
| break; |
| |
| case LookupResult::Found: |
| Tag = Result.getAsSingle<TagDecl>(); |
| break; |
| |
| case LookupResult::FoundOverloaded: |
| case LookupResult::FoundUnresolvedValue: |
| llvm_unreachable("Tag lookup cannot find non-tags"); |
| |
| case LookupResult::Ambiguous: |
| // Let the LookupResult structure handle ambiguities. |
| return QualType(); |
| } |
| |
| if (!Tag) { |
| // Check where the name exists but isn't a tag type and use that to emit |
| // better diagnostics. |
| LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); |
| SemaRef.LookupQualifiedName(Result, DC); |
| switch (Result.getResultKind()) { |
| case LookupResult::Found: |
| case LookupResult::FoundOverloaded: |
| case LookupResult::FoundUnresolvedValue: { |
| NamedDecl *SomeDecl = Result.getRepresentativeDecl(); |
| unsigned Kind = 0; |
| if (isa<TypedefDecl>(SomeDecl)) Kind = 1; |
| else if (isa<TypeAliasDecl>(SomeDecl)) Kind = 2; |
| else if (isa<ClassTemplateDecl>(SomeDecl)) Kind = 3; |
| SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << Kind; |
| SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at); |
| break; |
| } |
| default: |
| // FIXME: Would be nice to highlight just the source range. |
| SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope) |
| << Kind << Id << DC; |
| break; |
| } |
| return QualType(); |
| } |
| |
| if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false, |
| IdLoc, *Id)) { |
| SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id; |
| SemaRef.Diag(Tag->getLocation(), diag::note_previous_use); |
| return QualType(); |
| } |
| |
| // Build the elaborated-type-specifier type. |
| QualType T = SemaRef.Context.getTypeDeclType(Tag); |
| return SemaRef.Context.getElaboratedType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| T); |
| } |
| |
| /// \brief Build a new pack expansion type. |
| /// |
| /// By default, builds a new PackExpansionType type from the given pattern. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildPackExpansionType(QualType Pattern, |
| SourceRange PatternRange, |
| SourceLocation EllipsisLoc, |
| Optional<unsigned> NumExpansions) { |
| return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc, |
| NumExpansions); |
| } |
| |
| /// \brief Build a new atomic type given its value type. |
| /// |
| /// By default, performs semantic analysis when building the atomic type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc); |
| |
| /// \brief Build a new template name given a nested name specifier, a flag |
| /// indicating whether the "template" keyword was provided, and the template |
| /// that the template name refers to. |
| /// |
| /// By default, builds the new template name directly. Subclasses may override |
| /// this routine to provide different behavior. |
| TemplateName RebuildTemplateName(CXXScopeSpec &SS, |
| bool TemplateKW, |
| TemplateDecl *Template); |
| |
| /// \brief Build a new template name given a nested name specifier and the |
| /// name that is referred to as a template. |
| /// |
| /// By default, performs semantic analysis to determine whether the name can |
| /// be resolved to a specific template, then builds the appropriate kind of |
| /// template name. Subclasses may override this routine to provide different |
| /// behavior. |
| TemplateName RebuildTemplateName(CXXScopeSpec &SS, |
| const IdentifierInfo &Name, |
| SourceLocation NameLoc, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope); |
| |
| /// \brief Build a new template name given a nested name specifier and the |
| /// overloaded operator name that is referred to as a template. |
| /// |
| /// By default, performs semantic analysis to determine whether the name can |
| /// be resolved to a specific template, then builds the appropriate kind of |
| /// template name. Subclasses may override this routine to provide different |
| /// behavior. |
| TemplateName RebuildTemplateName(CXXScopeSpec &SS, |
| OverloadedOperatorKind Operator, |
| SourceLocation NameLoc, |
| QualType ObjectType); |
| |
| /// \brief Build a new template name given a template template parameter pack |
| /// and the |
| /// |
| /// By default, performs semantic analysis to determine whether the name can |
| /// be resolved to a specific template, then builds the appropriate kind of |
| /// template name. Subclasses may override this routine to provide different |
| /// behavior. |
| TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param, |
| const TemplateArgument &ArgPack) { |
| return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack); |
| } |
| |
| /// \brief Build a new compound statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc, |
| MultiStmtArg Statements, |
| SourceLocation RBraceLoc, |
| bool IsStmtExpr) { |
| return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements, |
| IsStmtExpr); |
| } |
| |
| /// \brief Build a new case statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCaseStmt(SourceLocation CaseLoc, |
| Expr *LHS, |
| SourceLocation EllipsisLoc, |
| Expr *RHS, |
| SourceLocation ColonLoc) { |
| return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS, |
| ColonLoc); |
| } |
| |
| /// \brief Attach the body to a new case statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) { |
| getSema().ActOnCaseStmtBody(S, Body); |
| return S; |
| } |
| |
| /// \brief Build a new default statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc, |
| SourceLocation ColonLoc, |
| Stmt *SubStmt) { |
| return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt, |
| /*CurScope=*/0); |
| } |
| |
| /// \brief Build a new label statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L, |
| SourceLocation ColonLoc, Stmt *SubStmt) { |
| return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt); |
| } |
| |
| /// \brief Build a new label statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildAttributedStmt(SourceLocation AttrLoc, |
| ArrayRef<const Attr*> Attrs, |
| Stmt *SubStmt) { |
| return SemaRef.ActOnAttributedStmt(AttrLoc, Attrs, SubStmt); |
| } |
| |
| /// \brief Build a new "if" statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond, |
| VarDecl *CondVar, Stmt *Then, |
| SourceLocation ElseLoc, Stmt *Else) { |
| return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else); |
| } |
| |
| /// \brief Start building a new switch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc, |
| Expr *Cond, VarDecl *CondVar) { |
| return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond, |
| CondVar); |
| } |
| |
| /// \brief Attach the body to the switch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc, |
| Stmt *Switch, Stmt *Body) { |
| return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body); |
| } |
| |
| /// \brief Build a new while statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildWhileStmt(SourceLocation WhileLoc, Sema::FullExprArg Cond, |
| VarDecl *CondVar, Stmt *Body) { |
| return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body); |
| } |
| |
| /// \brief Build a new do-while statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body, |
| SourceLocation WhileLoc, SourceLocation LParenLoc, |
| Expr *Cond, SourceLocation RParenLoc) { |
| return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc, |
| Cond, RParenLoc); |
| } |
| |
| /// \brief Build a new for statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, |
| Stmt *Init, Sema::FullExprArg Cond, |
| VarDecl *CondVar, Sema::FullExprArg Inc, |
| SourceLocation RParenLoc, Stmt *Body) { |
| return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond, |
| CondVar, Inc, RParenLoc, Body); |
| } |
| |
| /// \brief Build a new goto statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, |
| LabelDecl *Label) { |
| return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label); |
| } |
| |
| /// \brief Build a new indirect goto statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc, |
| SourceLocation StarLoc, |
| Expr *Target) { |
| return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target); |
| } |
| |
| /// \brief Build a new return statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) { |
| return getSema().ActOnReturnStmt(ReturnLoc, Result); |
| } |
| |
| /// \brief Build a new declaration statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildDeclStmt(Decl **Decls, unsigned NumDecls, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls, NumDecls); |
| return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc); |
| } |
| |
| /// \brief Build a new inline asm statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, |
| bool IsVolatile, unsigned NumOutputs, |
| unsigned NumInputs, IdentifierInfo **Names, |
| MultiExprArg Constraints, MultiExprArg Exprs, |
| Expr *AsmString, MultiExprArg Clobbers, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, |
| NumInputs, Names, Constraints, Exprs, |
| AsmString, Clobbers, RParenLoc); |
| } |
| |
| /// \brief Build a new MS style inline asm statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, |
| ArrayRef<Token> AsmToks, SourceLocation EndLoc) { |
| return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, EndLoc); |
| } |
| |
| /// \brief Build a new Objective-C \@try statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc, |
| Stmt *TryBody, |
| MultiStmtArg CatchStmts, |
| Stmt *Finally) { |
| return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts, |
| Finally); |
| } |
| |
| /// \brief Rebuild an Objective-C exception declaration. |
| /// |
| /// By default, performs semantic analysis to build the new declaration. |
| /// Subclasses may override this routine to provide different behavior. |
| VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl, |
| TypeSourceInfo *TInfo, QualType T) { |
| return getSema().BuildObjCExceptionDecl(TInfo, T, |
| ExceptionDecl->getInnerLocStart(), |
| ExceptionDecl->getLocation(), |
| ExceptionDecl->getIdentifier()); |
| } |
| |
| /// \brief Build a new Objective-C \@catch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc, |
| SourceLocation RParenLoc, |
| VarDecl *Var, |
| Stmt *Body) { |
| return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc, |
| Var, Body); |
| } |
| |
| /// \brief Build a new Objective-C \@finally statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc, |
| Stmt *Body) { |
| return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body); |
| } |
| |
| /// \brief Build a new Objective-C \@throw statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc, |
| Expr *Operand) { |
| return getSema().BuildObjCAtThrowStmt(AtLoc, Operand); |
| } |
| |
| /// \brief Rebuild the operand to an Objective-C \@synchronized statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc, |
| Expr *object) { |
| return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object); |
| } |
| |
| /// \brief Build a new Objective-C \@synchronized statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc, |
| Expr *Object, Stmt *Body) { |
| return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body); |
| } |
| |
| /// \brief Build a new Objective-C \@autoreleasepool statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc, |
| Stmt *Body) { |
| return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body); |
| } |
| |
| /// \brief Build a new Objective-C fast enumeration statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc, |
| Stmt *Element, |
| Expr *Collection, |
| SourceLocation RParenLoc, |
| Stmt *Body) { |
| StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc, |
| Element, |
| Collection, |
| RParenLoc); |
| if (ForEachStmt.isInvalid()) |
| return StmtError(); |
| |
| return getSema().FinishObjCForCollectionStmt(ForEachStmt.take(), Body); |
| } |
| |
| /// \brief Build a new C++ exception declaration. |
| /// |
| /// By default, performs semantic analysis to build the new decaration. |
| /// Subclasses may override this routine to provide different behavior. |
| VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl, |
| TypeSourceInfo *Declarator, |
| SourceLocation StartLoc, |
| SourceLocation IdLoc, |
| IdentifierInfo *Id) { |
| VarDecl *Var = getSema().BuildExceptionDeclaration(0, Declarator, |
| StartLoc, IdLoc, Id); |
| if (Var) |
| getSema().CurContext->addDecl(Var); |
| return Var; |
| } |
| |
| /// \brief Build a new C++ catch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc, |
| VarDecl *ExceptionDecl, |
| Stmt *Handler) { |
| return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl, |
| Handler)); |
| } |
| |
| /// \brief Build a new C++ try statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, |
| Stmt *TryBlock, |
| MultiStmtArg Handlers) { |
| return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers); |
| } |
| |
| /// \brief Build a new C++0x range-based for statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc, |
| SourceLocation ColonLoc, |
| Stmt *Range, Stmt *BeginEnd, |
| Expr *Cond, Expr *Inc, |
| Stmt *LoopVar, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXForRangeStmt(ForLoc, ColonLoc, Range, BeginEnd, |
| Cond, Inc, LoopVar, RParenLoc, |
| Sema::BFRK_Rebuild); |
| } |
| |
| /// \brief Build a new C++0x range-based for statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc, |
| bool IsIfExists, |
| NestedNameSpecifierLoc QualifierLoc, |
| DeclarationNameInfo NameInfo, |
| Stmt *Nested) { |
| return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, |
| QualifierLoc, NameInfo, Nested); |
| } |
| |
| /// \brief Attach body to a C++0x range-based for statement. |
| /// |
| /// By default, performs semantic analysis to finish the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) { |
| return getSema().FinishCXXForRangeStmt(ForRange, Body); |
| } |
| |
| StmtResult RebuildSEHTryStmt(bool IsCXXTry, |
| SourceLocation TryLoc, |
| Stmt *TryBlock, |
| Stmt *Handler) { |
| return getSema().ActOnSEHTryBlock(IsCXXTry,TryLoc,TryBlock,Handler); |
| } |
| |
| StmtResult RebuildSEHExceptStmt(SourceLocation Loc, |
| Expr *FilterExpr, |
| Stmt *Block) { |
| return getSema().ActOnSEHExceptBlock(Loc,FilterExpr,Block); |
| } |
| |
| StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, |
| Stmt *Block) { |
| return getSema().ActOnSEHFinallyBlock(Loc,Block); |
| } |
| |
| /// \brief Build a new expression that references a declaration. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS, |
| LookupResult &R, |
| bool RequiresADL) { |
| return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL); |
| } |
| |
| |
| /// \brief Build a new expression that references a declaration. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc, |
| ValueDecl *VD, |
| const DeclarationNameInfo &NameInfo, |
| TemplateArgumentListInfo *TemplateArgs) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| // FIXME: loses template args. |
| |
| return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD); |
| } |
| |
| /// \brief Build a new expression in parentheses. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen, |
| SourceLocation RParen) { |
| return getSema().ActOnParenExpr(LParen, RParen, SubExpr); |
| } |
| |
| /// \brief Build a new pseudo-destructor expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base, |
| SourceLocation OperatorLoc, |
| bool isArrow, |
| CXXScopeSpec &SS, |
| TypeSourceInfo *ScopeType, |
| SourceLocation CCLoc, |
| SourceLocation TildeLoc, |
| PseudoDestructorTypeStorage Destroyed); |
| |
| /// \brief Build a new unary operator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildUnaryOperator(SourceLocation OpLoc, |
| UnaryOperatorKind Opc, |
| Expr *SubExpr) { |
| return getSema().BuildUnaryOp(/*Scope=*/0, OpLoc, Opc, SubExpr); |
| } |
| |
| /// \brief Build a new builtin offsetof expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc, |
| TypeSourceInfo *Type, |
| Sema::OffsetOfComponent *Components, |
| unsigned NumComponents, |
| SourceLocation RParenLoc) { |
| return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components, |
| NumComponents, RParenLoc); |
| } |
| |
| /// \brief Build a new sizeof, alignof or vec_step expression with a |
| /// type argument. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo, |
| SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, |
| SourceRange R) { |
| return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R); |
| } |
| |
| /// \brief Build a new sizeof, alignof or vec step expression with an |
| /// expression argument. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, |
| SourceRange R) { |
| ExprResult Result |
| = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return Result; |
| } |
| |
| /// \brief Build a new array subscript expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildArraySubscriptExpr(Expr *LHS, |
| SourceLocation LBracketLoc, |
| Expr *RHS, |
| SourceLocation RBracketLoc) { |
| return getSema().ActOnArraySubscriptExpr(/*Scope=*/0, LHS, |
| LBracketLoc, RHS, |
| RBracketLoc); |
| } |
| |
| /// \brief Build a new call expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, |
| MultiExprArg Args, |
| SourceLocation RParenLoc, |
| Expr *ExecConfig = 0) { |
| return getSema().ActOnCallExpr(/*Scope=*/0, Callee, LParenLoc, |
| Args, RParenLoc, ExecConfig); |
| } |
| |
| /// \brief Build a new member access expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc, |
| bool isArrow, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| const DeclarationNameInfo &MemberNameInfo, |
| ValueDecl *Member, |
| NamedDecl *FoundDecl, |
| const TemplateArgumentListInfo *ExplicitTemplateArgs, |
| NamedDecl *FirstQualifierInScope) { |
| ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base, |
| isArrow); |
| if (!Member->getDeclName()) { |
| // We have a reference to an unnamed field. This is always the |
| // base of an anonymous struct/union member access, i.e. the |
| // field is always of record type. |
| assert(!QualifierLoc && "Can't have an unnamed field with a qualifier!"); |
| assert(Member->getType()->isRecordType() && |
| "unnamed member not of record type?"); |
| |
| BaseResult = |
| getSema().PerformObjectMemberConversion(BaseResult.take(), |
| QualifierLoc.getNestedNameSpecifier(), |
| FoundDecl, Member); |
| if (BaseResult.isInvalid()) |
| return ExprError(); |
| Base = BaseResult.take(); |
| ExprValueKind VK = isArrow ? VK_LValue : Base->getValueKind(); |
| MemberExpr *ME = |
| new (getSema().Context) MemberExpr(Base, isArrow, |
| Member, MemberNameInfo, |
| cast<FieldDecl>(Member)->getType(), |
| VK, OK_Ordinary); |
| return getSema().Owned(ME); |
| } |
| |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| Base = BaseResult.take(); |
| QualType BaseType = Base->getType(); |
| |
| // FIXME: this involves duplicating earlier analysis in a lot of |
| // cases; we should avoid this when possible. |
| LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName); |
| R.addDecl(FoundDecl); |
| R.resolveKind(); |
| |
| return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow, |
| SS, TemplateKWLoc, |
| FirstQualifierInScope, |
| R, ExplicitTemplateArgs); |
| } |
| |
| /// \brief Build a new binary operator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildBinaryOperator(SourceLocation OpLoc, |
| BinaryOperatorKind Opc, |
| Expr *LHS, Expr *RHS) { |
| return getSema().BuildBinOp(/*Scope=*/0, OpLoc, Opc, LHS, RHS); |
| } |
| |
| /// \brief Build a new conditional operator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildConditionalOperator(Expr *Cond, |
| SourceLocation QuestionLoc, |
| Expr *LHS, |
| SourceLocation ColonLoc, |
| Expr *RHS) { |
| return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond, |
| LHS, RHS); |
| } |
| |
| /// \brief Build a new C-style cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RParenLoc, |
| Expr *SubExpr) { |
| return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, |
| SubExpr); |
| } |
| |
| /// \brief Build a new compound literal expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RParenLoc, |
| Expr *Init) { |
| return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, |
| Init); |
| } |
| |
| /// \brief Build a new extended vector element access expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildExtVectorElementExpr(Expr *Base, |
| SourceLocation OpLoc, |
| SourceLocation AccessorLoc, |
| IdentifierInfo &Accessor) { |
| |
| CXXScopeSpec SS; |
| DeclarationNameInfo NameInfo(&Accessor, AccessorLoc); |
| return getSema().BuildMemberReferenceExpr(Base, Base->getType(), |
| OpLoc, /*IsArrow*/ false, |
| SS, SourceLocation(), |
| /*FirstQualifierInScope*/ 0, |
| NameInfo, |
| /* TemplateArgs */ 0); |
| } |
| |
| /// \brief Build a new initializer list expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildInitList(SourceLocation LBraceLoc, |
| MultiExprArg Inits, |
| SourceLocation RBraceLoc, |
| QualType ResultTy) { |
| ExprResult Result |
| = SemaRef.ActOnInitList(LBraceLoc, Inits, RBraceLoc); |
| if (Result.isInvalid() || ResultTy->isDependentType()) |
| return Result; |
| |
| // Patch in the result type we were given, which may have been computed |
| // when the initial InitListExpr was built. |
| InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get()); |
| ILE->setType(ResultTy); |
| return Result; |
| } |
| |
| /// \brief Build a new designated initializer expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildDesignatedInitExpr(Designation &Desig, |
| MultiExprArg ArrayExprs, |
| SourceLocation EqualOrColonLoc, |
| bool GNUSyntax, |
| Expr *Init) { |
| ExprResult Result |
| = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax, |
| Init); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return Result; |
| } |
| |
| /// \brief Build a new value-initialized expression. |
| /// |
| /// By default, builds the implicit value initialization without performing |
| /// any semantic analysis. Subclasses may override this routine to provide |
| /// different behavior. |
| ExprResult RebuildImplicitValueInitExpr(QualType T) { |
| return SemaRef.Owned(new (SemaRef.Context) ImplicitValueInitExpr(T)); |
| } |
| |
| /// \brief Build a new \c va_arg expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc, |
| Expr *SubExpr, TypeSourceInfo *TInfo, |
| SourceLocation RParenLoc) { |
| return getSema().BuildVAArgExpr(BuiltinLoc, |
| SubExpr, TInfo, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new expression list in parentheses. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildParenListExpr(SourceLocation LParenLoc, |
| MultiExprArg SubExprs, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs); |
| } |
| |
| /// \brief Build a new address-of-label expression. |
| /// |
| /// By default, performs semantic analysis, using the name of the label |
| /// rather than attempting to map the label statement itself. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc, |
| SourceLocation LabelLoc, LabelDecl *Label) { |
| return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label); |
| } |
| |
| /// \brief Build a new GNU statement expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildStmtExpr(SourceLocation LParenLoc, |
| Stmt *SubStmt, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc); |
| } |
| |
| /// \brief Build a new __builtin_choose_expr expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc, |
| Expr *Cond, Expr *LHS, Expr *RHS, |
| SourceLocation RParenLoc) { |
| return SemaRef.ActOnChooseExpr(BuiltinLoc, |
| Cond, LHS, RHS, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new generic selection expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| Expr *ControllingExpr, |
| TypeSourceInfo **Types, |
| Expr **Exprs, |
| unsigned NumAssocs) { |
| return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, |
| ControllingExpr, Types, Exprs, |
| NumAssocs); |
| } |
| |
| /// \brief Build a new overloaded operator call expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// The semantic analysis provides the behavior of template instantiation, |
| /// copying with transformations that turn what looks like an overloaded |
| /// operator call into a use of a builtin operator, performing |
| /// argument-dependent lookup, etc. Subclasses may override this routine to |
| /// provide different behavior. |
| ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, |
| SourceLocation OpLoc, |
| Expr *Callee, |
| Expr *First, |
| Expr *Second); |
| |
| /// \brief Build a new C++ "named" cast expression, such as static_cast or |
| /// reinterpret_cast. |
| /// |
| /// By default, this routine dispatches to one of the more-specific routines |
| /// for a particular named case, e.g., RebuildCXXStaticCastExpr(). |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc, |
| Stmt::StmtClass Class, |
| SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| switch (Class) { |
| case Stmt::CXXStaticCastExprClass: |
| return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo, |
| RAngleLoc, LParenLoc, |
| SubExpr, RParenLoc); |
| |
| case Stmt::CXXDynamicCastExprClass: |
| return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo, |
| RAngleLoc, LParenLoc, |
| SubExpr, RParenLoc); |
| |
| case Stmt::CXXReinterpretCastExprClass: |
| return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo, |
| RAngleLoc, LParenLoc, |
| SubExpr, |
| RParenLoc); |
| |
| case Stmt::CXXConstCastExprClass: |
| return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo, |
| RAngleLoc, LParenLoc, |
| SubExpr, RParenLoc); |
| |
| default: |
| llvm_unreachable("Invalid C++ named cast"); |
| } |
| } |
| |
| /// \brief Build a new C++ static_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast, |
| TInfo, SubExpr, |
| SourceRange(LAngleLoc, RAngleLoc), |
| SourceRange(LParenLoc, RParenLoc)); |
| } |
| |
| /// \brief Build a new C++ dynamic_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast, |
| TInfo, SubExpr, |
| SourceRange(LAngleLoc, RAngleLoc), |
| SourceRange(LParenLoc, RParenLoc)); |
| } |
| |
| /// \brief Build a new C++ reinterpret_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast, |
| TInfo, SubExpr, |
| SourceRange(LAngleLoc, RAngleLoc), |
| SourceRange(LParenLoc, RParenLoc)); |
| } |
| |
| /// \brief Build a new C++ const_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast, |
| TInfo, SubExpr, |
| SourceRange(LAngleLoc, RAngleLoc), |
| SourceRange(LParenLoc, RParenLoc)); |
| } |
| |
| /// \brief Build a new C++ functional-style cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, |
| SourceLocation LParenLoc, |
| Expr *Sub, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc, |
| MultiExprArg(&Sub, 1), |
| RParenLoc); |
| } |
| |
| /// \brief Build a new C++ typeid(type) expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| TypeSourceInfo *Operand, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, |
| RParenLoc); |
| } |
| |
| |
| /// \brief Build a new C++ typeid(expr) expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| Expr *Operand, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new C++ __uuidof(type) expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| TypeSourceInfo *Operand, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new C++ __uuidof(expr) expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| Expr *Operand, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new C++ "this" expression. |
| /// |
| /// By default, builds a new "this" expression without performing any |
| /// semantic analysis. Subclasses may override this routine to provide |
| /// different behavior. |
| ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc, |
| QualType ThisType, |
| bool isImplicit) { |
| getSema().CheckCXXThisCapture(ThisLoc); |
| return getSema().Owned( |
| new (getSema().Context) CXXThisExpr(ThisLoc, ThisType, |
| isImplicit)); |
| } |
| |
| /// \brief Build a new C++ throw expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub, |
| bool IsThrownVariableInScope) { |
| return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope); |
| } |
| |
| /// \brief Build a new C++ default-argument expression. |
| /// |
| /// By default, builds a new default-argument expression, which does not |
| /// require any semantic analysis. Subclasses may override this routine to |
| /// provide different behavior. |
| ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc, |
| ParmVarDecl *Param) { |
| return getSema().Owned(CXXDefaultArgExpr::Create(getSema().Context, Loc, |
| Param)); |
| } |
| |
| /// \brief Build a new C++ zero-initialization expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo, |
| SourceLocation LParenLoc, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, |
| MultiExprArg(), RParenLoc); |
| } |
| |
| /// \brief Build a new C++ "new" expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXNewExpr(SourceLocation StartLoc, |
| bool UseGlobal, |
| SourceLocation PlacementLParen, |
| MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, |
| SourceRange TypeIdParens, |
| QualType AllocatedType, |
| TypeSourceInfo *AllocatedTypeInfo, |
| Expr *ArraySize, |
| SourceRange DirectInitRange, |
| Expr *Initializer) { |
| return getSema().BuildCXXNew(StartLoc, UseGlobal, |
| PlacementLParen, |
| PlacementArgs, |
| PlacementRParen, |
| TypeIdParens, |
| AllocatedType, |
| AllocatedTypeInfo, |
| ArraySize, |
| DirectInitRange, |
| Initializer); |
| } |
| |
| /// \brief Build a new C++ "delete" expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc, |
| bool IsGlobalDelete, |
| bool IsArrayForm, |
| Expr *Operand) { |
| return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm, |
| Operand); |
| } |
| |
| /// \brief Build a new unary type trait expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildUnaryTypeTrait(UnaryTypeTrait Trait, |
| SourceLocation StartLoc, |
| TypeSourceInfo *T, |
| SourceLocation RParenLoc) { |
| return getSema().BuildUnaryTypeTrait(Trait, StartLoc, T, RParenLoc); |
| } |
| |
| /// \brief Build a new binary type trait expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildBinaryTypeTrait(BinaryTypeTrait Trait, |
| SourceLocation StartLoc, |
| TypeSourceInfo *LhsT, |
| TypeSourceInfo *RhsT, |
| SourceLocation RParenLoc) { |
| return getSema().BuildBinaryTypeTrait(Trait, StartLoc, LhsT, RhsT, RParenLoc); |
| } |
| |
| /// \brief Build a new type trait expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildTypeTrait(TypeTrait Trait, |
| SourceLocation StartLoc, |
| ArrayRef<TypeSourceInfo *> Args, |
| SourceLocation RParenLoc) { |
| return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc); |
| } |
| |
| /// \brief Build a new array type trait expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait, |
| SourceLocation StartLoc, |
| TypeSourceInfo *TSInfo, |
| Expr *DimExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc); |
| } |
| |
| /// \brief Build a new expression trait expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildExpressionTrait(ExpressionTrait Trait, |
| SourceLocation StartLoc, |
| Expr *Queried, |
| SourceLocation RParenLoc) { |
| return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc); |
| } |
| |
| /// \brief Build a new (previously unresolved) declaration reference |
| /// expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildDependentScopeDeclRefExpr( |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| const DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *TemplateArgs, |
| bool IsAddressOfOperand) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| if (TemplateArgs || TemplateKWLoc.isValid()) |
| return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc, |
| NameInfo, TemplateArgs); |
| |
| return getSema().BuildQualifiedDeclarationNameExpr(SS, NameInfo, |
| IsAddressOfOperand); |
| } |
| |
| /// \brief Build a new template-id expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| LookupResult &R, |
| bool RequiresADL, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL, |
| TemplateArgs); |
| } |
| |
| /// \brief Build a new object-construction expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXConstructExpr(QualType T, |
| SourceLocation Loc, |
| CXXConstructorDecl *Constructor, |
| bool IsElidable, |
| MultiExprArg Args, |
| bool HadMultipleCandidates, |
| bool ListInitialization, |
| bool RequiresZeroInit, |
| CXXConstructExpr::ConstructionKind ConstructKind, |
| SourceRange ParenRange) { |
| SmallVector<Expr*, 8> ConvertedArgs; |
| if (getSema().CompleteConstructorCall(Constructor, Args, Loc, |
| ConvertedArgs)) |
| return ExprError(); |
| |
| return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable, |
| ConvertedArgs, |
| HadMultipleCandidates, |
| ListInitialization, |
| RequiresZeroInit, ConstructKind, |
| ParenRange); |
| } |
| |
| /// \brief Build a new object-construction expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo, |
| SourceLocation LParenLoc, |
| MultiExprArg Args, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXTypeConstructExpr(TSInfo, |
| LParenLoc, |
| Args, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new object-construction expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo, |
| SourceLocation LParenLoc, |
| MultiExprArg Args, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXTypeConstructExpr(TSInfo, |
| LParenLoc, |
| Args, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new member reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE, |
| QualType BaseType, |
| bool IsArrow, |
| SourceLocation OperatorLoc, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| NamedDecl *FirstQualifierInScope, |
| const DeclarationNameInfo &MemberNameInfo, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, |
| OperatorLoc, IsArrow, |
| SS, TemplateKWLoc, |
| FirstQualifierInScope, |
| MemberNameInfo, |
| TemplateArgs); |
| } |
| |
| /// \brief Build a new member reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType, |
| SourceLocation OperatorLoc, |
| bool IsArrow, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| NamedDecl *FirstQualifierInScope, |
| LookupResult &R, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, |
| OperatorLoc, IsArrow, |
| SS, TemplateKWLoc, |
| FirstQualifierInScope, |
| R, TemplateArgs); |
| } |
| |
| /// \brief Build a new noexcept expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) { |
| return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd()); |
| } |
| |
| /// \brief Build a new expression to compute the length of a parameter pack. |
| ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack, |
| SourceLocation PackLoc, |
| SourceLocation RParenLoc, |
| Optional<unsigned> Length) { |
| if (Length) |
| return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(), |
| OperatorLoc, Pack, PackLoc, |
| RParenLoc, *Length); |
| |
| return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(), |
| OperatorLoc, Pack, PackLoc, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new Objective-C boxed expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { |
| return getSema().BuildObjCBoxedExpr(SR, ValueExpr); |
| } |
| |
| /// \brief Build a new Objective-C array literal. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCArrayLiteral(SourceRange Range, |
| Expr **Elements, unsigned NumElements) { |
| return getSema().BuildObjCArrayLiteral(Range, |
| MultiExprArg(Elements, NumElements)); |
| } |
| |
| ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB, |
| Expr *Base, Expr *Key, |
| ObjCMethodDecl *getterMethod, |
| ObjCMethodDecl *setterMethod) { |
| return getSema().BuildObjCSubscriptExpression(RB, Base, Key, |
| getterMethod, setterMethod); |
| } |
| |
| /// \brief Build a new Objective-C dictionary literal. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCDictionaryLiteral(SourceRange Range, |
| ObjCDictionaryElement *Elements, |
| unsigned NumElements) { |
| return getSema().BuildObjCDictionaryLiteral(Range, Elements, NumElements); |
| } |
| |
| /// \brief Build a new Objective-C \@encode expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc, |
| TypeSourceInfo *EncodeTypeInfo, |
| SourceLocation RParenLoc) { |
| return SemaRef.Owned(SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, |
| RParenLoc)); |
| } |
| |
| /// \brief Build a new Objective-C class message. |
| ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelectorLocs, |
| ObjCMethodDecl *Method, |
| SourceLocation LBracLoc, |
| MultiExprArg Args, |
| SourceLocation RBracLoc) { |
| return SemaRef.BuildClassMessage(ReceiverTypeInfo, |
| ReceiverTypeInfo->getType(), |
| /*SuperLoc=*/SourceLocation(), |
| Sel, Method, LBracLoc, SelectorLocs, |
| RBracLoc, Args); |
| } |
| |
| /// \brief Build a new Objective-C instance message. |
| ExprResult RebuildObjCMessageExpr(Expr *Receiver, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelectorLocs, |
| ObjCMethodDecl *Method, |
| SourceLocation LBracLoc, |
| MultiExprArg Args, |
| SourceLocation RBracLoc) { |
| return SemaRef.BuildInstanceMessage(Receiver, |
| Receiver->getType(), |
| /*SuperLoc=*/SourceLocation(), |
| Sel, Method, LBracLoc, SelectorLocs, |
| RBracLoc, Args); |
| } |
| |
| /// \brief Build a new Objective-C ivar reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar, |
| SourceLocation IvarLoc, |
| bool IsArrow, bool IsFreeIvar) { |
| // FIXME: We lose track of the IsFreeIvar bit. |
| CXXScopeSpec SS; |
| ExprResult Base = getSema().Owned(BaseArg); |
| LookupResult R(getSema(), Ivar->getDeclName(), IvarLoc, |
| Sema::LookupMemberName); |
| ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow, |
| /*FIME:*/IvarLoc, |
| SS, 0, |
| false); |
| if (Result.isInvalid() || Base.isInvalid()) |
| return ExprError(); |
| |
| if (Result.get()) |
| return Result; |
| |
| return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(), |
| /*FIXME:*/IvarLoc, IsArrow, |
| SS, SourceLocation(), |
| /*FirstQualifierInScope=*/0, |
| R, |
| /*TemplateArgs=*/0); |
| } |
| |
| /// \brief Build a new Objective-C property reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg, |
| ObjCPropertyDecl *Property, |
| SourceLocation PropertyLoc) { |
| CXXScopeSpec SS; |
| ExprResult Base = getSema().Owned(BaseArg); |
| LookupResult R(getSema(), Property->getDeclName(), PropertyLoc, |
| Sema::LookupMemberName); |
| bool IsArrow = false; |
| ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow, |
| /*FIME:*/PropertyLoc, |
| SS, 0, false); |
| if (Result.isInvalid() || Base.isInvalid()) |
| return ExprError(); |
| |
| if (Result.get()) |
| return Result; |
| |
| return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(), |
| /*FIXME:*/PropertyLoc, IsArrow, |
| SS, SourceLocation(), |
| /*FirstQualifierInScope=*/0, |
| R, |
| /*TemplateArgs=*/0); |
| } |
| |
| /// \brief Build a new Objective-C property reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T, |
| ObjCMethodDecl *Getter, |
| ObjCMethodDecl *Setter, |
| SourceLocation PropertyLoc) { |
| // Since these expressions can only be value-dependent, we do not |
| // need to perform semantic analysis again. |
| return Owned( |
| new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T, |
| VK_LValue, OK_ObjCProperty, |
| PropertyLoc, Base)); |
| } |
| |
| /// \brief Build a new Objective-C "isa" expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc, |
| bool IsArrow) { |
| CXXScopeSpec SS; |
| ExprResult Base = getSema().Owned(BaseArg); |
| LookupResult R(getSema(), &getSema().Context.Idents.get("isa"), IsaLoc, |
| Sema::LookupMemberName); |
| ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow, |
| /*FIME:*/IsaLoc, |
| SS, 0, false); |
| if (Result.isInvalid() || Base.isInvalid()) |
| return ExprError(); |
| |
| if (Result.get()) |
| return Result; |
| |
| return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(), |
| /*FIXME:*/IsaLoc, IsArrow, |
| SS, SourceLocation(), |
| /*FirstQualifierInScope=*/0, |
| R, |
| /*TemplateArgs=*/0); |
| } |
| |
| /// \brief Build a new shuffle vector expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc, |
| MultiExprArg SubExprs, |
| SourceLocation RParenLoc) { |
| // Find the declaration for __builtin_shufflevector |
| const IdentifierInfo &Name |
| = SemaRef.Context.Idents.get("__builtin_shufflevector"); |
| TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl(); |
| DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name)); |
| assert(!Lookup.empty() && "No __builtin_shufflevector?"); |
| |
| // Build a reference to the __builtin_shufflevector builtin |
| FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front()); |
| Expr *Callee = new (SemaRef.Context) DeclRefExpr(Builtin, false, |
| SemaRef.Context.BuiltinFnTy, |
| VK_RValue, BuiltinLoc); |
| QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType()); |
| Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy, |
| CK_BuiltinFnToFnPtr).take(); |
| |
| // Build the CallExpr |
| ExprResult TheCall = SemaRef.Owned( |
| new (SemaRef.Context) CallExpr(SemaRef.Context, Callee, SubExprs, |
| Builtin->getCallResultType(), |
| Expr::getValueKindForType(Builtin->getResultType()), |
| RParenLoc)); |
| |
| // Type-check the __builtin_shufflevector expression. |
| return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.take())); |
| } |
| |
| /// \brief Build a new template argument pack expansion. |
| /// |
| /// By default, performs semantic analysis to build a new pack expansion |
| /// for a template argument. Subclasses may override this routine to provide |
| /// different behavior. |
| TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern, |
| SourceLocation EllipsisLoc, |
| Optional<unsigned> NumExpansions) { |
| switch (Pattern.getArgument().getKind()) { |
| case TemplateArgument::Expression: { |
| ExprResult Result |
| = getSema().CheckPackExpansion(Pattern.getSourceExpression(), |
| EllipsisLoc, NumExpansions); |
| if (Result.isInvalid()) |
| return TemplateArgumentLoc(); |
| |
| return TemplateArgumentLoc(Result.get(), Result.get()); |
| } |
| |
| case TemplateArgument::Template: |
| return TemplateArgumentLoc(TemplateArgument( |
| Pattern.getArgument().getAsTemplate(), |
| NumExpansions), |
| Pattern.getTemplateQualifierLoc(), |
| Pattern.getTemplateNameLoc(), |
| EllipsisLoc); |
| |
| case TemplateArgument::Null: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Pack: |
| case TemplateArgument::TemplateExpansion: |
| case TemplateArgument::NullPtr: |
| llvm_unreachable("Pack expansion pattern has no parameter packs"); |
| |
| case TemplateArgument::Type: |
| if (TypeSourceInfo *Expansion |
| = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(), |
| EllipsisLoc, |
| NumExpansions)) |
| return TemplateArgumentLoc(TemplateArgument(Expansion->getType()), |
| Expansion); |
| break; |
| } |
| |
| return TemplateArgumentLoc(); |
| } |
| |
| /// \brief Build a new expression pack expansion. |
| /// |
| /// By default, performs semantic analysis to build a new pack expansion |
| /// for an expression. Subclasses may override this routine to provide |
| /// different behavior. |
| ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, |
| Optional<unsigned> NumExpansions) { |
| return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions); |
| } |
| |
| /// \brief Build a new atomic operation expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc, |
| MultiExprArg SubExprs, |
| QualType RetTy, |
| AtomicExpr::AtomicOp Op, |
| SourceLocation RParenLoc) { |
| // Just create the expression; there is not any interesting semantic |
| // analysis here because we can't actually build an AtomicExpr until |
| // we are sure it is semantically sound. |
| return new (SemaRef.Context) AtomicExpr(BuiltinLoc, SubExprs, RetTy, Op, |
| RParenLoc); |
| } |
| |
| private: |
| TypeLoc TransformTypeInObjectScope(TypeLoc TL, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope, |
| CXXScopeSpec &SS); |
| |
| TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope, |
| CXXScopeSpec &SS); |
| }; |
| |
| template<typename Derived> |
| StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) { |
| if (!S) |
| return SemaRef.Owned(S); |
| |
| switch (S->getStmtClass()) { |
| case Stmt::NoStmtClass: break; |
| |
| // Transform individual statement nodes |
| #define STMT(Node, Parent) \ |
| case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S)); |
| #define ABSTRACT_STMT(Node) |
| #define EXPR(Node, Parent) |
| #include "clang/AST/StmtNodes.inc" |
| |
| // Transform expressions by calling TransformExpr. |
| #define STMT(Node, Parent) |
| #define ABSTRACT_STMT(Stmt) |
| #define EXPR(Node, Parent) case Stmt::Node##Class: |
| #include "clang/AST/StmtNodes.inc" |
| { |
| ExprResult E = getDerived().TransformExpr(cast<Expr>(S)); |
| if (E.isInvalid()) |
| return StmtError(); |
| |
| return getSema().ActOnExprStmt(E); |
| } |
| } |
| |
| return SemaRef.Owned(S); |
| } |
| |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) { |
| if (!E) |
| return SemaRef.Owned(E); |
| |
| switch (E->getStmtClass()) { |
| case Stmt::NoStmtClass: break; |
| #define STMT(Node, Parent) case Stmt::Node##Class: break; |
| #define ABSTRACT_STMT(Stmt) |
| #define EXPR(Node, Parent) \ |
| case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E)); |
| #include "clang/AST/StmtNodes.inc" |
| } |
| |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init, |
| bool CXXDirectInit) { |
| // Initializers are instantiated like expressions, except that various outer |
| // layers are stripped. |
| if (!Init) |
| return SemaRef.Owned(Init); |
| |
| if (ExprWithCleanups *ExprTemp = dyn_cast<ExprWithCleanups>(Init)) |
| Init = ExprTemp->getSubExpr(); |
| |
| while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init)) |
| Init = Binder->getSubExpr(); |
| |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init)) |
| Init = ICE->getSubExprAsWritten(); |
| |
| // If this is not a direct-initializer, we only need to reconstruct |
| // InitListExprs. Other forms of copy-initialization will be a no-op if |
| // the initializer is already the right type. |
| CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init); |
| if (!CXXDirectInit && !(Construct && Construct->isListInitialization())) |
| return getDerived().TransformExpr(Init); |
| |
| // Revert value-initialization back to empty parens. |
| if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) { |
| SourceRange Parens = VIE->getSourceRange(); |
| return getDerived().RebuildParenListExpr(Parens.getBegin(), MultiExprArg(), |
| Parens.getEnd()); |
| } |
| |
| // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization. |
| if (isa<ImplicitValueInitExpr>(Init)) |
| return getDerived().RebuildParenListExpr(SourceLocation(), MultiExprArg(), |
| SourceLocation()); |
| |
| // Revert initialization by constructor back to a parenthesized or braced list |
| // of expressions. Any other form of initializer can just be reused directly. |
| if (!Construct || isa<CXXTemporaryObjectExpr>(Construct)) |
| return getDerived().TransformExpr(Init); |
| |
| SmallVector<Expr*, 8> NewArgs; |
| bool ArgChanged = false; |
| if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(), |
| /*IsCall*/true, NewArgs, &ArgChanged)) |
| return ExprError(); |
| |
| // If this was list initialization, revert to list form. |
| if (Construct->isListInitialization()) |
| return getDerived().RebuildInitList(Construct->getLocStart(), NewArgs, |
| Construct->getLocEnd(), |
| Construct->getType()); |
| |
| // Build a ParenListExpr to represent anything else. |
| SourceRange Parens = Construct->getParenRange(); |
| return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs, |
| Parens.getEnd()); |
| } |
| |
| template<typename Derived> |
| bool TreeTransform<Derived>::TransformExprs(Expr **Inputs, |
| unsigned NumInputs, |
| bool IsCall, |
| SmallVectorImpl<Expr *> &Outputs, |
| bool *ArgChanged) { |
| for (unsigned I = 0; I != NumInputs; ++I) { |
| // If requested, drop call arguments that need to be dropped. |
| if (IsCall && getDerived().DropCallArgument(Inputs[I])) { |
| if (ArgChanged) |
| *ArgChanged = true; |
| |
| break; |
| } |
| |
| if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) { |
| Expr *Pattern = Expansion->getPattern(); |
| |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| Optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions(); |
| Optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(), |
| Pattern->getSourceRange(), |
| Unexpanded, |
| Expand, RetainExpansion, |
| NumExpansions)) |
| return true; |
| |
| if (!Expand) { |
| // The transform has determined that we should perform a simple |
| // transformation on the pack expansion, producing another pack |
| // expansion. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| ExprResult OutPattern = getDerived().TransformExpr(Pattern); |
| if (OutPattern.isInvalid()) |
| return true; |
| |
| ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(), |
| Expansion->getEllipsisLoc(), |
| NumExpansions); |
| if (Out.isInvalid()) |
| return true; |
| |
| if (ArgChanged) |
| *ArgChanged = true; |
| Outputs.push_back(Out.get()); |
| continue; |
| } |
| |
| // Record right away that the argument was changed. This needs |
| // to happen even if the array expands to nothing. |
| if (ArgChanged) *ArgChanged = true; |
| |
| // The transform has determined that we should perform an elementwise |
| // expansion of the pattern. Do so. |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| ExprResult Out = getDerived().TransformExpr(Pattern); |
| if (Out.isInvalid()) |
| return true; |
| |
| if (Out.get()->containsUnexpandedParameterPack()) { |
| Out = RebuildPackExpansion(Out.get(), Expansion->getEllipsisLoc(), |
| OrigNumExpansions); |
| if (Out.isInvalid()) |
| return true; |
| } |
| |
| Outputs.push_back(Out.get()); |
| } |
| |
| continue; |
| } |
| |
| ExprResult Result = |
| IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false) |
| : getDerived().TransformExpr(Inputs[I]); |
| if (Result.isInvalid()) |
| return true; |
| |
| if (Result.get() != Inputs[I] && ArgChanged) |
| *ArgChanged = true; |
| |
| Outputs.push_back(Result.get()); |
| } |
| |
| return false; |
| } |
| |
| template<typename Derived> |
| NestedNameSpecifierLoc |
| TreeTransform<Derived>::TransformNestedNameSpecifierLoc( |
| NestedNameSpecifierLoc NNS, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope) { |
| SmallVector<NestedNameSpecifierLoc, 4> Qualifiers; |
| for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier; |
| Qualifier = Qualifier.getPrefix()) |
| Qualifiers.push_back(Qualifier); |
| |
| CXXScopeSpec SS; |
| while (!Qualifiers.empty()) { |
| NestedNameSpecifierLoc Q = Qualifiers.pop_back_val(); |
| NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier(); |
| |
| switch (QNNS->getKind()) { |
| case NestedNameSpecifier::Identifier: |
| if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/0, |
| *QNNS->getAsIdentifier(), |
| Q.getLocalBeginLoc(), |
| Q.getLocalEndLoc(), |
| ObjectType, false, SS, |
| FirstQualifierInScope, false)) |
| return NestedNameSpecifierLoc(); |
| |
| break; |
| |
| case NestedNameSpecifier::Namespace: { |
| NamespaceDecl *NS |
| = cast_or_null<NamespaceDecl>( |
| getDerived().TransformDecl( |
| Q.getLocalBeginLoc(), |
| QNNS->getAsNamespace())); |
| SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc()); |
| break; |
| } |
| |
| case NestedNameSpecifier::NamespaceAlias: { |
| NamespaceAliasDecl *Alias |
| = cast_or_null<NamespaceAliasDecl>( |
| getDerived().TransformDecl(Q.getLocalBeginLoc(), |
| QNNS->getAsNamespaceAlias())); |
| SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(), |
| Q.getLocalEndLoc()); |
| break; |
| } |
| |
| case NestedNameSpecifier::Global: |
| // There is no meaningful transformation that one could perform on the |
| // global scope. |
| SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc()); |
| break; |
| |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| case NestedNameSpecifier::TypeSpec: { |
| TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType, |
| FirstQualifierInScope, SS); |
| |
| if (!TL) |
| return NestedNameSpecifierLoc(); |
| |
| if (TL.getType()->isDependentType() || TL.getType()->isRecordType() || |
| (SemaRef.getLangOpts().CPlusPlus11 && |
| TL.getType()->isEnumeralType())) { |
| assert(!TL.getType().hasLocalQualifiers() && |
| "Can't get cv-qualifiers here"); |
| if (TL.getType()->isEnumeralType()) |
| SemaRef.Diag(TL.getBeginLoc(), |
| diag::warn_cxx98_compat_enum_nested_name_spec); |
| SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL, |
| Q.getLocalEndLoc()); |
| break; |
| } |
| // If the nested-name-specifier is an invalid type def, don't emit an |
| // error because a previous error should have already been emitted. |
| TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>(); |
| if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) { |
| SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag) |
| << TL.getType() << SS.getRange(); |
| } |
| return NestedNameSpecifierLoc(); |
| } |
| } |
| |
| // The qualifier-in-scope and object type only apply to the leftmost entity. |
| FirstQualifierInScope = 0; |
| ObjectType = QualType(); |
| } |
| |
| // Don't rebuild the nested-name-specifier if we don't have to. |
| if (SS.getScopeRep() == NNS.getNestedNameSpecifier() && |
| !getDerived().AlwaysRebuild()) |
| return NNS; |
| |
| // If we can re-use the source-location data from the original |
| // nested-name-specifier, do so. |
| if (SS.location_size() == NNS.getDataLength() && |
| memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0) |
| return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData()); |
| |
| // Allocate new nested-name-specifier location information. |
| return SS.getWithLocInContext(SemaRef.Context); |
| } |
| |
| template<typename Derived> |
| DeclarationNameInfo |
| TreeTransform<Derived> |
| ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) { |
| DeclarationName Name = NameInfo.getName(); |
| if (!Name) |
| return DeclarationNameInfo(); |
| |
| switch (Name.getNameKind()) { |
| case DeclarationName::Identifier: |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: |
| case DeclarationName::CXXOperatorName: |
| case DeclarationName::CXXLiteralOperatorName: |
| case DeclarationName::CXXUsingDirective: |
| return NameInfo; |
| |
| case DeclarationName::CXXConstructorName: |
| case DeclarationName::CXXDestructorName: |
| case DeclarationName::CXXConversionFunctionName: { |
| TypeSourceInfo *NewTInfo; |
| CanQualType NewCanTy; |
| if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) { |
| NewTInfo = getDerived().TransformType(OldTInfo); |
| if (!NewTInfo) |
| return DeclarationNameInfo(); |
| NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType()); |
| } |
| else { |
| NewTInfo = 0; |
| TemporaryBase Rebase(*this, NameInfo.getLoc(), Name); |
| QualType NewT = getDerived().TransformType(Name.getCXXNameType()); |
| if (NewT.isNull()) |
| return DeclarationNameInfo(); |
| NewCanTy = SemaRef.Context.getCanonicalType(NewT); |
| } |
| |
| DeclarationName NewName |
| = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(), |
| NewCanTy); |
| DeclarationNameInfo NewNameInfo(NameInfo); |
| NewNameInfo.setName(NewName); |
| NewNameInfo.setNamedTypeInfo(NewTInfo); |
| return NewNameInfo; |
| } |
| } |
| |
| llvm_unreachable("Unknown name kind."); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS, |
| TemplateName Name, |
| SourceLocation NameLoc, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope) { |
| if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) { |
| TemplateDecl *Template = QTN->getTemplateDecl(); |
| assert(Template && "qualified template name must refer to a template"); |
| |
| TemplateDecl *TransTemplate |
| = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc, |
| Template)); |
| if (!TransTemplate) |
| return TemplateName(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SS.getScopeRep() == QTN->getQualifier() && |
| TransTemplate == Template) |
| return Name; |
| |
| return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(), |
| TransTemplate); |
| } |
| |
| if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) { |
| if (SS.getScopeRep()) { |
| // These apply to the scope specifier, not the template. |
| ObjectType = QualType(); |
| FirstQualifierInScope = 0; |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| SS.getScopeRep() == DTN->getQualifier() && |
| ObjectType.isNull()) |
| return Name; |
| |
| if (DTN->isIdentifier()) { |
| return getDerived().RebuildTemplateName(SS, |
| *DTN->getIdentifier(), |
| NameLoc, |
| ObjectType, |
| FirstQualifierInScope); |
| } |
| |
| return getDerived().RebuildTemplateName(SS, DTN->getOperator(), NameLoc, |
| ObjectType); |
| } |
| |
| if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
| TemplateDecl *TransTemplate |
| = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc, |
| Template)); |
| if (!TransTemplate) |
| return TemplateName(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TransTemplate == Template) |
| return Name; |
| |
| return TemplateName(TransTemplate); |
| } |
| |
| if (SubstTemplateTemplateParmPackStorage *SubstPack |
| = Name.getAsSubstTemplateTemplateParmPack()) { |
| TemplateTemplateParmDecl *TransParam |
| = cast_or_null<TemplateTemplateParmDecl>( |
| getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack())); |
| if (!TransParam) |
| return TemplateName(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TransParam == SubstPack->getParameterPack()) |
| return Name; |
| |
| return getDerived().RebuildTemplateName(TransParam, |
| SubstPack->getArgumentPack()); |
| } |
| |
| // These should be getting filtered out before they reach the AST. |
| llvm_unreachable("overloaded function decl survived to here"); |
| } |
| |
| template<typename Derived> |
| void TreeTransform<Derived>::InventTemplateArgumentLoc( |
| const TemplateArgument &Arg, |
| TemplateArgumentLoc &Output) { |
| SourceLocation Loc = getDerived().getBaseLocation(); |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("null template argument in TreeTransform"); |
| break; |
| |
| case TemplateArgument::Type: |
| Output = TemplateArgumentLoc(Arg, |
| SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); |
| |
| break; |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: { |
| NestedNameSpecifierLocBuilder Builder; |
| TemplateName Template = Arg.getAsTemplate(); |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) |
| Builder.MakeTrivial(SemaRef.Context, DTN->getQualifier(), Loc); |
| else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
| Builder.MakeTrivial(SemaRef.Context, QTN->getQualifier(), Loc); |
| |
| if (Arg.getKind() == TemplateArgument::Template) |
| Output = TemplateArgumentLoc(Arg, |
| Builder.getWithLocInContext(SemaRef.Context), |
| Loc); |
| else |
| Output = TemplateArgumentLoc(Arg, |
| Builder.getWithLocInContext(SemaRef.Context), |
| Loc, Loc); |
| |
| break; |
| } |
| |
| case TemplateArgument::Expression: |
| Output = TemplateArgumentLoc(Arg, Arg.getAsExpr()); |
| break; |
| |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Pack: |
| case TemplateArgument::NullPtr: |
| Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); |
| break; |
| } |
| } |
| |
| template<typename Derived> |
| bool TreeTransform<Derived>::TransformTemplateArgument( |
| const TemplateArgumentLoc &Input, |
| TemplateArgumentLoc &Output) { |
| const TemplateArgument &Arg = Input.getArgument(); |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Pack: |
| case TemplateArgument::Declaration: |
| case TemplateArgument::NullPtr: |
| llvm_unreachable("Unexpected TemplateArgument"); |
| |
| case TemplateArgument::Type: { |
| TypeSourceInfo *DI = Input.getTypeSourceInfo(); |
| if (DI == NULL) |
| DI = InventTypeSourceInfo(Input.getArgument().getAsType()); |
| |
| DI = getDerived().TransformType(DI); |
| if (!DI) return true; |
| |
| Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); |
| return false; |
| } |
| |
| case TemplateArgument::Template: { |
| NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc); |
| if (!QualifierLoc) |
| return true; |
| } |
| |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| TemplateName Template |
| = getDerived().TransformTemplateName(SS, Arg.getAsTemplate(), |
| Input.getTemplateNameLoc()); |
| if (Template.isNull()) |
| return true; |
| |
| Output = TemplateArgumentLoc(TemplateArgument(Template), QualifierLoc, |
| Input.getTemplateNameLoc()); |
| return false; |
| } |
| |
| case TemplateArgument::TemplateExpansion: |
| llvm_unreachable("Caller should expand pack expansions"); |
| |
| case TemplateArgument::Expression: { |
| // Template argument expressions are constant expressions. |
| EnterExpressionEvaluationContext Unevaluated(getSema(), |
| Sema::ConstantEvaluated); |
| |
| Expr *InputExpr = Input.getSourceExpression(); |
| if (!InputExpr) InputExpr = Input.getArgument().getAsExpr(); |
| |
| ExprResult E = getDerived().TransformExpr(InputExpr); |
| E = SemaRef.ActOnConstantExpression(E); |
| if (E.isInvalid()) return true; |
| Output = TemplateArgumentLoc(TemplateArgument(E.take()), E.take()); |
| return false; |
| } |
| } |
| |
| // Work around bogus GCC warning |
| return true; |
| } |
| |
| /// \brief Iterator adaptor that invents template argument location information |
| /// for each of the template arguments in its underlying iterator. |
| template<typename Derived, typename InputIterator> |
| class TemplateArgumentLocInventIterator { |
| TreeTransform<Derived> &Self; |
| InputIterator Iter; |
| |
| public: |
| typedef TemplateArgumentLoc value_type; |
| typedef TemplateArgumentLoc reference; |
| typedef typename std::iterator_traits<InputIterator>::difference_type |
| difference_type; |
| typedef std::input_iterator_tag iterator_category; |
| |
| class pointer { |
| TemplateArgumentLoc Arg; |
| |
| public: |
| explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } |
| |
| const TemplateArgumentLoc *operator->() const { return &Arg; } |
| }; |
| |
| TemplateArgumentLocInventIterator() { } |
| |
| explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self, |
| InputIterator Iter) |
| : Self(Self), Iter(Iter) { } |
| |
| TemplateArgumentLocInventIterator &operator++() { |
| ++Iter; |
| return *this; |
| } |
| |
| TemplateArgumentLocInventIterator operator++(int) { |
| TemplateArgumentLocInventIterator Old(*this); |
| ++(*this); |
| return Old; |
| } |
| |
| reference operator*() const { |
| TemplateArgumentLoc Result; |
| Self.InventTemplateArgumentLoc(*Iter, Result); |
| return Result; |
| } |
| |
| pointer operator->() const { return pointer(**this); } |
| |
| friend bool operator==(const TemplateArgumentLocInventIterator &X, |
| const TemplateArgumentLocInventIterator &Y) { |
| return X.Iter == Y.Iter; |
| } |
| |
| friend bool operator!=(const TemplateArgumentLocInventIterator &X, |
| const TemplateArgumentLocInventIterator &Y) { |
| return X.Iter != Y.Iter; |
| } |
| }; |
| |
| template<typename Derived> |
| template<typename InputIterator> |
| bool TreeTransform<Derived>::TransformTemplateArguments(InputIterator First, |
| InputIterator Last, |
| TemplateArgumentListInfo &Outputs) { |
| for (; First != Last; ++First) { |
| TemplateArgumentLoc Out; |
| TemplateArgumentLoc In = *First; |
| |
| if (In.getArgument().getKind() == TemplateArgument::Pack) { |
| // Unpack argument packs, which we translate them into separate |
| // arguments. |
| // FIXME: We could do much better if we could guarantee that the |
| // TemplateArgumentLocInfo for the pack expansion would be usable for |
| // all of the template arguments in the argument pack. |
| typedef TemplateArgumentLocInventIterator<Derived, |
| TemplateArgument::pack_iterator> |
| PackLocIterator; |
| if (TransformTemplateArguments(PackLocIterator(*this, |
| In.getArgument().pack_begin()), |
| PackLocIterator(*this, |
| In.getArgument().pack_end()), |
| Outputs)) |
| return true; |
| |
| continue; |
| } |
| |
| if (In.getArgument().isPackExpansion()) { |
| // We have a pack expansion, for which we will be substituting into |
| // the pattern. |
| SourceLocation Ellipsis; |
| Optional<unsigned> OrigNumExpansions; |
| TemplateArgumentLoc Pattern |
| = In.getPackExpansionPattern(Ellipsis, OrigNumExpansions, |
| getSema().Context); |
| |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| Optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks(Ellipsis, |
| Pattern.getSourceRange(), |
| Unexpanded, |
| Expand, |
| RetainExpansion, |
| NumExpansions)) |
| return true; |
| |
| if (!Expand) { |
| // The transform has determined that we should perform a simple |
| // transformation on the pack expansion, producing another pack |
| // expansion. |
| TemplateArgumentLoc OutPattern; |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| if (getDerived().TransformTemplateArgument(Pattern, OutPattern)) |
| return true; |
| |
| Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis, |
| NumExpansions); |
| if (Out.getArgument().isNull()) |
| return true; |
| |
| Outputs.addArgument(Out); |
| continue; |
| } |
| |
| // The transform has determined that we should perform an elementwise |
| // expansion of the pattern. Do so. |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| |
| if (getDerived().TransformTemplateArgument(Pattern, Out)) |
| return true; |
| |
| if (Out.getArgument().containsUnexpandedParameterPack()) { |
| Out = getDerived().RebuildPackExpansion(Out, Ellipsis, |
| OrigNumExpansions); |
| if (Out.getArgument().isNull()) |
| return true; |
| } |
| |
| Outputs.addArgument(Out); |
| } |
| |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| if (RetainExpansion) { |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| |
| if (getDerived().TransformTemplateArgument(Pattern, Out)) |
| return true; |
| |
| Out = getDerived().RebuildPackExpansion(Out, Ellipsis, |
| OrigNumExpansions); |
| if (Out.getArgument().isNull()) |
| return true; |
| |
| Outputs.addArgument(Out); |
| } |
| |
| continue; |
| } |
| |
| // The simple case: |
| if (getDerived().TransformTemplateArgument(In, Out)) |
| return true; |
| |
| Outputs.addArgument(Out); |
| } |
| |
| return false; |
| |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type transformation |
| //===----------------------------------------------------------------------===// |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformType(QualType T) { |
| if (getDerived().AlreadyTransformed(T)) |
| return T; |
| |
| // Temporary workaround. All of these transformations should |
| // eventually turn into transformations on TypeLocs. |
| TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T, |
| getDerived().getBaseLocation()); |
| |
| TypeSourceInfo *NewDI = getDerived().TransformType(DI); |
| |
| if (!NewDI) |
| return QualType(); |
| |
| return NewDI->getType(); |
| } |
| |
| template<typename Derived> |
| TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) { |
| // Refine the base location to the type's location. |
| TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(), |
| getDerived().getBaseEntity()); |
| if (getDerived().AlreadyTransformed(DI->getType())) |
| return DI; |
| |
| TypeLocBuilder TLB; |
| |
| TypeLoc TL = DI->getTypeLoc(); |
| TLB.reserve(TL.getFullDataSize()); |
| |
| QualType Result = getDerived().TransformType(TLB, TL); |
| if (Result.isNull()) |
| return 0; |
| |
| return TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) { |
| switch (T.getTypeLocClass()) { |
| #define ABSTRACT_TYPELOC(CLASS, PARENT) |
| #define TYPELOC(CLASS, PARENT) \ |
| case TypeLoc::CLASS: \ |
| return getDerived().Transform##CLASS##Type(TLB, \ |
| T.castAs<CLASS##TypeLoc>()); |
| #include "clang/AST/TypeLocNodes.def" |
| } |
| |
| llvm_unreachable("unhandled type loc!"); |
| } |
| |
| /// FIXME: By default, this routine adds type qualifiers only to types |
| /// that can have qualifiers, and silently suppresses those qualifiers |
| /// that are not permitted (e.g., qualifiers on reference or function |
| /// types). This is the right thing for template instantiation, but |
| /// probably not for other clients. |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB, |
| QualifiedTypeLoc T) { |
| Qualifiers Quals = T.getType().getLocalQualifiers(); |
| |
| QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| |
| // Silently suppress qualifiers if the result type can't be qualified. |
| // FIXME: this is the right thing for template instantiation, but |
| // probably not for other clients. |
| if (Result->isFunctionType() || Result->isReferenceType()) |
| return Result; |
| |
| // Suppress Objective-C lifetime qualifiers if they don't make sense for the |
| // resulting type. |
| if (Quals.hasObjCLifetime()) { |
| if (!Result->isObjCLifetimeType() && !Result->isDependentType()) |
| Quals.removeObjCLifetime(); |
| else if (Result.getObjCLifetime()) { |
| // Objective-C ARC: |
| // A lifetime qualifier applied to a substituted template parameter |
| // overrides the lifetime qualifier from the template argument. |
| const AutoType *AutoTy; |
| if (const SubstTemplateTypeParmType *SubstTypeParam |
| = dyn_cast<SubstTemplateTypeParmType>(Result)) { |
| QualType Replacement = SubstTypeParam->getReplacementType(); |
| Qualifiers Qs = Replacement.getQualifiers(); |
| Qs.removeObjCLifetime(); |
| Replacement |
| = SemaRef.Context.getQualifiedType(Replacement.getUnqualifiedType(), |
| Qs); |
| Result = SemaRef.Context.getSubstTemplateTypeParmType( |
| SubstTypeParam->getReplacedParameter(), |
| Replacement); |
| TLB.TypeWasModifiedSafely(Result); |
| } else if ((AutoTy = dyn_cast<AutoType>(Result)) && AutoTy->isDeduced()) { |
| // 'auto' types behave the same way as template parameters. |
| QualType Deduced = AutoTy->getDeducedType(); |
| Qualifiers Qs = Deduced.getQualifiers(); |
| Qs.removeObjCLifetime(); |
| Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(), |
| Qs); |
| Result = SemaRef.Context.getAutoType(Deduced); |
| TLB.TypeWasModifiedSafely(Result); |
| } else { |
| // Otherwise, complain about the addition of a qualifier to an |
| // already-qualified type. |
| SourceRange R = TLB.getTemporaryTypeLoc(Result).getSourceRange(); |
| SemaRef.Diag(R.getBegin(), diag::err_attr_objc_ownership_redundant) |
| << Result << R; |
| |
| Quals.removeObjCLifetime(); |
| } |
| } |
| } |
| if (!Quals.empty()) { |
| Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals); |
| TLB.push<QualifiedTypeLoc>(Result); |
| // No location information to preserve. |
| } |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| TypeLoc |
| TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL, |
| QualType ObjectType, |
| NamedDecl *UnqualLookup, |
| CXXScopeSpec &SS) { |
| QualType T = TL.getType(); |
| if (getDerived().AlreadyTransformed(T)) |
| return TL; |
| |
| TypeLocBuilder TLB; |
| QualType Result; |
| |
| if (isa<TemplateSpecializationType>(T)) { |
| TemplateSpecializationTypeLoc SpecTL = |
| TL.castAs<TemplateSpecializationTypeLoc>(); |
| |
| TemplateName Template = |
| getDerived().TransformTemplateName(SS, |
| SpecTL.getTypePtr()->getTemplateName(), |
| SpecTL.getTemplateNameLoc(), |
| ObjectType, UnqualLookup); |
| if (Template.isNull()) |
| return TypeLoc(); |
| |
| Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL, |
| Template); |
| } else if (isa<DependentTemplateSpecializationType>(T)) { |
| DependentTemplateSpecializationTypeLoc SpecTL = |
| TL.castAs<DependentTemplateSpecializationTypeLoc>(); |
| |
| TemplateName Template |
| = getDerived().RebuildTemplateName(SS, |
| *SpecTL.getTypePtr()->getIdentifier(), |
| SpecTL.getTemplateNameLoc(), |
| ObjectType, UnqualLookup); |
| if (Template.isNull()) |
| return TypeLoc(); |
| |
| Result = getDerived().TransformDependentTemplateSpecializationType(TLB, |
| SpecTL, |
| Template, |
| SS); |
| } else { |
| // Nothing special needs to be done for these. |
| Result = getDerived().TransformType(TLB, TL); |
| } |
| |
| if (Result.isNull()) |
| return TypeLoc(); |
| |
| return TLB.getTypeSourceInfo(SemaRef.Context, Result)->getTypeLoc(); |
| } |
| |
| template<typename Derived> |
| TypeSourceInfo * |
| TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo, |
| QualType ObjectType, |
| NamedDecl *UnqualLookup, |
| CXXScopeSpec &SS) { |
| // FIXME: Painfully copy-paste from the above! |
| |
| QualType T = TSInfo->getType(); |
| if (getDerived().AlreadyTransformed(T)) |
| return TSInfo; |
| |
| TypeLocBuilder TLB; |
| QualType Result; |
| |
| TypeLoc TL = TSInfo->getTypeLoc(); |
| if (isa<TemplateSpecializationType>(T)) { |
| TemplateSpecializationTypeLoc SpecTL = |
| TL.castAs<TemplateSpecializationTypeLoc>(); |
| |
| TemplateName Template |
| = getDerived().TransformTemplateName(SS, |
| SpecTL.getTypePtr()->getTemplateName(), |
| SpecTL.getTemplateNameLoc(), |
| ObjectType, UnqualLookup); |
| if (Template.isNull()) |
| return 0; |
| |
| Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL, |
| Template); |
| } else if (isa<DependentTemplateSpecializationType>(T)) { |
| DependentTemplateSpecializationTypeLoc SpecTL = |
| TL.castAs<DependentTemplateSpecializationTypeLoc>(); |
| |
| TemplateName Template |
| = getDerived().RebuildTemplateName(SS, |
| *SpecTL.getTypePtr()->getIdentifier(), |
| SpecTL.getTemplateNameLoc(), |
| ObjectType, UnqualLookup); |
| if (Template.isNull()) |
| return 0; |
| |
| Result = getDerived().TransformDependentTemplateSpecializationType(TLB, |
| SpecTL, |
| Template, |
| SS); |
| } else { |
| // Nothing special needs to be done for these. |
| Result = getDerived().TransformType(TLB, TL); |
| } |
| |
| if (Result.isNull()) |
| return 0; |
| |
| return TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| } |
| |
| template <class TyLoc> static inline |
| QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) { |
| TyLoc NewT = TLB.push<TyLoc>(T.getType()); |
| NewT.setNameLoc(T.getNameLoc()); |
| return T.getType(); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB, |
| BuiltinTypeLoc T) { |
| BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType()); |
| NewT.setBuiltinLoc(T.getBuiltinLoc()); |
| if (T.needsExtraLocalData()) |
| NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs(); |
| return T.getType(); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB, |
| ComplexTypeLoc T) { |
| // FIXME: recurse? |
| return TransformTypeSpecType(TLB, T); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB, |
| PointerTypeLoc TL) { |
| QualType PointeeType |
| = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (PointeeType->getAs<ObjCObjectType>()) { |
| // A dependent pointer type 'T *' has is being transformed such |
| // that an Objective-C class type is being replaced for 'T'. The |
| // resulting pointer type is an ObjCObjectPointerType, not a |
| // PointerType. |
| Result = SemaRef.Context.getObjCObjectPointerType(PointeeType); |
| |
| ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result); |
| NewT.setStarLoc(TL.getStarLoc()); |
| return Result; |
| } |
| |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != TL.getPointeeLoc().getType()) { |
| Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // Objective-C ARC can add lifetime qualifiers to the type that we're |
| // pointing to. |
| TLB.TypeWasModifiedSafely(Result->getPointeeType()); |
| |
| PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result); |
| NewT.setSigilLoc(TL.getSigilLoc()); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB, |
| BlockPointerTypeLoc TL) { |
| QualType PointeeType |
| = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != TL.getPointeeLoc().getType()) { |
| Result = getDerived().RebuildBlockPointerType(PointeeType, |
| TL.getSigilLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result); |
| NewT.setSigilLoc(TL.getSigilLoc()); |
| return Result; |
| } |
| |
| /// Transforms a reference type. Note that somewhat paradoxically we |
| /// don't care whether the type itself is an l-value type or an r-value |
| /// type; we only care if the type was *written* as an l-value type |
| /// or an r-value type. |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB, |
| ReferenceTypeLoc TL) { |
| const ReferenceType *T = TL.getTypePtr(); |
| |
| // Note that this works with the pointee-as-written. |
| QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != T->getPointeeTypeAsWritten()) { |
| Result = getDerived().RebuildReferenceType(PointeeType, |
| T->isSpelledAsLValue(), |
| TL.getSigilLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // Objective-C ARC can add lifetime qualifiers to the type that we're |
| // referring to. |
| TLB.TypeWasModifiedSafely( |
| Result->getAs<ReferenceType>()->getPointeeTypeAsWritten()); |
| |
| // r-value references can be rebuilt as l-value references. |
| ReferenceTypeLoc NewTL; |
| if (isa<LValueReferenceType>(Result)) |
| NewTL = TLB.push<LValueReferenceTypeLoc>(Result); |
| else |
| NewTL = TLB.push<RValueReferenceTypeLoc>(Result); |
| NewTL.setSigilLoc(TL.getSigilLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB, |
| LValueReferenceTypeLoc TL) { |
| return TransformReferenceType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB, |
| RValueReferenceTypeLoc TL) { |
| return TransformReferenceType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB, |
| MemberPointerTypeLoc TL) { |
| QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| TypeSourceInfo* OldClsTInfo = TL.getClassTInfo(); |
| TypeSourceInfo* NewClsTInfo = 0; |
| if (OldClsTInfo) { |
| NewClsTInfo = getDerived().TransformType(OldClsTInfo); |
| if (!NewClsTInfo) |
| return QualType(); |
| } |
| |
| const MemberPointerType *T = TL.getTypePtr(); |
| QualType OldClsType = QualType(T->getClass(), 0); |
| QualType NewClsType; |
| if (NewClsTInfo) |
| NewClsType = NewClsTInfo->getType(); |
| else { |
| NewClsType = getDerived().TransformType(OldClsType); |
| if (NewClsType.isNull()) |
| return QualType(); |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != T->getPointeeType() || |
| NewClsType != OldClsType) { |
| Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType, |
| TL.getStarLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result); |
| NewTL.setSigilLoc(TL.getSigilLoc()); |
| NewTL.setClassTInfo(NewClsTInfo); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB, |
| ConstantArrayTypeLoc TL) { |
| const ConstantArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildConstantArrayType(ElementType, |
| T->getSizeModifier(), |
| T->getSize(), |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // We might have either a ConstantArrayType or a VariableArrayType now: |
| // a ConstantArrayType is allowed to have an element type which is a |
| // VariableArrayType if the type is dependent. Fortunately, all array |
| // types have the same location layout. |
| ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| |
| Expr *Size = TL.getSizeExpr(); |
| if (Size) { |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, |
| Sema::ConstantEvaluated); |
| Size = getDerived().TransformExpr(Size).template takeAs<Expr>(); |
| Size = SemaRef.ActOnConstantExpression(Size).take(); |
| } |
| NewTL.setSizeExpr(Size); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformIncompleteArrayType( |
| TypeLocBuilder &TLB, |
| IncompleteArrayTypeLoc TL) { |
| const IncompleteArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildIncompleteArrayType(ElementType, |
| T->getSizeModifier(), |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| NewTL.setSizeExpr(0); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB, |
| VariableArrayTypeLoc TL) { |
| const VariableArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| ExprResult SizeResult |
| = getDerived().TransformExpr(T->getSizeExpr()); |
| if (SizeResult.isInvalid()) |
| return QualType(); |
| |
| Expr *Size = SizeResult.take(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType() || |
| Size != T->getSizeExpr()) { |
| Result = getDerived().RebuildVariableArrayType(ElementType, |
| T->getSizeModifier(), |
| Size, |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| VariableArrayTypeLoc NewTL = TLB.push<VariableArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| NewTL.setSizeExpr(Size); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB, |
| DependentSizedArrayTypeLoc TL) { |
| const DependentSizedArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| // Array bounds are constant expressions. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, |
| Sema::ConstantEvaluated); |
| |
| // Prefer the expression from the TypeLoc; the other may have been uniqued. |
| Expr *origSize = TL.getSizeExpr(); |
| if (!origSize) origSize = T->getSizeExpr(); |
| |
| ExprResult sizeResult |
| = getDerived().TransformExpr(origSize); |
| sizeResult = SemaRef.ActOnConstantExpression(sizeResult); |
| if (sizeResult.isInvalid()) |
| return QualType(); |
| |
| Expr *size = sizeResult.get(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType() || |
| size != origSize) { |
| Result = getDerived().RebuildDependentSizedArrayType(ElementType, |
| T->getSizeModifier(), |
| size, |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // We might have any sort of array type now, but fortunately they |
| // all have the same location layout. |
| ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| NewTL.setSizeExpr(size); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType( |
| TypeLocBuilder &TLB, |
| DependentSizedExtVectorTypeLoc TL) { |
| const DependentSizedExtVectorType *T = TL.getTypePtr(); |
| |
| // FIXME: ext vector locs should be nested |
| QualType ElementType = getDerived().TransformType(T->getElementType()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| // Vector sizes are constant expressions. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, |
| Sema::ConstantEvaluated); |
| |
| ExprResult Size = getDerived().TransformExpr(T->getSizeExpr()); |
| Size = SemaRef.ActOnConstantExpression(Size); |
| if (Size.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType() || |
| Size.get() != T->getSizeExpr()) { |
| Result = getDerived().RebuildDependentSizedExtVectorType(ElementType, |
| Size.take(), |
| T->getAttributeLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // Result might be dependent or not. |
| if (isa<DependentSizedExtVectorType>(Result)) { |
| DependentSizedExtVectorTypeLoc NewTL |
| = TLB.push<DependentSizedExtVectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } else { |
| ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB, |
| VectorTypeLoc TL) { |
| const VectorType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(T->getElementType()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(), |
| T->getVectorKind()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB, |
| ExtVectorTypeLoc TL) { |
| const VectorType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(T->getElementType()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildExtVectorType(ElementType, |
| T->getNumElements(), |
| /*FIXME*/ SourceLocation()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam( |
| ParmVarDecl *OldParm, int indexAdjustment, Optional<unsigned> NumExpansions, |
| bool ExpectParameterPack) { |
| TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo(); |
| TypeSourceInfo *NewDI = 0; |
| |
| if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) { |
| // If we're substituting into a pack expansion type and we know the |
| // length we want to expand to, just substitute for the pattern. |
| TypeLoc OldTL = OldDI->getTypeLoc(); |
| PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>(); |
| |
| TypeLocBuilder TLB; |
| TypeLoc NewTL = OldDI->getTypeLoc(); |
| TLB.reserve(NewTL.getFullDataSize()); |
| |
| QualType Result = getDerived().TransformType(TLB, |
| OldExpansionTL.getPatternLoc()); |
| if (Result.isNull()) |
| return 0; |
| |
| Result = RebuildPackExpansionType(Result, |
| OldExpansionTL.getPatternLoc().getSourceRange(), |
| OldExpansionTL.getEllipsisLoc(), |
| NumExpansions); |
| if (Result.isNull()) |
| return 0; |
| |
| PackExpansionTypeLoc NewExpansionTL |
| = TLB.push<PackExpansionTypeLoc>(Result); |
| NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc()); |
| NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| } else |
| NewDI = getDerived().TransformType(OldDI); |
| if (!NewDI) |
| return 0; |
| |
| if (NewDI == OldDI && indexAdjustment == 0) |
| return OldParm; |
| |
| ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context, |
| OldParm->getDeclContext(), |
| OldParm->getInnerLocStart(), |
| OldParm->getLocation(), |
| OldParm->getIdentifier(), |
| NewDI->getType(), |
| NewDI, |
| OldParm->getStorageClass(), |
| OldParm->getStorageClassAsWritten(), |
| /* DefArg */ NULL); |
| newParm->setScopeInfo(OldParm->getFunctionScopeDepth(), |
| OldParm->getFunctionScopeIndex() + indexAdjustment); |
| return newParm; |
| } |
| |
| template<typename Derived> |
| bool TreeTransform<Derived>:: |
| TransformFunctionTypeParams(SourceLocation Loc, |
| ParmVarDecl **Params, unsigned NumParams, |
| const QualType *ParamTypes, |
| SmallVectorImpl<QualType> &OutParamTypes, |
| SmallVectorImpl<ParmVarDecl*> *PVars) { |
| int indexAdjustment = 0; |
| |
| for (unsigned i = 0; i != NumParams; ++i) { |
| if (ParmVarDecl *OldParm = Params[i]) { |
| assert(OldParm->getFunctionScopeIndex() == i); |
| |
| Optional<unsigned> NumExpansions; |
| ParmVarDecl *NewParm = 0; |
| if (OldParm->isParameterPack()) { |
| // We have a function parameter pack that may need to be expanded. |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| |
| // Find the parameter packs that could be expanded. |
| TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc(); |
| PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>(); |
| TypeLoc Pattern = ExpansionTL.getPatternLoc(); |
| SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| assert(Unexpanded.size() > 0 && "Could not find parameter packs!"); |
| |
| // Determine whether we should expand the parameter packs. |
| bool ShouldExpand = false; |
| bool RetainExpansion = false; |
| Optional<unsigned> OrigNumExpansions = |
| ExpansionTL.getTypePtr()->getNumExpansions(); |
| NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), |
| Pattern.getSourceRange(), |
| Unexpanded, |
| ShouldExpand, |
| RetainExpansion, |
| NumExpansions)) { |
| return true; |
| } |
| |
| if (ShouldExpand) { |
| // Expand the function parameter pack into multiple, separate |
| // parameters. |
| getDerived().ExpandingFunctionParameterPack(OldParm); |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| ParmVarDecl *NewParm |
| = getDerived().TransformFunctionTypeParam(OldParm, |
| indexAdjustment++, |
| OrigNumExpansions, |
| /*ExpectParameterPack=*/false); |
| if (!NewParm) |
| return true; |
| |
| OutParamTypes.push_back(NewParm->getType()); |
| if (PVars) |
| PVars->push_back(NewParm); |
| } |
| |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| if (RetainExpansion) { |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| ParmVarDecl *NewParm |
| = getDerived().TransformFunctionTypeParam(OldParm, |
| indexAdjustment++, |
| OrigNumExpansions, |
| /*ExpectParameterPack=*/false); |
| if (!NewParm) |
| return true; |
| |
| OutParamTypes.push_back(NewParm->getType()); |
| if (PVars) |
| PVars->push_back(NewParm); |
| } |
| |
| // The next parameter should have the same adjustment as the |
| // last thing we pushed, but we post-incremented indexAdjustment |
| // on every push. Also, if we push nothing, the adjustment should |
| // go down by one. |
| indexAdjustment--; |
| |
| // We're done with the pack expansion. |
| continue; |
| } |
| |
| // We'll substitute the parameter now without expanding the pack |
| // expansion. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| NewParm = getDerived().TransformFunctionTypeParam(OldParm, |
| indexAdjustment, |
| NumExpansions, |
| /*ExpectParameterPack=*/true); |
| } else { |
| NewParm = getDerived().TransformFunctionTypeParam( |
| OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false); |
| } |
| |
| if (!NewParm) |
| return true; |
| |
| OutParamTypes.push_back(NewParm->getType()); |
| if (PVars) |
| PVars->push_back(NewParm); |
| continue; |
| } |
| |
| // Deal with the possibility that we don't have a parameter |
| // declaration for this parameter. |
| QualType OldType = ParamTypes[i]; |
| bool IsPackExpansion = false; |
| Optional<unsigned> NumExpansions; |
| QualType NewType; |
| if (const PackExpansionType *Expansion |
| = dyn_cast<PackExpansionType>(OldType)) { |
| // We have a function parameter pack that may need to be expanded. |
| QualType Pattern = Expansion->getPattern(); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| |
| // Determine whether we should expand the parameter packs. |
| bool ShouldExpand = false; |
| bool RetainExpansion = false; |
| if (getDerived().TryExpandParameterPacks(Loc, SourceRange(), |
| Unexpanded, |
| ShouldExpand, |
| RetainExpansion, |
| NumExpansions)) { |
| return true; |
| } |
| |
| if (ShouldExpand) { |
| // Expand the function parameter pack into multiple, separate |
| // parameters. |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| QualType NewType = getDerived().TransformType(Pattern); |
| if (NewType.isNull()) |
| return true; |
| |
| OutParamTypes.push_back(NewType); |
| if (PVars) |
| PVars->push_back(0); |
| } |
| |
| // We're done with the pack expansion. |
| continue; |
| } |
| |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| if (RetainExpansion) { |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| QualType NewType = getDerived().TransformType(Pattern); |
| if (NewType.isNull()) |
| return true; |
| |
| OutParamTypes.push_back(NewType); |
| if (PVars) |
| PVars->push_back(0); |
| } |
| |
| // We'll substitute the parameter now without expanding the pack |
| // expansion. |
| OldType = Expansion->getPattern(); |
| IsPackExpansion = true; |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| NewType = getDerived().TransformType(OldType); |
| } else { |
| NewType = getDerived().TransformType(OldType); |
| } |
| |
| if (NewType.isNull()) |
| return true; |
| |
| if (IsPackExpansion) |
| NewType = getSema().Context.getPackExpansionType(NewType, |
| NumExpansions); |
| |
| OutParamTypes.push_back(NewType); |
| if (PVars) |
| PVars->push_back(0); |
| } |
| |
| #ifndef NDEBUG |
| if (PVars) { |
| for (unsigned i = 0, e = PVars->size(); i != e; ++i) |
| if (ParmVarDecl *parm = (*PVars)[i]) |
| assert(parm->getFunctionScopeIndex() == i); |
| } |
| #endif |
| |
| return false; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB, |
| FunctionProtoTypeLoc TL) { |
| return getDerived().TransformFunctionProtoType(TLB, TL, 0, 0); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB, |
| FunctionProtoTypeLoc TL, |
| CXXRecordDecl *ThisContext, |
| unsigned ThisTypeQuals) { |
| // Transform the parameters and return type. |
| // |
| // We are required to instantiate the params and return type in source order. |
| // When the function has a trailing return type, we instantiate the |
| // parameters before the return type, since the return type can then refer |
| // to the parameters themselves (via decltype, sizeof, etc.). |
| // |
| SmallVector<QualType, 4> ParamTypes; |
| SmallVector<ParmVarDecl*, 4> ParamDecls; |
| const FunctionProtoType *T = TL.getTypePtr(); |
| |
| QualType ResultType; |
| |
| if (T->hasTrailingReturn()) { |
| if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(), |
| TL.getParmArray(), |
| TL.getNumArgs(), |
| TL.getTypePtr()->arg_type_begin(), |
| ParamTypes, &ParamDecls)) |
| return QualType(); |
| |
| { |
| // C++11 [expr.prim.general]p3: |
| // If a declaration declares a member function or member function |
| // template of a class X, the expression this is a prvalue of type |
| // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq |
| // and the end of the function-definition, member-declarator, or |
| // declarator. |
| Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals); |
| |
| ResultType = getDerived().TransformType(TLB, TL.getResultLoc()); |
| if (ResultType.isNull()) |
| return QualType(); |
| } |
| } |
| else { |
| ResultType = getDerived().TransformType(TLB, TL.getResultLoc()); |
| if (ResultType.isNull()) |
| return QualType(); |
| |
| if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(), |
| TL.getParmArray(), |
| TL.getNumArgs(), |
| TL.getTypePtr()->arg_type_begin(), |
| ParamTypes, &ParamDecls)) |
| return QualType(); |
| } |
| |
| // FIXME: Need to transform the exception-specification too. |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ResultType != T->getResultType() || |
| T->getNumArgs() != ParamTypes.size() || |
| !std::equal(T->arg_type_begin(), T->arg_type_end(), ParamTypes.begin())) { |
| Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, |
| T->getExtProtoInfo()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); |
| NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); |
| for (unsigned i = 0, e = NewTL.getNumArgs(); i != e; ++i) |
| NewTL.setArg(i, ParamDecls[i]); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformFunctionNoProtoType( |
| TypeLocBuilder &TLB, |
| FunctionNoProtoTypeLoc TL) { |
| const FunctionNoProtoType *T = TL.getTypePtr(); |
| QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc()); |
| if (ResultType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ResultType != T->getResultType()) |
| Result = getDerived().RebuildFunctionNoProtoType(ResultType); |
| |
| FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result); |
| NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> QualType |
| TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB, |
| UnresolvedUsingTypeLoc TL) { |
| const UnresolvedUsingType *T = TL.getTypePtr(); |
| Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()); |
| if (!D) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || D != T->getDecl()) { |
| Result = getDerived().RebuildUnresolvedUsingType(D); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // We might get an arbitrary type spec type back. We should at |
| // least always get a type spec type, though. |
| TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB, |
| TypedefTypeLoc TL) { |
| const TypedefType *T = TL.getTypePtr(); |
| TypedefNameDecl *Typedef |
| = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(), |
| T->getDecl())); |
| if (!Typedef) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Typedef != T->getDecl()) { |
| Result = getDerived().RebuildTypedefType(Typedef); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB, |
| TypeOfExprTypeLoc TL) { |
| // typeof expressions are not potentially evaluated contexts |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, |
| Sema::ReuseLambdaContextDecl); |
| |
| ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr()); |
| if (E.isInvalid()) |
| return QualType(); |
| |
| E = SemaRef.HandleExprEvaluationContextForTypeof(E.get()); |
| if (E.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| E.get() != TL.getUnderlyingExpr()) { |
| Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| else E.take(); |
| |
| TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result); |
| NewTL.setTypeofLoc(TL.getTypeofLoc()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB, |
| TypeOfTypeLoc TL) { |
| TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo(); |
| TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI); |
| if (!New_Under_TI) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) { |
| Result = getDerived().RebuildTypeOfType(New_Under_TI->getType()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result); |
| NewTL.setTypeofLoc(TL.getTypeofLoc()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| NewTL.setUnderlyingTInfo(New_Under_TI); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB, |
| DecltypeTypeLoc TL) { |
| const DecltypeType *T = TL.getTypePtr(); |
| |
| // decltype expressions are not potentially evaluated contexts |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, 0, |
| /*IsDecltype=*/ true); |
| |
| ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr()); |
| if (E.isInvalid()) |
| return QualType(); |
| |
| E = getSema().ActOnDecltypeExpression(E.take()); |
| if (E.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| E.get() != T->getUnderlyingExpr()) { |
| Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| else E.take(); |
| |
| DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformUnaryTransformType( |
| TypeLocBuilder &TLB, |
| UnaryTransformTypeLoc TL) { |
| QualType Result = TL.getType(); |
| if (Result->isDependentType()) { |
| const UnaryTransformType *T = TL.getTypePtr(); |
| QualType NewBase = |
| getDerived().TransformType(TL.getUnderlyingTInfo())->getType(); |
| Result = getDerived().RebuildUnaryTransformType(NewBase, |
| T->getUTTKind(), |
| TL.getKWLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result); |
| NewTL.setKWLoc(TL.getKWLoc()); |
| NewTL.setParensRange(TL.getParensRange()); |
| NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo()); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB, |
| AutoTypeLoc TL) { |
| const AutoType *T = TL.getTypePtr(); |
| QualType OldDeduced = T->getDeducedType(); |
| QualType NewDeduced; |
| if (!OldDeduced.isNull()) { |
| NewDeduced = getDerived().TransformType(OldDeduced); |
| if (NewDeduced.isNull()) |
| return QualType(); |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced) { |
| Result = getDerived().RebuildAutoType(NewDeduced); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB, |
| RecordTypeLoc TL) { |
| const RecordType *T = TL.getTypePtr(); |
| RecordDecl *Record |
| = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(), |
| T->getDecl())); |
| if (!Record) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Record != T->getDecl()) { |
| Result = getDerived().RebuildRecordType(Record); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB, |
| EnumTypeLoc TL) { |
| const EnumType *T = TL.getTypePtr(); |
| EnumDecl *Enum |
| = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(), |
| T->getDecl())); |
| if (!Enum) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Enum != T->getDecl()) { |
| Result = getDerived().RebuildEnumType(Enum); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformInjectedClassNameType( |
| TypeLocBuilder &TLB, |
| InjectedClassNameTypeLoc TL) { |
| Decl *D = getDerived().TransformDecl(TL.getNameLoc(), |
| TL.getTypePtr()->getDecl()); |
| if (!D) return QualType(); |
| |
| QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D)); |
| TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc()); |
| return T; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTemplateTypeParmType( |
| TypeLocBuilder &TLB, |
| TemplateTypeParmTypeLoc TL) { |
| return TransformTypeSpecType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType( |
| TypeLocBuilder &TLB, |
| SubstTemplateTypeParmTypeLoc TL) { |
| const SubstTemplateTypeParmType *T = TL.getTypePtr(); |
| |
| // Substitute into the replacement type, which itself might involve something |
| // that needs to be transformed. This only tends to occur with default |
| // template arguments of template template parameters. |
| TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName()); |
| QualType Replacement = getDerived().TransformType(T->getReplacementType()); |
| if (Replacement.isNull()) |
| return QualType(); |
| |
| // Always canonicalize the replacement type. |
| Replacement = SemaRef.Context.getCanonicalType(Replacement); |
| QualType Result |
| = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(), |
| Replacement); |
| |
| // Propagate type-source information. |
| SubstTemplateTypeParmTypeLoc NewTL |
| = TLB.push<SubstTemplateTypeParmTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType( |
| TypeLocBuilder &TLB, |
| SubstTemplateTypeParmPackTypeLoc TL) { |
| return TransformTypeSpecType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTemplateSpecializationType( |
| TypeLocBuilder &TLB, |
| TemplateSpecializationTypeLoc TL) { |
| const TemplateSpecializationType *T = TL.getTypePtr(); |
| |
| // The nested-name-specifier never matters in a TemplateSpecializationType, |
| // because we can't have a dependent nested-name-specifier anyway. |
| CXXScopeSpec SS; |
| TemplateName Template |
| = getDerived().TransformTemplateName(SS, T->getTemplateName(), |
| TL.getTemplateNameLoc()); |
| if (Template.isNull()) |
| return QualType(); |
| |
| return getDerived().TransformTemplateSpecializationType(TLB, TL, Template); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB, |
| AtomicTypeLoc TL) { |
| QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc()); |
| if (ValueType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ValueType != TL.getValueLoc().getType()) { |
| Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result); |
| NewTL.setKWLoc(TL.getKWLoc()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| |
| return Result; |
| } |
| |
| /// \brief Simple iterator that traverses the template arguments in a |
| /// container that provides a \c getArgLoc() member function. |
| /// |
| /// This iterator is intended to be used with the iterator form of |
| /// \c TreeTransform<Derived>::TransformTemplateArguments(). |
| template<typename ArgLocContainer> |
| class TemplateArgumentLocContainerIterator { |
| ArgLocContainer *Container; |
| unsigned Index; |
| |
| public: |
| typedef TemplateArgumentLoc value_type; |
| typedef TemplateArgumentLoc reference; |
| typedef int difference_type; |
| typedef std::input_iterator_tag iterator_category; |
| |
| class pointer { |
| TemplateArgumentLoc Arg; |
| |
| public: |
| explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } |
| |
| const TemplateArgumentLoc *operator->() const { |
| return &Arg; |
| } |
| }; |
| |
| |
| TemplateArgumentLocContainerIterator() {} |
| |
| TemplateArgumentLocContainerIterator(ArgLocContainer &Container, |
| unsigned Index) |
| : Container(&Container), Index(Index) { } |
| |
| TemplateArgumentLocContainerIterator &operator++() { |
| ++Index; |
| return *this; |
| } |
| |
| TemplateArgumentLocContainerIterator operator++(int) { |
| TemplateArgumentLocContainerIterator Old(*this); |
| ++(*this); |
| return Old; |
| } |
| |
| TemplateArgumentLoc operator*() const { |
| return Container->getArgLoc(Index); |
| } |
| |
| pointer operator->() const { |
| return pointer(Container->getArgLoc(Index)); |
| } |
| |
| friend bool operator==(const TemplateArgumentLocContainerIterator &X, |
| const TemplateArgumentLocContainerIterator &Y) { |
| return X.Container == Y.Container && X.Index == Y.Index; |
| } |
| |
| friend bool operator!=(const TemplateArgumentLocContainerIterator &X, |
| const TemplateArgumentLocContainerIterator &Y) { |
| return !(X == Y); |
| } |
| }; |
| |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformTemplateSpecializationType( |
| TypeLocBuilder &TLB, |
| TemplateSpecializationTypeLoc TL, |
| TemplateName Template) { |
| TemplateArgumentListInfo NewTemplateArgs; |
| NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc> |
| ArgIterator; |
| if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), |
| ArgIterator(TL, TL.getNumArgs()), |
| NewTemplateArgs)) |
| return QualType(); |
| |
| // FIXME: maybe don't rebuild if all the template arguments are the same. |
| |
| QualType Result = |
| getDerived().RebuildTemplateSpecializationType(Template, |
| TL.getTemplateNameLoc(), |
| NewTemplateArgs); |
| |
| if (!Result.isNull()) { |
| // Specializations of template template parameters are represented as |
| // TemplateSpecializationTypes, and substitution of type alias templates |
| // within a dependent context can transform them into |
| // DependentTemplateSpecializationTypes. |
| if (isa<DependentTemplateSpecializationType>(Result)) { |
| DependentTemplateSpecializationTypeLoc NewTL |
| = TLB.push<DependentTemplateSpecializationTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(SourceLocation()); |
| NewTL.setQualifierLoc(NestedNameSpecifierLoc()); |
| NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| return Result; |
| } |
| |
| TemplateSpecializationTypeLoc NewTL |
| = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| } |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType( |
| TypeLocBuilder &TLB, |
| DependentTemplateSpecializationTypeLoc TL, |
| TemplateName Template, |
| CXXScopeSpec &SS) { |
| TemplateArgumentListInfo NewTemplateArgs; |
| NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| typedef TemplateArgumentLocContainerIterator< |
| DependentTemplateSpecializationTypeLoc> ArgIterator; |
| if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), |
| ArgIterator(TL, TL.getNumArgs()), |
| NewTemplateArgs)) |
| return QualType(); |
| |
| // FIXME: maybe don't rebuild if all the template arguments are the same. |
| |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
| QualType Result |
| = getSema().Context.getDependentTemplateSpecializationType( |
| TL.getTypePtr()->getKeyword(), |
| DTN->getQualifier(), |
| DTN->getIdentifier(), |
| NewTemplateArgs); |
| |
| DependentTemplateSpecializationTypeLoc NewTL |
| = TLB.push<DependentTemplateSpecializationTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context)); |
| NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| return Result; |
| } |
| |
| QualType Result |
| = getDerived().RebuildTemplateSpecializationType(Template, |
| TL.getTemplateNameLoc(), |
| NewTemplateArgs); |
| |
| if (!Result.isNull()) { |
| /// FIXME: Wrap this in an elaborated-type-specifier? |
| TemplateSpecializationTypeLoc NewTL |
| = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| } |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB, |
| ElaboratedTypeLoc TL) { |
| const ElaboratedType *T = TL.getTypePtr(); |
| |
| NestedNameSpecifierLoc QualifierLoc; |
| // NOTE: the qualifier in an ElaboratedType is optional. |
| if (TL.getQualifierLoc()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); |
| if (!QualifierLoc) |
| return QualType(); |
| } |
| |
| QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc()); |
| if (NamedT.isNull()) |
| return QualType(); |
| |
| // C++0x [dcl.type.elab]p2: |
| // If the identifier resolves to a typedef-name or the simple-template-id |
| // resolves to an alias template specialization, the |
| // elaborated-type-specifier is ill-formed. |
| if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) { |
| if (const TemplateSpecializationType *TST = |
| NamedT->getAs<TemplateSpecializationType>()) { |
| TemplateName Template = TST->getTemplateName(); |
| if (TypeAliasTemplateDecl *TAT = |
| dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { |
| SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(), |
| diag::err_tag_reference_non_tag) << 4; |
| SemaRef.Diag(TAT->getLocation(), diag::note_declared_at); |
| } |
| } |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| QualifierLoc != TL.getQualifierLoc() || |
| NamedT != T->getNamedType()) { |
| Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(), |
| T->getKeyword(), |
| QualifierLoc, NamedT); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| NewTL.setQualifierLoc(QualifierLoc); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformAttributedType( |
| TypeLocBuilder &TLB, |
| AttributedTypeLoc TL) { |
| const AttributedType *oldType = TL.getTypePtr(); |
| QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc()); |
| if (modifiedType.isNull()) |
| return QualType(); |
| |
| QualType result = TL.getType(); |
| |
| // FIXME: dependent operand expressions? |
| if (getDerived().AlwaysRebuild() || |
| modifiedType != oldType->getModifiedType()) { |
| // TODO: this is really lame; we should really be rebuilding the |
| // equivalent type from first principles. |
| QualType equivalentType |
| = getDerived().TransformType(oldType->getEquivalentType()); |
| if (equivalentType.isNull()) |
| return QualType(); |
| result = SemaRef.Context.getAttributedType(oldType->getAttrKind(), |
| modifiedType, |
| equivalentType); |
| } |
| |
| AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result); |
| newTL.setAttrNameLoc(TL.getAttrNameLoc()); |
| if (TL.hasAttrOperand()) |
| newTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); |
| if (TL.hasAttrExprOperand()) |
| newTL.setAttrExprOperand(TL.getAttrExprOperand()); |
| else if (TL.hasAttrEnumOperand()) |
| newTL.setAttrEnumOperandLoc(TL.getAttrEnumOperandLoc()); |
| |
| return result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB, |
| ParenTypeLoc TL) { |
| QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc()); |
| if (Inner.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Inner != TL.getInnerLoc().getType()) { |
| Result = getDerived().RebuildParenType(Inner); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentNameType(TypeLocBuilder &TLB, |
| DependentNameTypeLoc TL) { |
| const DependentNameType *T = TL.getTypePtr(); |
| |
| NestedNameSpecifierLoc QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); |
| if (!QualifierLoc) |
| return QualType(); |
| |
| QualType Result |
| = getDerived().RebuildDependentNameType(T->getKeyword(), |
| TL.getElaboratedKeywordLoc(), |
| QualifierLoc, |
| T->getIdentifier(), |
| TL.getNameLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| |
| if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) { |
| QualType NamedT = ElabT->getNamedType(); |
| TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc()); |
| |
| ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| NewTL.setQualifierLoc(QualifierLoc); |
| } else { |
| DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| NewTL.setQualifierLoc(QualifierLoc); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>:: |
| TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, |
| DependentTemplateSpecializationTypeLoc TL) { |
| NestedNameSpecifierLoc QualifierLoc; |
| if (TL.getQualifierLoc()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); |
| if (!QualifierLoc) |
| return QualType(); |
| } |
| |
| return getDerived() |
| .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>:: |
| TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, |
| DependentTemplateSpecializationTypeLoc TL, |
| NestedNameSpecifierLoc QualifierLoc) { |
| const DependentTemplateSpecializationType *T = TL.getTypePtr(); |
| |
| TemplateArgumentListInfo NewTemplateArgs; |
| NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| |
| typedef TemplateArgumentLocContainerIterator< |
| DependentTemplateSpecializationTypeLoc> ArgIterator; |
| if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), |
| ArgIterator(TL, TL.getNumArgs()), |
| NewTemplateArgs)) |
| return QualType(); |
| |
| QualType Result |
| = getDerived().RebuildDependentTemplateSpecializationType(T->getKeyword(), |
| QualifierLoc, |
| T->getIdentifier(), |
| TL.getTemplateNameLoc(), |
| NewTemplateArgs); |
| if (Result.isNull()) |
| return QualType(); |
| |
| if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) { |
| QualType NamedT = ElabT->getNamedType(); |
| |
| // Copy information relevant to the template specialization. |
| TemplateSpecializationTypeLoc NamedTL |
| = TLB.push<TemplateSpecializationTypeLoc>(NamedT); |
| NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NamedTL.setLAngleLoc(TL.getLAngleLoc()); |
| NamedTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) |
| NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); |
| |
| // Copy information relevant to the elaborated type. |
| ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| NewTL.setQualifierLoc(QualifierLoc); |
| } else if (isa<DependentTemplateSpecializationType>(Result)) { |
| DependentTemplateSpecializationTypeLoc SpecTL |
| = TLB.push<DependentTemplateSpecializationTypeLoc>(Result); |
| SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| SpecTL.setQualifierLoc(QualifierLoc); |
| SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| SpecTL.setLAngleLoc(TL.getLAngleLoc()); |
| SpecTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) |
| SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); |
| } else { |
| TemplateSpecializationTypeLoc SpecTL |
| = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| SpecTL.setLAngleLoc(TL.getLAngleLoc()); |
| SpecTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) |
| SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); |
| } |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB, |
| PackExpansionTypeLoc TL) { |
| QualType Pattern |
| = getDerived().TransformType(TLB, TL.getPatternLoc()); |
| if (Pattern.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Pattern != TL.getPatternLoc().getType()) { |
| Result = getDerived().RebuildPackExpansionType(Pattern, |
| TL.getPatternLoc().getSourceRange(), |
| TL.getEllipsisLoc(), |
| TL.getTypePtr()->getNumExpansions()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result); |
| NewT.setEllipsisLoc(TL.getEllipsisLoc()); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB, |
| ObjCInterfaceTypeLoc TL) { |
| // ObjCInterfaceType is never dependent. |
| TLB.pushFullCopy(TL); |
| return TL.getType(); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB, |
| ObjCObjectTypeLoc TL) { |
| // ObjCObjectType is never dependent. |
| TLB.pushFullCopy(TL); |
| return TL.getType(); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB, |
| ObjCObjectPointerTypeLoc TL) { |
| // ObjCObjectPointerType is never dependent. |
| TLB.pushFullCopy(TL); |
| return TL.getType(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Statement transformation |
| //===----------------------------------------------------------------------===// |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformNullStmt(NullStmt *S) { |
| return SemaRef.Owned(S); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) { |
| return getDerived().TransformCompoundStmt(S, false); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S, |
| bool IsStmtExpr) { |
| Sema::CompoundScopeRAII CompoundScope(getSema()); |
| |
| bool SubStmtInvalid = false; |
| bool SubStmtChanged = false; |
| SmallVector<Stmt*, 8> Statements; |
| for (CompoundStmt::body_iterator B = S->body_begin(), BEnd = S->body_end(); |
| B != BEnd; ++B) { |
| StmtResult Result = getDerived().TransformStmt(*B); |
| if (Result.isInvalid()) { |
| // Immediately fail if this was a DeclStmt, since it's very |
| // likely that this will cause problems for future statements. |
| if (isa<DeclStmt>(*B)) |
| return StmtError(); |
| |
| // Otherwise, just keep processing substatements and fail later. |
| SubStmtInvalid = true; |
| continue; |
| } |
| |
| SubStmtChanged = SubStmtChanged || Result.get() != *B; |
| Statements.push_back(Result.takeAs<Stmt>()); |
| } |
| |
| if (SubStmtInvalid) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| !SubStmtChanged) |
| return SemaRef.Owned(S); |
| |
| return getDerived().RebuildCompoundStmt(S->getLBracLoc(), |
| Statements, |
| S->getRBracLoc(), |
| IsStmtExpr); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) { |
| ExprResult LHS, RHS; |
| { |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, |
| Sema::ConstantEvaluated); |
| |
| // Transform the left-hand case value. |
| LHS = getDerived().TransformExpr(S->getLHS()); |
| LHS = SemaRef.ActOnConstantExpression(LHS); |
| if (LHS.isInvalid()) |
| return StmtError(); |
| |
| // Transform the right-hand case value (for the GNU case-range extension). |
| RHS = getDerived().TransformExpr(S->getRHS()); |
| RHS = SemaRef.ActOnConstantExpression(RHS); |
| if (RHS.isInvalid()) |
| return StmtError(); |
| } |
| |
| // Build the case statement. |
| // Case statements are always rebuilt so that they will attached to their |
| // transformed switch statement. |
| StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(), |
| LHS.get(), |
| S->getEllipsisLoc(), |
| RHS.get(), |
| S->getColonLoc()); |
| if (Case.isInvalid()) |
| return StmtError(); |
| |
| // Transform the statement following the case |
| StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return StmtError(); |
| |
| // Attach the body to the case statement |
| return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) { |
| // Transform the statement following the default case |
| StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return StmtError(); |
| |
| // Default statements are always rebuilt |
| return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(), |
| SubStmt.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) { |
| StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return StmtError(); |
| |
| Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(), |
| S->getDecl()); |
| if (!LD) |
| return StmtError(); |
| |
| |
| // FIXME: Pass the real colon location in. |
| return getDerived().RebuildLabelStmt(S->getIdentLoc(), |
| cast<LabelDecl>(LD), SourceLocation(), |
| SubStmt.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S) { |
| StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return StmtError(); |
| |
| // TODO: transform attributes |
| if (SubStmt.get() == S->getSubStmt() /* && attrs are the same */) |
| return S; |
| |
| return getDerived().RebuildAttributedStmt(S->getAttrLoc(), |
| S->getAttrs(), |
| SubStmt.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformIfStmt(IfStmt *S) { |
| // Transform the condition |
| ExprResult Cond; |
| VarDecl *ConditionVar = 0; |
| if (S->getConditionVariable()) { |
| ConditionVar |
| = cast_or_null<VarDecl>( |
| getDerived().TransformDefinition( |
| S->getConditionVariable()->getLocation(), |
| S->getConditionVariable())); |
| if (!ConditionVar) |
| return StmtError(); |
| } else { |
| Cond = getDerived().TransformExpr(S->getCond()); |
| |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| // Convert the condition to a boolean value. |
| if (S->getCond()) { |
| ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getIfLoc(), |
| Cond.get()); |
| if (CondE.isInvalid()) |
| return StmtError(); |
| |
| Cond = CondE.get(); |
| } |
| } |
| |
| Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take())); |
| if (!S->getConditionVariable() && S->getCond() && !FullCond.get()) |
| return StmtError(); |
| |
| // Transform the "then" branch. |
| StmtResult Then = getDerived().TransformStmt(S->getThen()); |
| if (Then.isInvalid()) |
| return StmtError(); |
| |
| // Transform the "else" branch. |
| StmtResult Else = getDerived().TransformStmt(S->getElse()); |
| if (Else.isInvalid()) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| FullCond.get() == S->getCond() && |
| ConditionVar == S->getConditionVariable() && |
| Then.get() == S->getThen() && |
| Else.get() == S->getElse()) |
| return SemaRef.Owned(S); |
| |
| return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar, |
| Then.get(), |
| S->getElseLoc(), Else.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) { |
| // Transform the condition. |
| ExprResult Cond; |
| VarDecl *ConditionVar = 0; |
| if (S->getConditionVariable()) { |
| ConditionVar |
| = cast_or_null<VarDecl>( |
| getDerived().TransformDefinition( |
| S->getConditionVariable()->getLocation(), |
| S->getConditionVariable())); |
| if (!ConditionVar) |
| return StmtError(); |
| } else { |
| Cond = getDerived().TransformExpr(S->getCond()); |
| |
| if (Cond.isInvalid()) |
| return StmtError(); |
| } |
| |
| // Rebuild the switch statement. |
| StmtResult Switch |
| = getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), Cond.get(), |
| ConditionVar); |
| if (Switch.isInvalid()) |
| return StmtError(); |
| |
| // Transform the body of the switch statement. |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // Complete the switch statement. |
| return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(), |
| Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) { |
| // Transform the condition |
| ExprResult Cond; |
| VarDecl *ConditionVar = 0; |
| if (S->getConditionVariable()) { |
| ConditionVar |
| = cast_or_null<VarDecl>( |
| getDerived().TransformDefinition( |
| S->getConditionVariable()->getLocation(), |
| S->getConditionVariable())); |
| if (!ConditionVar) |
| return StmtError(); |
| } else { |
| Cond = getDerived().TransformExpr(S->getCond()); |
| |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| if (S->getCond()) { |
| // Convert the condition to a boolean value. |
| ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getWhileLoc(), |
| Cond.get()); |
| if (CondE.isInvalid()) |
| return StmtError(); |
| Cond = CondE; |
| } |
| } |
| |
| Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take())); |
| if (!S->getConditionVariable() && S->getCond() && !FullCond.get()) |
| return StmtError(); |
| |
| // Transform the body |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| FullCond.get() == S->getCond() && |
| ConditionVar == S->getConditionVariable() && |
| Body.get() == S->getBody()) |
| return Owned(S); |
| |
| return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond, |
| ConditionVar, Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformDoStmt(DoStmt *S) { |
| // Transform the body |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // Transform the condition |
| ExprResult Cond = getDerived().TransformExpr(S->getCond()); |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Cond.get() == S->getCond() && |
| Body.get() == S->getBody()) |
| return SemaRef.Owned(S); |
| |
| return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(), |
| /*FIXME:*/S->getWhileLoc(), Cond.get(), |
| S->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformForStmt(ForStmt *S) { |
| // Transform the initialization statement |
| StmtResult Init = getDerived().TransformStmt(S->getInit()); |
| if (Init.isInvalid()) |
| return StmtError(); |
| |
| // Transform the condition |
| ExprResult Cond; |
| VarDecl *ConditionVar = 0; |
| if (S->getConditionVariable()) { |
| ConditionVar |
| = cast_or_null<VarDecl>( |
| getDerived().TransformDefinition( |
| S->getConditionVariable()->getLocation(), |
| S->getConditionVariable())); |
| if (!ConditionVar) |
| return StmtError(); |
| } else { |
| Cond = getDerived().TransformExpr(S->getCond()); |
| |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| if (S->getCond()) { |
| // Convert the condition to a boolean value. |
| ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getForLoc(), |
| Cond.get()); |
| if (CondE.isInvalid()) |
| return StmtError(); |
| |
| Cond = CondE.get(); |
| } |
| } |
| |
| Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take())); |
| if (!S->getConditionVariable() && S->getCond() && !FullCond.get()) |
| return StmtError(); |
| |
| // Transform the increment |
| ExprResult Inc = getDerived().TransformExpr(S->getInc()); |
| if (Inc.isInvalid()) |
| return StmtError(); |
| |
| Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get())); |
| if (S->getInc() && !FullInc.get()) |
| return StmtError(); |
| |
| // Transform the body |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Init.get() == S->getInit() && |
| FullCond.get() == S->getCond() && |
| Inc.get() == S->getInc() && |
| Body.get() == S->getBody()) |
| return SemaRef.Owned(S); |
| |
| return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(), |
| Init.get(), FullCond, ConditionVar, |
| FullInc, S->getRParenLoc(), Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) { |
| Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(), |
| S->getLabel()); |
| if (!LD) |
| return StmtError(); |
| |
| // Goto statements must always be rebuilt, to resolve the label. |
| return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(), |
| cast<LabelDecl>(LD)); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) { |
| ExprResult Target = getDerived().TransformExpr(S->getTarget()); |
| if (Target.isInvalid()) |
| return StmtError(); |
| Target = SemaRef.MaybeCreateExprWithCleanups(Target.take()); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Target.get() == S->getTarget()) |
| return SemaRef.Owned(S); |
| |
| return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(), |
| Target.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) { |
| return SemaRef.Owned(S); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) { |
| return SemaRef.Owned(S); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) { |
| ExprResult Result = getDerived().TransformExpr(S->getRetValue()); |
| if (Result.isInvalid()) |
| return StmtError(); |
| |
| // FIXME: We always rebuild the return statement because there is no way |
| // to tell whether the return type of the function has changed. |
| return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) { |
| bool DeclChanged = false; |
| SmallVector<Decl *, 4> Decls; |
| for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); |
| D != DEnd; ++D) { |
| Decl *Transformed = getDerived().TransformDefinition((*D)->getLocation(), |
| *D); |
| if (!Transformed) |
| return StmtError(); |
| |
| if (Transformed != *D) |
| DeclChanged = true; |
| |
| Decls.push_back(Transformed); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && !DeclChanged) |
| return SemaRef.Owned(S); |
| |
| return getDerived().RebuildDeclStmt(Decls.data(), Decls.size(), |
| S->getStartLoc(), S->getEndLoc()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) { |
| |
| SmallVector<Expr*, 8> Constraints; |
| SmallVector<Expr*, 8> Exprs; |
| SmallVector<IdentifierInfo *, 4> Names; |
| |
| ExprResult AsmString; |
| SmallVector<Expr*, 8> Clobbers; |
| |
| bool ExprsChanged = false; |
| |
| // Go through the outputs. |
| for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) { |
| Names.push_back(S->getOutputIdentifier(I)); |
| |
| // No need to transform the constraint literal. |
| Constraints.push_back(S->getOutputConstraintLiteral(I)); |
| |
| // Transform the output expr. |
| Expr *OutputExpr = S->getOutputExpr(I); |
| ExprResult Result = getDerived().TransformExpr(OutputExpr); |
| if (Result.isInvalid()) |
| return StmtError(); |
| |
| ExprsChanged |= Result.get() != OutputExpr; |
| |
| Exprs.push_back(Result.get()); |
| } |
| |
| // Go through the inputs. |
| for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) { |
| Names.push_back(S->getInputIdentifier(I)); |
| |
| // No need to transform the constraint literal. |
| Constraints.push_back(S->getInputConstraintLiteral(I)); |
| |
| // Transform the input expr. |
| Expr *InputExpr = S->getInputExpr(I); |
| ExprResult Result = getDerived().TransformExpr(InputExpr); |
| if (Result.isInvalid()) |
| return StmtError(); |
| |
| ExprsChanged |= Result.get() != InputExpr; |
| |
| Exprs.push_back(Result.get()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && !ExprsChanged) |
| return SemaRef.Owned(S); |
| |
| // Go through the clobbers. |
| for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I) |
| Clobbers.push_back(S->getClobberStringLiteral(I)); |
| |
| // No need to transform the asm string literal. |
| AsmString = SemaRef.Owned(S->getAsmString()); |
| return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(), |
| S->isVolatile(), S->getNumOutputs(), |
| S->getNumInputs(), Names.data(), |
| Constraints, Exprs, AsmString.get(), |
| Clobbers, S->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) { |
| ArrayRef<Token> AsmToks = |
| llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks()); |
| |
| return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(), |
| AsmToks, S->getEndLoc()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) { |
| // Transform the body of the @try. |
| StmtResult TryBody = getDerived().TransformStmt(S->getTryBody()); |
| if (TryBody.isInvalid()) |
| return StmtError(); |
| |
| // Transform the @catch statements (if present). |
| bool AnyCatchChanged = false; |
| SmallVector<Stmt*, 8> CatchStmts; |
| for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) { |
| StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I)); |
| if (Catch.isInvalid()) |
| return StmtError(); |
| if (Catch.get() != S->getCatchStmt(I)) |
| AnyCatchChanged = true; |
| CatchStmts.push_back(Catch.release()); |
| } |
| |
| // Transform the @finally statement (if present). |
| StmtResult Finally; |
| if (S->getFinallyStmt()) { |
| Finally = getDerived().TransformStmt(S->getFinallyStmt()); |
| if (Finally.isInvalid()) |
| return StmtError(); |
| } |
| |
| // If nothing changed, just retain this statement. |
| if (!getDerived().AlwaysRebuild() && |
| TryBody.get() == S->getTryBody() && |
| !AnyCatchChanged && |
| Finally.get() == S->getFinallyStmt()) |
| return SemaRef.Owned(S); |
| |
| // Build a new statement. |
| return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(), |
| CatchStmts, Finally.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) { |
| // Transform the @catch parameter, if there is one. |
| VarDecl *Var = 0; |
| if (VarDecl *FromVar = S->getCatchParamDecl()) { |
| TypeSourceInfo *TSInfo = 0; |
| if (FromVar->getTypeSourceInfo()) { |
| TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo()); |
| if (!TSInfo) |
| return StmtError(); |
| } |
| |
| QualType T; |
| if (TSInfo) |
| T = TSInfo->getType(); |
| else { |
| T = getDerived().TransformType(FromVar->getType()); |
| if (T.isNull()) |
| return StmtError(); |
| } |
| |
| Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T); |
| if (!Var) |
| return StmtError(); |
| } |
| |
| StmtResult Body = getDerived().TransformStmt(S->getCatchBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(), |
| S->getRParenLoc(), |
| Var, Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) { |
| // Transform the body. |
| StmtResult Body = getDerived().TransformStmt(S->getFinallyBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // If nothing changed, just retain this statement. |
| if (!getDerived().AlwaysRebuild() && |
| Body.get() == S->getFinallyBody()) |
| return SemaRef.Owned(S); |
| |
| // Build a new statement. |
| return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(), |
| Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) { |
| ExprResult Operand; |
| if (S->getThrowExpr()) { |
| Operand = getDerived().TransformExpr(S->getThrowExpr()); |
| if (Operand.isInvalid()) |
| return StmtError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Operand.get() == S->getThrowExpr()) |
| return getSema().Owned(S); |
| |
| return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAtSynchronizedStmt( |
| ObjCAtSynchronizedStmt *S) { |
| // Transform the object we are locking. |
| ExprResult Object = getDerived().TransformExpr(S->getSynchExpr()); |
| if (Object.isInvalid()) |
| return StmtError(); |
| Object = |
| getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(), |
| Object.get()); |
| if (Object.isInvalid()) |
| return StmtError(); |
| |
| // Transform the body. |
| StmtResult Body = getDerived().TransformStmt(S->getSynchBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // If nothing change, just retain the current statement. |
| if (!getDerived().AlwaysRebuild() && |
| Object.get() == S->getSynchExpr() && |
| Body.get() == S->getSynchBody()) |
| return SemaRef.Owned(S); |
| |
| // Build a new statement. |
| return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(), |
| Object.get(), Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt( |
| ObjCAutoreleasePoolStmt *S) { |
| // Transform the body. |
| StmtResult Body = getDerived().TransformStmt(S->getSubStmt()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // If nothing changed, just retain this statement. |
| if (!getDerived().AlwaysRebuild() && |
| Body.get() == S->getSubStmt()) |
| return SemaRef.Owned(S); |
| |
| // Build a new statement. |
| return getDerived().RebuildObjCAutoreleasePoolStmt( |
| S->getAtLoc(), Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCForCollectionStmt( |
| ObjCForCollectionStmt *S) { |
| // Transform the element statement. |
| StmtResult Element = getDerived().TransformStmt(S->getElement()); |
| if (Element.isInvalid()) |
| return StmtError(); |
| |
| // Transform the collection expression. |
| ExprResult Collection = getDerived().TransformExpr(S->getCollection()); |
| if (Collection.isInvalid()) |
| return StmtError(); |
| |
| // Transform the body. |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // If nothing changed, just retain this statement. |
| if (!getDerived().AlwaysRebuild() && |
| Element.get() == S->getElement() && |
| Collection.get() == S->getCollection() && |
| Body.get() == S->getBody()) |
| return SemaRef.Owned(S); |
| |
| // Build a new statement. |
| return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(), |
| Element.get(), |
| Collection.get(), |
| S->getRParenLoc(), |
| Body.get()); |
| } |
| |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) { |
| // Transform the exception declaration, if any. |
| VarDecl *Var = 0; |
| if (S->getExceptionDecl()) { |
| VarDecl *ExceptionDecl = S->getExceptionDecl(); |
| TypeSourceInfo *T = getDerived().TransformType( |
| ExceptionDecl->getTypeSourceInfo()); |
| if (!T) |
| return StmtError(); |
| |
| Var = getDerived().RebuildExceptionDecl(ExceptionDecl, T, |
| ExceptionDecl->getInnerLocStart(), |
| ExceptionDecl->getLocation(), |
| ExceptionDecl->getIdentifier()); |
| if (!Var || Var->isInvalidDecl()) |
| return StmtError(); |
| } |
| |
| // Transform the actual exception handler. |
| StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock()); |
| if (Handler.isInvalid()) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| !Var && |
| Handler.get() == S->getHandlerBlock()) |
| return SemaRef.Owned(S); |
| |
| return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), |
| Var, |
| Handler.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) { |
| // Transform the try block itself. |
| StmtResult TryBlock |
| = getDerived().TransformCompoundStmt(S->getTryBlock()); |
| if (TryBlock.isInvalid()) |
| return StmtError(); |
| |
| // Transform the handlers. |
| bool HandlerChanged = false; |
| SmallVector<Stmt*, 8> Handlers; |
| for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) { |
| StmtResult Handler |
| = getDerived().TransformCXXCatchStmt(S->getHandler(I)); |
| if (Handler.isInvalid()) |
| return StmtError(); |
| |
| HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I); |
| Handlers.push_back(Handler.takeAs<Stmt>()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| TryBlock.get() == S->getTryBlock() && |
| !HandlerChanged) |
| return SemaRef.Owned(S); |
| |
| return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(), |
| Handlers); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) { |
| StmtResult Range = getDerived().TransformStmt(S->getRangeStmt()); |
| if (Range.isInvalid()) |
| return StmtError(); |
| |
| StmtResult BeginEnd = getDerived().TransformStmt(S->getBeginEndStmt()); |
| if (BeginEnd.isInvalid()) |
| return StmtError(); |
| |
| ExprResult Cond = getDerived().TransformExpr(S->getCond()); |
| if (Cond.isInvalid()) |
| return StmtError(); |
| if (Cond.get()) |
| Cond = SemaRef.CheckBooleanCondition(Cond.take(), S->getColonLoc()); |
| if (Cond.isInvalid()) |
| return StmtError(); |
| if (Cond.get()) |
| Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.take()); |
| |
| ExprResult Inc = getDerived().TransformExpr(S->getInc()); |
| if (Inc.isInvalid()) |
| return StmtError(); |
| if (Inc.get()) |
| Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.take()); |
| |
| StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt()); |
| if (LoopVar.isInvalid()) |
| return StmtError(); |
| |
| StmtResult NewStmt = S; |
| if (getDerived().AlwaysRebuild() || |
| Range.get() != S->getRangeStmt() || |
| BeginEnd.get() != S->getBeginEndStmt() || |
| Cond.get() != S->getCond() || |
| Inc.get() != S->getInc() || |
| LoopVar.get() != S->getLoopVarStmt()) |
| NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(), |
| S->getColonLoc(), Range.get(), |
| BeginEnd.get(), Cond.get(), |
| Inc.get(), LoopVar.get(), |
| S->getRParenLoc()); |
| |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // Body has changed but we didn't rebuild the for-range statement. Rebuild |
| // it now so we have a new statement to attach the body to. |
| if (Body.get() != S->getBody() && NewStmt.get() == S) |
| NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(), |
| S->getColonLoc(), Range.get(), |
| BeginEnd.get(), Cond.get(), |
| Inc.get(), LoopVar.get(), |
| S->getRParenLoc()); |
| |
| if (NewStmt.get() == S) |
| return SemaRef.Owned(S); |
| |
| return FinishCXXForRangeStmt(NewStmt.get(), Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformMSDependentExistsStmt( |
| MSDependentExistsStmt *S) { |
| // Transform the nested-name-specifier, if any. |
| NestedNameSpecifierLoc QualifierLoc; |
| if (S->getQualifierLoc()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc()); |
| if (!QualifierLoc) |
| return StmtError(); |
| } |
| |
| // Transform the declaration name. |
| DeclarationNameInfo NameInfo = S->getNameInfo(); |
| if (NameInfo.getName()) { |
| NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| if (!NameInfo.getName()) |
| return StmtError(); |
| } |
| |
| // Check whether anything changed. |
| if (!getDerived().AlwaysRebuild() && |
| QualifierLoc == S->getQualifierLoc() && |
| NameInfo.getName() == S->getNameInfo().getName()) |
| return S; |
| |
| // Determine whether this name exists, if we can. |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| bool Dependent = false; |
| switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/0, SS, NameInfo)) { |
| case Sema::IER_Exists: |
| if (S->isIfExists()) |
| break; |
| |
| return new (getSema().Context) NullStmt(S->getKeywordLoc()); |
| |
| case Sema::IER_DoesNotExist: |
| if (S->isIfNotExists()) |
| break; |
| |
| return new (getSema().Context) NullStmt(S->getKeywordLoc()); |
| |
| case Sema::IER_Dependent: |
| Dependent = true; |
| break; |
| |
| case Sema::IER_Error: |
| return StmtError(); |
| } |
| |
| // We need to continue with the instantiation, so do so now. |
| StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return StmtError(); |
| |
| // If we have resolved the name, just transform to the substatement. |
| if (!Dependent) |
| return SubStmt; |
| |
| // The name is still dependent, so build a dependent expression again. |
| return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(), |
| S->isIfExists(), |
| QualifierLoc, |
| NameInfo, |
| SubStmt.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) { |
| StmtResult TryBlock; // = getDerived().TransformCompoundStmt(S->getTryBlock()); |
| if(TryBlock.isInvalid()) return StmtError(); |
| |
| StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler()); |
| if(!getDerived().AlwaysRebuild() && |
| TryBlock.get() == S->getTryBlock() && |
| Handler.get() == S->getHandler()) |
| return SemaRef.Owned(S); |
| |
| return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), |
| S->getTryLoc(), |
| TryBlock.take(), |
| Handler.take()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) { |
| StmtResult Block; // = getDerived().TransformCompoundStatement(S->getBlock()); |
| if(Block.isInvalid()) return StmtError(); |
| |
| return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), |
| Block.take()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) { |
| ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr()); |
| if(FilterExpr.isInvalid()) return StmtError(); |
| |
| StmtResult Block; // = getDerived().TransformCompoundStatement(S->getBlock()); |
| if(Block.isInvalid()) return StmtError(); |
| |
| return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), |
| FilterExpr.take(), |
| Block.take()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) { |
| if(isa<SEHFinallyStmt>(Handler)) |
| return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler)); |
| else |
| return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Expression transformation |
| //===----------------------------------------------------------------------===// |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) { |
| NestedNameSpecifierLoc QualifierLoc; |
| if (E->getQualifierLoc()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| |
| ValueDecl *ND |
| = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(), |
| E->getDecl())); |
| if (!ND) |
| return ExprError(); |
| |
| DeclarationNameInfo NameInfo = E->getNameInfo(); |
| if (NameInfo.getName()) { |
| NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| if (!NameInfo.getName()) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| QualifierLoc == E->getQualifierLoc() && |
| ND == E->getDecl() && |
| NameInfo.getName() == E->getDecl()->getDeclName() && |
| !E->hasExplicitTemplateArgs()) { |
| |
| // Mark it referenced in the new context regardless. |
| // FIXME: this is a bit instantiation-specific. |
| SemaRef.MarkDeclRefReferenced(E); |
| |
| return SemaRef.Owned(E); |
| } |
| |
| TemplateArgumentListInfo TransArgs, *TemplateArgs = 0; |
| if (E->hasExplicitTemplateArgs()) { |
| TemplateArgs = &TransArgs; |
| TransArgs.setLAngleLoc(E->getLAngleLoc()); |
| TransArgs.setRAngleLoc(E->getRAngleLoc()); |
| if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), |
| E->getNumTemplateArgs(), |
| TransArgs)) |
| return ExprError(); |
| } |
| |
| return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo, |
| TemplateArgs); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) { |
| return SemaRef.MaybeBindToTemporary(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) { |
| ExprResult ControllingExpr = |
| getDerived().TransformExpr(E->getControllingExpr()); |
| if (ControllingExpr.isInvalid()) |
| return ExprError(); |
| |
| SmallVector<Expr *, 4> AssocExprs; |
| SmallVector<TypeSourceInfo *, 4> AssocTypes; |
| for (unsigned i = 0; i != E->getNumAssocs(); ++i) { |
| TypeSourceInfo *TS = E->getAssocTypeSourceInfo(i); |
| if (TS) { |
| TypeSourceInfo *AssocType = getDerived().TransformType(TS); |
| if (!AssocType) |
| return ExprError(); |
| AssocTypes.push_back(AssocType); |
| } else { |
| AssocTypes.push_back(0); |
| } |
| |
| ExprResult AssocExpr = getDerived().TransformExpr(E->getAssocExpr(i)); |
| if (AssocExpr.isInvalid()) |
| return ExprError(); |
| AssocExprs.push_back(AssocExpr.release()); |
| } |
| |
| return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(), |
| E->getDefaultLoc(), |
| E->getRParenLoc(), |
| ControllingExpr.release(), |
| AssocTypes.data(), |
| AssocExprs.data(), |
| E->getNumAssocs()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) { |
| ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(), |
| E->getRParen()); |
| } |
| |
| /// \brief The operand of a unary address-of operator has special rules: it's |
| /// allowed to refer to a non-static member of a class even if there's no 'this' |
| /// object available. |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) { |
| if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E)) |
| return getDerived().TransformDependentScopeDeclRefExpr(DRE, true); |
| else |
| return getDerived().TransformExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) { |
| ExprResult SubExpr = TransformAddressOfOperand(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildUnaryOperator(E->getOperatorLoc(), |
| E->getOpcode(), |
| SubExpr.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) { |
| // Transform the type. |
| TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo()); |
| if (!Type) |
| return ExprError(); |
| |
| // Transform all of the components into components similar to what the |
| // parser uses. |
| // FIXME: It would be slightly more efficient in the non-dependent case to |
| // just map FieldDecls, rather than requiring the rebuilder to look for |
| // the fields again. However, __builtin_offsetof is rare enough in |
| // template code that we don't care. |
| bool ExprChanged = false; |
| typedef Sema::OffsetOfComponent Component; |
| typedef OffsetOfExpr::OffsetOfNode Node; |
| SmallVector<Component, 4> Components; |
| for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) { |
| const Node &ON = E->getComponent(I); |
| Component Comp; |
| Comp.isBrackets = true; |
| Comp.LocStart = ON.getSourceRange().getBegin(); |
| Comp.LocEnd = ON.getSourceRange().getEnd(); |
| switch (ON.getKind()) { |
| case Node::Array: { |
| Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex()); |
| ExprResult Index = getDerived().TransformExpr(FromIndex); |
| if (Index.isInvalid()) |
| return ExprError(); |
| |
| ExprChanged = ExprChanged || Index.get() != FromIndex; |
| Comp.isBrackets = true; |
| Comp.U.E = Index.get(); |
| break; |
| } |
| |
| case Node::Field: |
| case Node::Identifier: |
| Comp.isBrackets = false; |
| Comp.U.IdentInfo = ON.getFieldName(); |
| if (!Comp.U.IdentInfo) |
| continue; |
| |
| break; |
| |
| case Node::Base: |
| // Will be recomputed during the rebuild. |
| continue; |
| } |
| |
| Components.push_back(Comp); |
| } |
| |
| // If nothing changed, retain the existing expression. |
| if (!getDerived().AlwaysRebuild() && |
| Type == E->getTypeSourceInfo() && |
| !ExprChanged) |
| return SemaRef.Owned(E); |
| |
| // Build a new offsetof expression. |
| return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type, |
| Components.data(), Components.size(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) { |
| assert(getDerived().AlreadyTransformed(E->getType()) && |
| "opaque value expression requires transformation"); |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) { |
| // Rebuild the syntactic form. The original syntactic form has |
| // opaque-value expressions in it, so strip those away and rebuild |
| // the result. This is a really awful way of doing this, but the |
| // better solution (rebuilding the semantic expressions and |
| // rebinding OVEs as necessary) doesn't work; we'd need |
| // TreeTransform to not strip away implicit conversions. |
| Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E); |
| ExprResult result = getDerived().TransformExpr(newSyntacticForm); |
| if (result.isInvalid()) return ExprError(); |
| |
| // If that gives us a pseudo-object result back, the pseudo-object |
| // expression must have been an lvalue-to-rvalue conversion which we |
| // should reapply. |
| if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject)) |
| result = SemaRef.checkPseudoObjectRValue(result.take()); |
| |
| return result; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr( |
| UnaryExprOrTypeTraitExpr *E) { |
| if (E->isArgumentType()) { |
| TypeSourceInfo *OldT = E->getArgumentTypeInfo(); |
| |
| TypeSourceInfo *NewT = getDerived().TransformType(OldT); |
| if (!NewT) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && OldT == NewT) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(), |
| E->getKind(), |
| E->getSourceRange()); |
| } |
| |
| // C++0x [expr.sizeof]p1: |
| // The operand is either an expression, which is an unevaluated operand |
| // [...] |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, |
| Sema::ReuseLambdaContextDecl); |
| |
| ExprResult SubExpr = getDerived().TransformExpr(E->getArgumentExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(), |
| E->getOperatorLoc(), |
| E->getKind(), |
| E->getSourceRange()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) { |
| ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return ExprError(); |
| |
| ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| |
| |
| if (!getDerived().AlwaysRebuild() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildArraySubscriptExpr(LHS.get(), |
| /*FIXME:*/E->getLHS()->getLocStart(), |
| RHS.get(), |
| E->getRBracketLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCallExpr(CallExpr *E) { |
| // Transform the callee. |
| ExprResult Callee = getDerived().TransformExpr(E->getCallee()); |
| if (Callee.isInvalid()) |
| return ExprError(); |
| |
| // Transform arguments. |
| bool ArgChanged = false; |
| SmallVector<Expr*, 8> Args; |
| if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| &ArgChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Callee.get() == E->getCallee() && |
| !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| // FIXME: Wrong source location information for the '('. |
| SourceLocation FakeLParenLoc |
| = ((Expr *)Callee.get())->getSourceRange().getBegin(); |
| return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc, |
| Args, |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) { |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| NestedNameSpecifierLoc QualifierLoc; |
| if (E->hasQualifier()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); |
| |
| ValueDecl *Member |
| = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(), |
| E->getMemberDecl())); |
| if (!Member) |
| return ExprError(); |
| |
| NamedDecl *FoundDecl = E->getFoundDecl(); |
| if (FoundDecl == E->getMemberDecl()) { |
| FoundDecl = Member; |
| } else { |
| FoundDecl = cast_or_null<NamedDecl>( |
| getDerived().TransformDecl(E->getMemberLoc(), FoundDecl)); |
| if (!FoundDecl) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase() && |
| QualifierLoc == E->getQualifierLoc() && |
| Member == E->getMemberDecl() && |
| FoundDecl == E->getFoundDecl() && |
| !E->hasExplicitTemplateArgs()) { |
| |
| // Mark it referenced in the new context regardless. |
| // FIXME: this is a bit instantiation-specific. |
| SemaRef.MarkMemberReferenced(E); |
| |
| return SemaRef.Owned(E); |
| } |
| |
| TemplateArgumentListInfo TransArgs; |
| if (E->hasExplicitTemplateArgs()) { |
| TransArgs.setLAngleLoc(E->getLAngleLoc()); |
| TransArgs.setRAngleLoc(E->getRAngleLoc()); |
| if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), |
| E->getNumTemplateArgs(), |
| TransArgs)) |
| return ExprError(); |
| } |
| |
| // FIXME: Bogus source location for the operator |
| SourceLocation FakeOperatorLoc |
| = SemaRef.PP.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd()); |
| |
| // FIXME: to do this check properly, we will need to preserve the |
| // first-qualifier-in-scope here, just in case we had a dependent |
| // base (and therefore couldn't do the check) and a |
| // nested-name-qualifier (and therefore could do the lookup). |
| NamedDecl *FirstQualifierInScope = 0; |
| |
| return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc, |
| E->isArrow(), |
| QualifierLoc, |
| TemplateKWLoc, |
| E->getMemberNameInfo(), |
| Member, |
| FoundDecl, |
| (E->hasExplicitTemplateArgs() |
| ? &TransArgs : 0), |
| FirstQualifierInScope); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) { |
| ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return ExprError(); |
| |
| ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return SemaRef.Owned(E); |
| |
| Sema::FPContractStateRAII FPContractState(getSema()); |
| getSema().FPFeatures.fp_contract = E->isFPContractable(); |
| |
| return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(), |
| LHS.get(), RHS.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCompoundAssignOperator( |
| CompoundAssignOperator *E) { |
| return getDerived().TransformBinaryOperator(E); |
| } |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>:: |
| TransformBinaryConditionalOperator(BinaryConditionalOperator *e) { |
| // Just rebuild the common and RHS expressions and see whether we |
| // get any changes. |
| |
| ExprResult commonExpr = getDerived().TransformExpr(e->getCommon()); |
| if (commonExpr.isInvalid()) |
| return ExprError(); |
| |
| ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr()); |
| if (rhs.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| commonExpr.get() == e->getCommon() && |
| rhs.get() == e->getFalseExpr()) |
| return SemaRef.Owned(e); |
| |
| return getDerived().RebuildConditionalOperator(commonExpr.take(), |
| e->getQuestionLoc(), |
| 0, |
| e->getColonLoc(), |
| rhs.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) { |
| ExprResult Cond = getDerived().TransformExpr(E->getCond()); |
| if (Cond.isInvalid()) |
| return ExprError(); |
| |
| ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return ExprError(); |
| |
| ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Cond.get() == E->getCond() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildConditionalOperator(Cond.get(), |
| E->getQuestionLoc(), |
| LHS.get(), |
| E->getColonLoc(), |
| RHS.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) { |
| // Implicit casts are eliminated during transformation, since they |
| // will be recomputed by semantic analysis after transformation. |
| return getDerived().TransformExpr(E->getSubExprAsWritten()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) { |
| TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); |
| if (!Type) |
| return ExprError(); |
| |
| ExprResult SubExpr |
| = getDerived().TransformExpr(E->getSubExprAsWritten()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Type == E->getTypeInfoAsWritten() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(), |
| Type, |
| E->getRParenLoc(), |
| SubExpr.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| TypeSourceInfo *OldT = E->getTypeSourceInfo(); |
| TypeSourceInfo *NewT = getDerived().TransformType(OldT); |
| if (!NewT) |
| return ExprError(); |
| |
| ExprResult Init = getDerived().TransformExpr(E->getInitializer()); |
| if (Init.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| OldT == NewT && |
| Init.get() == E->getInitializer()) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| // Note: the expression type doesn't necessarily match the |
| // type-as-written, but that's okay, because it should always be |
| // derivable from the initializer. |
| |
| return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT, |
| /*FIXME:*/E->getInitializer()->getLocEnd(), |
| Init.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) { |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase()) |
| return SemaRef.Owned(E); |
| |
| // FIXME: Bad source location |
| SourceLocation FakeOperatorLoc |
| = SemaRef.PP.getLocForEndOfToken(E->getBase()->getLocEnd()); |
| return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc, |
| E->getAccessorLoc(), |
| E->getAccessor()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) { |
| bool InitChanged = false; |
| |
| SmallVector<Expr*, 4> Inits; |
| if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false, |
| Inits, &InitChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && !InitChanged) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildInitList(E->getLBraceLoc(), Inits, |
| E->getRBraceLoc(), E->getType()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) { |
| Designation Desig; |
| |
| // transform the initializer value |
| ExprResult Init = getDerived().TransformExpr(E->getInit()); |
| if (Init.isInvalid()) |
| return ExprError(); |
| |
| // transform the designators. |
| SmallVector<Expr*, 4> ArrayExprs; |
| bool ExprChanged = false; |
| for (DesignatedInitExpr::designators_iterator D = E->designators_begin(), |
| DEnd = E->designators_end(); |
| D != DEnd; ++D) { |
| if (D->isFieldDesignator()) { |
| Desig.AddDesignator(Designator::getField(D->getFieldName(), |
| D->getDotLoc(), |
| D->getFieldLoc())); |
| continue; |
| } |
| |
| if (D->isArrayDesignator()) { |
| ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D)); |
| if (Index.isInvalid()) |
| return ExprError(); |
| |
| Desig.AddDesignator(Designator::getArray(Index.get(), |
| D->getLBracketLoc())); |
| |
| ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D); |
| ArrayExprs.push_back(Index.release()); |
| continue; |
| } |
| |
| assert(D->isArrayRangeDesignator() && "New kind of designator?"); |
| ExprResult Start |
| = getDerived().TransformExpr(E->getArrayRangeStart(*D)); |
| if (Start.isInvalid()) |
| return ExprError(); |
| |
| ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D)); |
| if (End.isInvalid()) |
| return ExprError(); |
| |
| Desig.AddDesignator(Designator::getArrayRange(Start.get(), |
| End.get(), |
| D->getLBracketLoc(), |
| D->getEllipsisLoc())); |
| |
| ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) || |
| End.get() != E->getArrayRangeEnd(*D); |
| |
| ArrayExprs.push_back(Start.release()); |
| ArrayExprs.push_back(End.release()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Init.get() == E->getInit() && |
| !ExprChanged) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs, |
| E->getEqualOrColonLoc(), |
| E->usesGNUSyntax(), Init.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformImplicitValueInitExpr( |
| ImplicitValueInitExpr *E) { |
| TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName()); |
| |
| // FIXME: Will we ever have proper type location here? Will we actually |
| // need to transform the type? |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildImplicitValueInitExpr(T); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) { |
| TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo()); |
| if (!TInfo) |
| return ExprError(); |
| |
| ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TInfo == E->getWrittenTypeInfo() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(), |
| TInfo, E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) { |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 4> Inits; |
| if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits, |
| &ArgumentChanged)) |
| return ExprError(); |
| |
| return getDerived().RebuildParenListExpr(E->getLParenLoc(), |
| Inits, |
| E->getRParenLoc()); |
| } |
| |
| /// \brief Transform an address-of-label expression. |
| /// |
| /// By default, the transformation of an address-of-label expression always |
| /// rebuilds the expression, so that the label identifier can be resolved to |
| /// the corresponding label statement by semantic analysis. |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) { |
| Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(), |
| E->getLabel()); |
| if (!LD) |
| return ExprError(); |
| |
| return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(), |
| cast<LabelDecl>(LD)); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) { |
| SemaRef.ActOnStartStmtExpr(); |
| StmtResult SubStmt |
| = getDerived().TransformCompoundStmt(E->getSubStmt(), true); |
| if (SubStmt.isInvalid()) { |
| SemaRef.ActOnStmtExprError(); |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubStmt.get() == E->getSubStmt()) { |
| // Calling this an 'error' is unintuitive, but it does the right thing. |
| SemaRef.ActOnStmtExprError(); |
| return SemaRef.MaybeBindToTemporary(E); |
| } |
| |
| return getDerived().RebuildStmtExpr(E->getLParenLoc(), |
| SubStmt.get(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) { |
| ExprResult Cond = getDerived().TransformExpr(E->getCond()); |
| if (Cond.isInvalid()) |
| return ExprError(); |
| |
| ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return ExprError(); |
| |
| ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Cond.get() == E->getCond() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildChooseExpr(E->getBuiltinLoc(), |
| Cond.get(), LHS.get(), RHS.get(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) { |
| switch (E->getOperator()) { |
| case OO_New: |
| case OO_Delete: |
| case OO_Array_New: |
| case OO_Array_Delete: |
| llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr"); |
| |
| case OO_Call: { |
| // This is a call to an object's operator(). |
| assert(E->getNumArgs() >= 1 && "Object call is missing arguments"); |
| |
| // Transform the object itself. |
| ExprResult Object = getDerived().TransformExpr(E->getArg(0)); |
| if (Object.isInvalid()) |
| return ExprError(); |
| |
| // FIXME: Poor location information |
| SourceLocation FakeLParenLoc |
| = SemaRef.PP.getLocForEndOfToken( |
| static_cast<Expr *>(Object.get())->getLocEnd()); |
| |
| // Transform the call arguments. |
| SmallVector<Expr*, 8> Args; |
| if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true, |
| Args)) |
| return ExprError(); |
| |
| return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc, |
| Args, |
| E->getLocEnd()); |
| } |
| |
| #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ |
| case OO_##Name: |
| #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) |
| #include "clang/Basic/OperatorKinds.def" |
| case OO_Subscript: |
| // Handled below. |
| break; |
| |
| case OO_Conditional: |
| llvm_unreachable("conditional operator is not actually overloadable"); |
| |
| case OO_None: |
| case NUM_OVERLOADED_OPERATORS: |
| llvm_unreachable("not an overloaded operator?"); |
| } |
| |
| ExprResult Callee = getDerived().TransformExpr(E->getCallee()); |
| if (Callee.isInvalid()) |
| return ExprError(); |
| |
| ExprResult First; |
| if (E->getOperator() == OO_Amp) |
| First = getDerived().TransformAddressOfOperand(E->getArg(0)); |
| else |
| First = getDerived().TransformExpr(E->getArg(0)); |
| if (First.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Second; |
| if (E->getNumArgs() == 2) { |
| Second = getDerived().TransformExpr(E->getArg(1)); |
| if (Second.isInvalid()) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Callee.get() == E->getCallee() && |
| First.get() == E->getArg(0) && |
| (E->getNumArgs() != 2 || Second.get() == E->getArg(1))) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| Sema::FPContractStateRAII FPContractState(getSema()); |
| getSema().FPFeatures.fp_contract = E->isFPContractable(); |
| |
| return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(), |
| E->getOperatorLoc(), |
| Callee.get(), |
| First.get(), |
| Second.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) { |
| return getDerived().TransformCallExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) { |
| // Transform the callee. |
| ExprResult Callee = getDerived().TransformExpr(E->getCallee()); |
| if (Callee.isInvalid()) |
| return ExprError(); |
| |
| // Transform exec config. |
| ExprResult EC = getDerived().TransformCallExpr(E->getConfig()); |
| if (EC.isInvalid()) |
| return ExprError(); |
| |
| // Transform arguments. |
| bool ArgChanged = false; |
| SmallVector<Expr*, 8> Args; |
| if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| &ArgChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Callee.get() == E->getCallee() && |
| !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| // FIXME: Wrong source location information for the '('. |
| SourceLocation FakeLParenLoc |
| = ((Expr *)Callee.get())->getSourceRange().getBegin(); |
| return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc, |
| Args, |
| E->getRParenLoc(), EC.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) { |
| TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); |
| if (!Type) |
| return ExprError(); |
| |
| ExprResult SubExpr |
| = getDerived().TransformExpr(E->getSubExprAsWritten()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Type == E->getTypeInfoAsWritten() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E); |
| return getDerived().RebuildCXXNamedCastExpr(E->getOperatorLoc(), |
| E->getStmtClass(), |
| E->getAngleBrackets().getBegin(), |
| Type, |
| E->getAngleBrackets().getEnd(), |
| // FIXME. this should be '(' location |
| E->getAngleBrackets().getEnd(), |
| SubExpr.get(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) { |
| return getDerived().TransformCXXNamedCastExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) { |
| return getDerived().TransformCXXNamedCastExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXReinterpretCastExpr( |
| CXXReinterpretCastExpr *E) { |
| return getDerived().TransformCXXNamedCastExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) { |
| return getDerived().TransformCXXNamedCastExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXFunctionalCastExpr( |
| CXXFunctionalCastExpr *E) { |
| TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); |
| if (!Type) |
| return ExprError(); |
| |
| ExprResult SubExpr |
| = getDerived().TransformExpr(E->getSubExprAsWritten()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Type == E->getTypeInfoAsWritten() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCXXFunctionalCastExpr(Type, |
| /*FIXME:*/E->getSubExpr()->getLocStart(), |
| SubExpr.get(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) { |
| if (E->isTypeOperand()) { |
| TypeSourceInfo *TInfo |
| = getDerived().TransformType(E->getTypeOperandSourceInfo()); |
| if (!TInfo) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TInfo == E->getTypeOperandSourceInfo()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCXXTypeidExpr(E->getType(), |
| E->getLocStart(), |
| TInfo, |
| E->getLocEnd()); |
| } |
| |
| // We don't know whether the subexpression is potentially evaluated until |
| // after we perform semantic analysis. We speculatively assume it is |
| // unevaluated; it will get fixed later if the subexpression is in fact |
| // potentially evaluated. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, |
| Sema::ReuseLambdaContextDecl); |
| |
| ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubExpr.get() == E->getExprOperand()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCXXTypeidExpr(E->getType(), |
| E->getLocStart(), |
| SubExpr.get(), |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) { |
| if (E->isTypeOperand()) { |
| TypeSourceInfo *TInfo |
| = getDerived().TransformType(E->getTypeOperandSourceInfo()); |
| if (!TInfo) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TInfo == E->getTypeOperandSourceInfo()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCXXUuidofExpr(E->getType(), |
| E->getLocStart(), |
| TInfo, |
| E->getLocEnd()); |
| } |
| |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); |
| |
| ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubExpr.get() == E->getExprOperand()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCXXUuidofExpr(E->getType(), |
| E->getLocStart(), |
| SubExpr.get(), |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr( |
| CXXNullPtrLiteralExpr *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) { |
| DeclContext *DC = getSema().getFunctionLevelDeclContext(); |
| QualType T; |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) |
| T = MD->getThisType(getSema().Context); |
| else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { |
| T = getSema().Context.getPointerType( |
| getSema().Context.getRecordType(Record)); |
| } else { |
| assert(SemaRef.Context.getDiagnostics().hasErrorOccurred() && |
| "this in the wrong scope?"); |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && T == E->getType()) { |
| // Make sure that we capture 'this'. |
| getSema().CheckCXXThisCapture(E->getLocStart()); |
| return SemaRef.Owned(E); |
| } |
| |
| return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) { |
| ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(), |
| E->isThrownVariableInScope()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) { |
| ParmVarDecl *Param |
| = cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getLocStart(), |
| E->getParam())); |
| if (!Param) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Param == E->getParam()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXScalarValueInitExpr( |
| CXXScalarValueInitExpr *E) { |
| TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo()); |
| if (!T) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getTypeSourceInfo()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCXXScalarValueInitExpr(T, |
| /*FIXME:*/T->getTypeLoc().getEndLoc(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) { |
| // Transform the type that we're allocating |
| TypeSourceInfo *AllocTypeInfo |
| = getDerived().TransformType(E->getAllocatedTypeSourceInfo()); |
| if (!AllocTypeInfo) |
| return ExprError(); |
| |
| // Transform the size of the array we're allocating (if any). |
| ExprResult ArraySize = getDerived().TransformExpr(E->getArraySize()); |
| if (ArraySize.isInvalid()) |
| return ExprError(); |
| |
| // Transform the placement arguments (if any). |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> PlacementArgs; |
| if (getDerived().TransformExprs(E->getPlacementArgs(), |
| E->getNumPlacementArgs(), true, |
| PlacementArgs, &ArgumentChanged)) |
| return ExprError(); |
| |
| // Transform the initializer (if any). |
| Expr *OldInit = E->getInitializer(); |
| ExprResult NewInit; |
| if (OldInit) |
| NewInit = getDerived().TransformExpr(OldInit); |
| if (NewInit.isInvalid()) |
| return ExprError(); |
| |
| // Transform new operator and delete operator. |
| FunctionDecl *OperatorNew = 0; |
| if (E->getOperatorNew()) { |
| OperatorNew = cast_or_null<FunctionDecl>( |
| getDerived().TransformDecl(E->getLocStart(), |
| E->getOperatorNew())); |
| if (!OperatorNew) |
| return ExprError(); |
| } |
| |
| FunctionDecl *OperatorDelete = 0; |
| if (E->getOperatorDelete()) { |
| OperatorDelete = cast_or_null<FunctionDecl>( |
| getDerived().TransformDecl(E->getLocStart(), |
| E->getOperatorDelete())); |
| if (!OperatorDelete) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| AllocTypeInfo == E->getAllocatedTypeSourceInfo() && |
| ArraySize.get() == E->getArraySize() && |
| NewInit.get() == OldInit && |
| OperatorNew == E->getOperatorNew() && |
| OperatorDelete == E->getOperatorDelete() && |
| !ArgumentChanged) { |
| // Mark any declarations we need as referenced. |
| // FIXME: instantiation-specific. |
| if (OperatorNew) |
| SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorNew); |
| if (OperatorDelete) |
| SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete); |
| |
| if (E->isArray() && !E->getAllocatedType()->isDependentType()) { |
| QualType ElementType |
| = SemaRef.Context.getBaseElementType(E->getAllocatedType()); |
| if (const RecordType *RecordT = ElementType->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl()); |
| if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) { |
| SemaRef.MarkFunctionReferenced(E->getLocStart(), Destructor); |
| } |
| } |
| } |
| |
| return SemaRef.Owned(E); |
| } |
| |
| QualType AllocType = AllocTypeInfo->getType(); |
| if (!ArraySize.get()) { |
| // If no array size was specified, but the new expression was |
| // instantiated with an array type (e.g., "new T" where T is |
| // instantiated with "int[4]"), extract the outer bound from the |
| // array type as our array size. We do this with constant and |
| // dependently-sized array types. |
| const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType); |
| if (!ArrayT) { |
| // Do nothing |
| } else if (const ConstantArrayType *ConsArrayT |
| = dyn_cast<ConstantArrayType>(ArrayT)) { |
| ArraySize |
| = SemaRef.Owned(IntegerLiteral::Create(SemaRef.Context, |
| ConsArrayT->getSize(), |
| SemaRef.Context.getSizeType(), |
| /*FIXME:*/E->getLocStart())); |
| AllocType = ConsArrayT->getElementType(); |
| } else if (const DependentSizedArrayType *DepArrayT |
| = dyn_cast<DependentSizedArrayType>(ArrayT)) { |
| if (DepArrayT->getSizeExpr()) { |
| ArraySize = SemaRef.Owned(DepArrayT->getSizeExpr()); |
| AllocType = DepArrayT->getElementType(); |
| } |
| } |
| } |
| |
| return getDerived().RebuildCXXNewExpr(E->getLocStart(), |
| E->isGlobalNew(), |
| /*FIXME:*/E->getLocStart(), |
| PlacementArgs, |
| /*FIXME:*/E->getLocStart(), |
| E->getTypeIdParens(), |
| AllocType, |
| AllocTypeInfo, |
| ArraySize.get(), |
| E->getDirectInitRange(), |
| NewInit.take()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) { |
| ExprResult Operand = getDerived().TransformExpr(E->getArgument()); |
| if (Operand.isInvalid()) |
| return ExprError(); |
| |
| // Transform the delete operator, if known. |
| FunctionDecl *OperatorDelete = 0; |
| if (E->getOperatorDelete()) { |
| OperatorDelete = cast_or_null<FunctionDecl>( |
| getDerived().TransformDecl(E->getLocStart(), |
| E->getOperatorDelete())); |
| if (!OperatorDelete) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Operand.get() == E->getArgument() && |
| OperatorDelete == E->getOperatorDelete()) { |
| // Mark any declarations we need as referenced. |
| // FIXME: instantiation-specific. |
| if (OperatorDelete) |
| SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete); |
| |
| if (!E->getArgument()->isTypeDependent()) { |
| QualType Destroyed = SemaRef.Context.getBaseElementType( |
| E->getDestroyedType()); |
| if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl()); |
| SemaRef.MarkFunctionReferenced(E->getLocStart(), |
| SemaRef.LookupDestructor(Record)); |
| } |
| } |
| |
| return SemaRef.Owned(E); |
| } |
| |
| return getDerived().RebuildCXXDeleteExpr(E->getLocStart(), |
| E->isGlobalDelete(), |
| E->isArrayForm(), |
| Operand.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXPseudoDestructorExpr( |
| CXXPseudoDestructorExpr *E) { |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| ParsedType ObjectTypePtr; |
| bool MayBePseudoDestructor = false; |
| Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(), |
| E->getOperatorLoc(), |
| E->isArrow()? tok::arrow : tok::period, |
| ObjectTypePtr, |
| MayBePseudoDestructor); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| QualType ObjectType = ObjectTypePtr.get(); |
| NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType); |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| PseudoDestructorTypeStorage Destroyed; |
| if (E->getDestroyedTypeInfo()) { |
| TypeSourceInfo *DestroyedTypeInfo |
| = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(), |
| ObjectType, 0, SS); |
| if (!DestroyedTypeInfo) |
| return ExprError(); |
| Destroyed = DestroyedTypeInfo; |
| } else if (!ObjectType.isNull() && ObjectType->isDependentType()) { |
| // We aren't likely to be able to resolve the identifier down to a type |
| // now anyway, so just retain the identifier. |
| Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(), |
| E->getDestroyedTypeLoc()); |
| } else { |
| // Look for a destructor known with the given name. |
| ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(), |
| *E->getDestroyedTypeIdentifier(), |
| E->getDestroyedTypeLoc(), |
| /*Scope=*/0, |
| SS, ObjectTypePtr, |
| false); |
| if (!T) |
| return ExprError(); |
| |
| Destroyed |
| = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T), |
| E->getDestroyedTypeLoc()); |
| } |
| |
| TypeSourceInfo *ScopeTypeInfo = 0; |
| if (E->getScopeTypeInfo()) { |
| CXXScopeSpec EmptySS; |
| ScopeTypeInfo = getDerived().TransformTypeInObjectScope( |
| E->getScopeTypeInfo(), ObjectType, 0, EmptySS); |
| if (!ScopeTypeInfo) |
| return ExprError(); |
| } |
| |
| return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(), |
| E->getOperatorLoc(), |
| E->isArrow(), |
| SS, |
| ScopeTypeInfo, |
| E->getColonColonLoc(), |
| E->getTildeLoc(), |
| Destroyed); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformUnresolvedLookupExpr( |
| UnresolvedLookupExpr *Old) { |
| LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(), |
| Sema::LookupOrdinaryName); |
| |
| // Transform all the decls. |
| for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(), |
| E = Old->decls_end(); I != E; ++I) { |
| NamedDecl *InstD = static_cast<NamedDecl*>( |
| getDerived().TransformDecl(Old->getNameLoc(), |
| *I)); |
| if (!InstD) { |
| // Silently ignore these if a UsingShadowDecl instantiated to nothing. |
| // This can happen because of dependent hiding. |
| if (isa<UsingShadowDecl>(*I)) |
| continue; |
| else |
| return ExprError(); |
| } |
| |
| // Expand using declarations. |
| if (isa<UsingDecl>(InstD)) { |
| UsingDecl *UD = cast<UsingDecl>(InstD); |
| for (UsingDecl::shadow_iterator I = UD->shadow_begin(), |
| E = UD->shadow_end(); I != E; ++I) |
| R.addDecl(*I); |
| continue; |
| } |
| |
| R.addDecl(InstD); |
| } |
| |
| // Resolve a kind, but don't do any further analysis. If it's |
| // ambiguous, the callee needs to deal with it. |
| R.resolveKind(); |
| |
| // Rebuild the nested-name qualifier, if present. |
| CXXScopeSpec SS; |
| if (Old->getQualifierLoc()) { |
| NestedNameSpecifierLoc QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc()); |
| if (!QualifierLoc) |
| return ExprError(); |
| |
| SS.Adopt(QualifierLoc); |
| } |
| |
| if (Old->getNamingClass()) { |
| CXXRecordDecl *NamingClass |
| = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl( |
| Old->getNameLoc(), |
| Old->getNamingClass())); |
| if (!NamingClass) |
| return ExprError(); |
| |
| R.setNamingClass(NamingClass); |
| } |
| |
| SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc(); |
| |
| // If we have neither explicit template arguments, nor the template keyword, |
| // it's a normal declaration name. |
| if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid()) |
| return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL()); |
| |
| // If we have template arguments, rebuild them, then rebuild the |
| // templateid expression. |
| TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc()); |
| if (Old->hasExplicitTemplateArgs() && |
| getDerived().TransformTemplateArguments(Old->getTemplateArgs(), |
| Old->getNumTemplateArgs(), |
| TransArgs)) |
| return ExprError(); |
| |
| return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R, |
| Old->requiresADL(), &TransArgs); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformUnaryTypeTraitExpr(UnaryTypeTraitExpr *E) { |
| TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo()); |
| if (!T) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getQueriedTypeSourceInfo()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildUnaryTypeTrait(E->getTrait(), |
| E->getLocStart(), |
| T, |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformBinaryTypeTraitExpr(BinaryTypeTraitExpr *E) { |
| TypeSourceInfo *LhsT = getDerived().TransformType(E->getLhsTypeSourceInfo()); |
| if (!LhsT) |
| return ExprError(); |
| |
| TypeSourceInfo *RhsT = getDerived().TransformType(E->getRhsTypeSourceInfo()); |
| if (!RhsT) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| LhsT == E->getLhsTypeSourceInfo() && RhsT == E->getRhsTypeSourceInfo()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildBinaryTypeTrait(E->getTrait(), |
| E->getLocStart(), |
| LhsT, RhsT, |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) { |
| bool ArgChanged = false; |
| SmallVector<TypeSourceInfo *, 4> Args; |
| for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) { |
| TypeSourceInfo *From = E->getArg(I); |
| TypeLoc FromTL = From->getTypeLoc(); |
| if (!FromTL.getAs<PackExpansionTypeLoc>()) { |
| TypeLocBuilder TLB; |
| TLB.reserve(FromTL.getFullDataSize()); |
| QualType To = getDerived().TransformType(TLB, FromTL); |
| if (To.isNull()) |
| return ExprError(); |
| |
| if (To == From->getType()) |
| Args.push_back(From); |
| else { |
| Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| ArgChanged = true; |
| } |
| continue; |
| } |
| |
| ArgChanged = true; |
| |
| // We have a pack expansion. Instantiate it. |
| PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>(); |
| TypeLoc PatternTL = ExpansionTL.getPatternLoc(); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| Optional<unsigned> OrigNumExpansions = |
| ExpansionTL.getTypePtr()->getNumExpansions(); |
| Optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), |
| PatternTL.getSourceRange(), |
| Unexpanded, |
| Expand, RetainExpansion, |
| NumExpansions)) |
| return ExprError(); |
| |
| if (!Expand) { |
| // The transform has determined that we should perform a simple |
| // transformation on the pack expansion, producing another pack |
| // expansion. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| |
| TypeLocBuilder TLB; |
| TLB.reserve(From->getTypeLoc().getFullDataSize()); |
| |
| QualType To = getDerived().TransformType(TLB, PatternTL); |
| if (To.isNull()) |
| return ExprError(); |
| |
| To = getDerived().RebuildPackExpansionType(To, |
| PatternTL.getSourceRange(), |
| ExpansionTL.getEllipsisLoc(), |
| NumExpansions); |
| if (To.isNull()) |
| return ExprError(); |
| |
| PackExpansionTypeLoc ToExpansionTL |
| = TLB.push<PackExpansionTypeLoc>(To); |
| ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); |
| Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| continue; |
| } |
| |
| // Expand the pack expansion by substituting for each argument in the |
| // pack(s). |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); |
| TypeLocBuilder TLB; |
| TLB.reserve(PatternTL.getFullDataSize()); |
| QualType To = getDerived().TransformType(TLB, PatternTL); |
| if (To.isNull()) |
| return ExprError(); |
| |
| Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| } |
| |
| if (!RetainExpansion) |
| continue; |
| |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| |
| TypeLocBuilder TLB; |
| TLB.reserve(From->getTypeLoc().getFullDataSize()); |
| |
| QualType To = getDerived().TransformType(TLB, PatternTL); |
| if (To.isNull()) |
| return ExprError(); |
| |
| To = getDerived().RebuildPackExpansionType(To, |
| PatternTL.getSourceRange(), |
| ExpansionTL.getEllipsisLoc(), |
| NumExpansions); |
| if (To.isNull()) |
| return ExprError(); |
| |
| PackExpansionTypeLoc ToExpansionTL |
| = TLB.push<PackExpansionTypeLoc>(To); |
| ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); |
| Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && !ArgChanged) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildTypeTrait(E->getTrait(), |
| E->getLocStart(), |
| Args, |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) { |
| TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo()); |
| if (!T) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getQueriedTypeSourceInfo()) |
| return SemaRef.Owned(E); |
| |
| ExprResult SubExpr; |
| { |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); |
| SubExpr = getDerived().TransformExpr(E->getDimensionExpression()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression()) |
| return SemaRef.Owned(E); |
| } |
| |
| return getDerived().RebuildArrayTypeTrait(E->getTrait(), |
| E->getLocStart(), |
| T, |
| SubExpr.get(), |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) { |
| ExprResult SubExpr; |
| { |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); |
| SubExpr = getDerived().TransformExpr(E->getQueriedExpression()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression()) |
| return SemaRef.Owned(E); |
| } |
| |
| return getDerived().RebuildExpressionTrait( |
| E->getTrait(), E->getLocStart(), SubExpr.get(), E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformDependentScopeDeclRefExpr( |
| DependentScopeDeclRefExpr *E) { |
| return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand*/false); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformDependentScopeDeclRefExpr( |
| DependentScopeDeclRefExpr *E, |
| bool IsAddressOfOperand) { |
| NestedNameSpecifierLoc QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| if (!QualifierLoc) |
| return ExprError(); |
| SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); |
| |
| // TODO: If this is a conversion-function-id, verify that the |
| // destination type name (if present) resolves the same way after |
| // instantiation as it did in the local scope. |
| |
| DeclarationNameInfo NameInfo |
| = getDerived().TransformDeclarationNameInfo(E->getNameInfo()); |
| if (!NameInfo.getName()) |
| return ExprError(); |
| |
| if (!E->hasExplicitTemplateArgs()) { |
| if (!getDerived().AlwaysRebuild() && |
| QualifierLoc == E->getQualifierLoc() && |
| // Note: it is sufficient to compare the Name component of NameInfo: |
| // if name has not changed, DNLoc has not changed either. |
| NameInfo.getName() == E->getDeclName()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildDependentScopeDeclRefExpr(QualifierLoc, |
| TemplateKWLoc, |
| NameInfo, |
| /*TemplateArgs*/ 0, |
| IsAddressOfOperand); |
| } |
| |
| TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); |
| if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), |
| E->getNumTemplateArgs(), |
| TransArgs)) |
| return ExprError(); |
| |
| return getDerived().RebuildDependentScopeDeclRefExpr(QualifierLoc, |
| TemplateKWLoc, |
| NameInfo, |
| &TransArgs, |
| IsAddressOfOperand); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) { |
| // CXXConstructExprs other than for list-initialization and |
| // CXXTemporaryObjectExpr are always implicit, so when we have |
| // a 1-argument construction we just transform that argument. |
| if ((E->getNumArgs() == 1 || |
| (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) && |
| (!getDerived().DropCallArgument(E->getArg(0))) && |
| !E->isListInitialization()) |
| return getDerived().TransformExpr(E->getArg(0)); |
| |
| TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName()); |
| |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return ExprError(); |
| |
| CXXConstructorDecl *Constructor |
| = cast_or_null<CXXConstructorDecl>( |
| getDerived().TransformDecl(E->getLocStart(), |
| E->getConstructor())); |
| if (!Constructor) |
| return ExprError(); |
| |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> Args; |
| if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| &ArgumentChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType() && |
| Constructor == E->getConstructor() && |
| !ArgumentChanged) { |
| // Mark the constructor as referenced. |
| // FIXME: Instantiation-specific |
| SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor); |
| return SemaRef.Owned(E); |
| } |
| |
| return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(), |
| Constructor, E->isElidable(), |
| Args, |
| E->hadMultipleCandidates(), |
| E->isListInitialization(), |
| E->requiresZeroInitialization(), |
| E->getConstructionKind(), |
| E->getParenRange()); |
| } |
| |
| /// \brief Transform a C++ temporary-binding expression. |
| /// |
| /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just |
| /// transform the subexpression and return that. |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { |
| return getDerived().TransformExpr(E->getSubExpr()); |
| } |
| |
| /// \brief Transform a C++ expression that contains cleanups that should |
| /// be run after the expression is evaluated. |
| /// |
| /// Since ExprWithCleanups nodes are implicitly generated, we |
| /// just transform the subexpression and return that. |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) { |
| return getDerived().TransformExpr(E->getSubExpr()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXTemporaryObjectExpr( |
| CXXTemporaryObjectExpr *E) { |
| TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo()); |
| if (!T) |
| return ExprError(); |
| |
| CXXConstructorDecl *Constructor |
| = cast_or_null<CXXConstructorDecl>( |
| getDerived().TransformDecl(E->getLocStart(), |
| E->getConstructor())); |
| if (!Constructor) |
| return ExprError(); |
| |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> Args; |
| Args.reserve(E->getNumArgs()); |
| if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| &ArgumentChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getTypeSourceInfo() && |
| Constructor == E->getConstructor() && |
| !ArgumentChanged) { |
| // FIXME: Instantiation-specific |
| SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor); |
| return SemaRef.MaybeBindToTemporary(E); |
| } |
| |
| // FIXME: Pass in E->isListInitialization(). |
| return getDerived().RebuildCXXTemporaryObjectExpr(T, |
| /*FIXME:*/T->getTypeLoc().getEndLoc(), |
| Args, |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) { |
| // Transform the type of the lambda parameters and start the definition of |
| // the lambda itself. |
| TypeSourceInfo *MethodTy |
| = TransformType(E->getCallOperator()->getTypeSourceInfo()); |
| if (!MethodTy) |
| return ExprError(); |
| |
| // Create the local class that will describe the lambda. |
| CXXRecordDecl *Class |
| = getSema().createLambdaClosureType(E->getIntroducerRange(), |
| MethodTy, |
| /*KnownDependent=*/false); |
| getDerived().transformedLocalDecl(E->getLambdaClass(), Class); |
| |
| // Transform lambda parameters. |
| SmallVector<QualType, 4> ParamTypes; |
| SmallVector<ParmVarDecl *, 4> Params; |
| if (getDerived().TransformFunctionTypeParams(E->getLocStart(), |
| E->getCallOperator()->param_begin(), |
| E->getCallOperator()->param_size(), |
| 0, ParamTypes, &Params)) |
| return ExprError(); |
| |
| // Build the call operator. |
| CXXMethodDecl *CallOperator |
| = getSema().startLambdaDefinition(Class, E->getIntroducerRange(), |
| MethodTy, |
| E->getCallOperator()->getLocEnd(), |
| Params); |
| getDerived().transformAttrs(E->getCallOperator(), CallOperator); |
| |
| return getDerived().TransformLambdaScope(E, CallOperator); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformLambdaScope(LambdaExpr *E, |
| CXXMethodDecl *CallOperator) { |
| // Introduce the context of the call operator. |
| Sema::ContextRAII SavedContext(getSema(), CallOperator); |
| |
| // Enter the scope of the lambda. |
| sema::LambdaScopeInfo *LSI |
| = getSema().enterLambdaScope(CallOperator, E->getIntroducerRange(), |
| E->getCaptureDefault(), |
| E->hasExplicitParameters(), |
| E->hasExplicitResultType(), |
| E->isMutable()); |
| |
| // Transform captures. |
| bool Invalid = false; |
| bool FinishedExplicitCaptures = false; |
| for (LambdaExpr::capture_iterator C = E->capture_begin(), |
| CEnd = E->capture_end(); |
| C != CEnd; ++C) { |
| // When we hit the first implicit capture, tell Sema that we've finished |
| // the list of explicit captures. |
| if (!FinishedExplicitCaptures && C->isImplicit()) { |
| getSema().finishLambdaExplicitCaptures(LSI); |
| FinishedExplicitCaptures = true; |
| } |
| |
| // Capturing 'this' is trivial. |
| if (C->capturesThis()) { |
| getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit()); |
| continue; |
| } |
| |
| // Determine the capture kind for Sema. |
| Sema::TryCaptureKind Kind |
| = C->isImplicit()? Sema::TryCapture_Implicit |
| : C->getCaptureKind() == LCK_ByCopy |
| ? Sema::TryCapture_ExplicitByVal |
| : Sema::TryCapture_ExplicitByRef; |
| SourceLocation EllipsisLoc; |
| if (C->isPackExpansion()) { |
| UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation()); |
| bool ShouldExpand = false; |
| bool RetainExpansion = false; |
| Optional<unsigned> NumExpansions; |
| if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(), |
| C->getLocation(), |
| Unexpanded, |
| ShouldExpand, RetainExpansion, |
| NumExpansions)) |
| return ExprError(); |
| |
| if (ShouldExpand) { |
| // The transform has determined that we should perform an expansion; |
| // transform and capture each of the arguments. |
| // expansion of the pattern. Do so. |
| VarDecl *Pack = C->getCapturedVar(); |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| VarDecl *CapturedVar |
| = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(), |
| Pack)); |
| if (!CapturedVar) { |
| Invalid = true; |
| continue; |
| } |
| |
| // Capture the transformed variable. |
| getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind); |
| } |
| continue; |
| } |
| |
| EllipsisLoc = C->getEllipsisLoc(); |
| } |
| |
| // Transform the captured variable. |
| VarDecl *CapturedVar |
| = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(), |
| C->getCapturedVar())); |
| if (!CapturedVar) { |
| Invalid = true; |
| continue; |
| } |
| |
| // Capture the transformed variable. |
| getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind); |
| } |
| if (!FinishedExplicitCaptures) |
| getSema().finishLambdaExplicitCaptures(LSI); |
| |
| |
| // Enter a new evaluation context to insulate the lambda from any |
| // cleanups from the enclosing full-expression. |
| getSema().PushExpressionEvaluationContext(Sema::PotentiallyEvaluated); |
| |
| if (Invalid) { |
| getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/0, |
| /*IsInstantiation=*/true); |
| return ExprError(); |
| } |
| |
| // Instantiate the body of the lambda expression. |
| StmtResult Body = getDerived().TransformStmt(E->getBody()); |
| if (Body.isInvalid()) { |
| getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/0, |
| /*IsInstantiation=*/true); |
| return ExprError(); |
| } |
| |
| return getSema().ActOnLambdaExpr(E->getLocStart(), Body.take(), |
| /*CurScope=*/0, /*IsInstantiation=*/true); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr( |
| CXXUnresolvedConstructExpr *E) { |
| TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo()); |
| if (!T) |
| return ExprError(); |
| |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> Args; |
| Args.reserve(E->arg_size()); |
| if (getDerived().TransformExprs(E->arg_begin(), E->arg_size(), true, Args, |
| &ArgumentChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getTypeSourceInfo() && |
| !ArgumentChanged) |
| return SemaRef.Owned(E); |
| |
| // FIXME: we're faking the locations of the commas |
| return getDerived().RebuildCXXUnresolvedConstructExpr(T, |
| E->getLParenLoc(), |
| Args, |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr( |
| CXXDependentScopeMemberExpr *E) { |
| // Transform the base of the expression. |
| ExprResult Base((Expr*) 0); |
| Expr *OldBase; |
| QualType BaseType; |
| QualType ObjectType; |
| if (!E->isImplicitAccess()) { |
| OldBase = E->getBase(); |
| Base = getDerived().TransformExpr(OldBase); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| // Start the member reference and compute the object's type. |
| ParsedType ObjectTy; |
| bool MayBePseudoDestructor = false; |
| Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(), |
| E->getOperatorLoc(), |
| E->isArrow()? tok::arrow : tok::period, |
| ObjectTy, |
| MayBePseudoDestructor); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| ObjectType = ObjectTy.get(); |
| BaseType = ((Expr*) Base.get())->getType(); |
| } else { |
| OldBase = 0; |
| BaseType = getDerived().TransformType(E->getBaseType()); |
| ObjectType = BaseType->getAs<PointerType>()->getPointeeType(); |
| } |
| |
| // Transform the first part of the nested-name-specifier that qualifies |
| // the member name. |
| NamedDecl *FirstQualifierInScope |
| = getDerived().TransformFirstQualifierInScope( |
| E->getFirstQualifierFoundInScope(), |
| E->getQualifierLoc().getBeginLoc()); |
| |
| NestedNameSpecifierLoc QualifierLoc; |
| if (E->getQualifier()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(), |
| ObjectType, |
| FirstQualifierInScope); |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| |
| SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); |
| |
| // TODO: If this is a conversion-function-id, verify that the |
| // destination type name (if present) resolves the same way after |
| // instantiation as it did in the local scope. |
| |
| DeclarationNameInfo NameInfo |
| = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo()); |
| if (!NameInfo.getName()) |
| return ExprError(); |
| |
| if (!E->hasExplicitTemplateArgs()) { |
| // This is a reference to a member without an explicitly-specified |
| // template argument list. Optimize for this common case. |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == OldBase && |
| BaseType == E->getBaseType() && |
| QualifierLoc == E->getQualifierLoc() && |
| NameInfo.getName() == E->getMember() && |
| FirstQualifierInScope == E->getFirstQualifierFoundInScope()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(), |
| BaseType, |
| E->isArrow(), |
| E->getOperatorLoc(), |
| QualifierLoc, |
| TemplateKWLoc, |
| FirstQualifierInScope, |
| NameInfo, |
| /*TemplateArgs*/ 0); |
| } |
| |
| TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); |
| if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), |
| E->getNumTemplateArgs(), |
| TransArgs)) |
| return ExprError(); |
| |
| return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(), |
| BaseType, |
| E->isArrow(), |
| E->getOperatorLoc(), |
| QualifierLoc, |
| TemplateKWLoc, |
| FirstQualifierInScope, |
| NameInfo, |
| &TransArgs); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) { |
| // Transform the base of the expression. |
| ExprResult Base((Expr*) 0); |
| QualType BaseType; |
| if (!Old->isImplicitAccess()) { |
| Base = getDerived().TransformExpr(Old->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| Base = getSema().PerformMemberExprBaseConversion(Base.take(), |
| Old->isArrow()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| BaseType = Base.get()->getType(); |
| } else { |
| BaseType = getDerived().TransformType(Old->getBaseType()); |
| } |
| |
| NestedNameSpecifierLoc QualifierLoc; |
| if (Old->getQualifierLoc()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc()); |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| |
| SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc(); |
| |
| LookupResult R(SemaRef, Old->getMemberNameInfo(), |
| Sema::LookupOrdinaryName); |
| |
| // Transform all the decls. |
| for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(), |
| E = Old->decls_end(); I != E; ++I) { |
| NamedDecl *InstD = static_cast<NamedDecl*>( |
| getDerived().TransformDecl(Old->getMemberLoc(), |
| *I)); |
| if (!InstD) { |
| // Silently ignore these if a UsingShadowDecl instantiated to nothing. |
| // This can happen because of dependent hiding. |
| if (isa<UsingShadowDecl>(*I)) |
| continue; |
| else { |
| R.clear(); |
| return ExprError(); |
| } |
| } |
| |
| // Expand using declarations. |
| if (isa<UsingDecl>(InstD)) { |
| UsingDecl *UD = cast<UsingDecl>(InstD); |
| for (UsingDecl::shadow_iterator I = UD->shadow_begin(), |
| E = UD->shadow_end(); I != E; ++I) |
| R.addDecl(*I); |
| continue; |
| } |
| |
| R.addDecl(InstD); |
| } |
| |
| R.resolveKind(); |
| |
| // Determine the naming class. |
| if (Old->getNamingClass()) { |
| CXXRecordDecl *NamingClass |
| = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl( |
| Old->getMemberLoc(), |
| Old->getNamingClass())); |
| if (!NamingClass) |
| return ExprError(); |
| |
| R.setNamingClass(NamingClass); |
| } |
| |
| TemplateArgumentListInfo TransArgs; |
| if (Old->hasExplicitTemplateArgs()) { |
| TransArgs.setLAngleLoc(Old->getLAngleLoc()); |
| TransArgs.setRAngleLoc(Old->getRAngleLoc()); |
| if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(), |
| Old->getNumTemplateArgs(), |
| TransArgs)) |
| return ExprError(); |
| } |
| |
| // FIXME: to do this check properly, we will need to preserve the |
| // first-qualifier-in-scope here, just in case we had a dependent |
| // base (and therefore couldn't do the check) and a |
| // nested-name-qualifier (and therefore could do the lookup). |
| NamedDecl *FirstQualifierInScope = 0; |
| |
| return getDerived().RebuildUnresolvedMemberExpr(Base.get(), |
| BaseType, |
| Old->getOperatorLoc(), |
| Old->isArrow(), |
| QualifierLoc, |
| TemplateKWLoc, |
| FirstQualifierInScope, |
| R, |
| (Old->hasExplicitTemplateArgs() |
| ? &TransArgs : 0)); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) { |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); |
| ExprResult SubExpr = getDerived().TransformExpr(E->getOperand()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) { |
| ExprResult Pattern = getDerived().TransformExpr(E->getPattern()); |
| if (Pattern.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(), |
| E->getNumExpansions()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) { |
| // If E is not value-dependent, then nothing will change when we transform it. |
| // Note: This is an instantiation-centric view. |
| if (!E->isValueDependent()) |
| return SemaRef.Owned(E); |
| |
| // Note: None of the implementations of TryExpandParameterPacks can ever |
| // produce a diagnostic when given only a single unexpanded parameter pack, |
| // so |
| UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc()); |
| bool ShouldExpand = false; |
| bool RetainExpansion = false; |
| Optional<unsigned> NumExpansions; |
| if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(), |
| Unexpanded, |
| ShouldExpand, RetainExpansion, |
| NumExpansions)) |
| return ExprError(); |
| |
| if (RetainExpansion) |
| return SemaRef.Owned(E); |
| |
| NamedDecl *Pack = E->getPack(); |
| if (!ShouldExpand) { |
| Pack = cast_or_null<NamedDecl>(getDerived().TransformDecl(E->getPackLoc(), |
| Pack)); |
| if (!Pack) |
| return ExprError(); |
| } |
| |
| |
| // We now know the length of the parameter pack, so build a new expression |
| // that stores that length. |
| return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack, |
| E->getPackLoc(), E->getRParenLoc(), |
| NumExpansions); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr( |
| SubstNonTypeTemplateParmPackExpr *E) { |
| // Default behavior is to do nothing with this transformation. |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr( |
| SubstNonTypeTemplateParmExpr *E) { |
| // Default behavior is to do nothing with this transformation. |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) { |
| // Default behavior is to do nothing with this transformation. |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformMaterializeTemporaryExpr( |
| MaterializeTemporaryExpr *E) { |
| return getDerived().TransformExpr(E->GetTemporaryExpr()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) { |
| return SemaRef.MaybeBindToTemporary(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) { |
| ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) { |
| // Transform each of the elements. |
| SmallVector<Expr *, 8> Elements; |
| bool ArgChanged = false; |
| if (getDerived().TransformExprs(E->getElements(), E->getNumElements(), |
| /*IsCall=*/false, Elements, &ArgChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(), |
| Elements.data(), |
| Elements.size()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCDictionaryLiteral( |
| ObjCDictionaryLiteral *E) { |
| // Transform each of the elements. |
| SmallVector<ObjCDictionaryElement, 8> Elements; |
| bool ArgChanged = false; |
| for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) { |
| ObjCDictionaryElement OrigElement = E->getKeyValueElement(I); |
| |
| if (OrigElement.isPackExpansion()) { |
| // This key/value element is a pack expansion. |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded); |
| getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether the set of unexpanded parameter packs can |
| // and should be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| Optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions; |
| Optional<unsigned> NumExpansions = OrigNumExpansions; |
| SourceRange PatternRange(OrigElement.Key->getLocStart(), |
| OrigElement.Value->getLocEnd()); |
| if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc, |
| PatternRange, |
| Unexpanded, |
| Expand, RetainExpansion, |
| NumExpansions)) |
| return ExprError(); |
| |
| if (!Expand) { |
| // The transform has determined that we should perform a simple |
| // transformation on the pack expansion, producing another pack |
| // expansion. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| ExprResult Key = getDerived().TransformExpr(OrigElement.Key); |
| if (Key.isInvalid()) |
| return ExprError(); |
| |
| if (Key.get() != OrigElement.Key) |
| ArgChanged = true; |
| |
| ExprResult Value = getDerived().TransformExpr(OrigElement.Value); |
| if (Value.isInvalid()) |
| return ExprError(); |
| |
| if (Value.get() != OrigElement.Value) |
| ArgChanged = true; |
| |
| ObjCDictionaryElement Expansion = { |
| Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions |
| }; |
| Elements.push_back(Expansion); |
| continue; |
| } |
| |
| // Record right away that the argument was changed. This needs |
| // to happen even if the array expands to nothing. |
| ArgChanged = true; |
| |
| // The transform has determined that we should perform an elementwise |
| // expansion of the pattern. Do so. |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| ExprResult Key = getDerived().TransformExpr(OrigElement.Key); |
| if (Key.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Value = getDerived().TransformExpr(OrigElement.Value); |
| if (Value.isInvalid()) |
| return ExprError(); |
| |
| ObjCDictionaryElement Element = { |
| Key.get(), Value.get(), SourceLocation(), NumExpansions |
| }; |
| |
| // If any unexpanded parameter packs remain, we still have a |
| // pack expansion. |
| if (Key.get()->containsUnexpandedParameterPack() || |
| Value.get()->containsUnexpandedParameterPack()) |
| Element.EllipsisLoc = OrigElement.EllipsisLoc; |
| |
| Elements.push_back(Element); |
| } |
| |
| // We've finished with this pack expansion. |
| continue; |
| } |
| |
| // Transform and check key. |
| ExprResult Key = getDerived().TransformExpr(OrigElement.Key); |
| if (Key.isInvalid()) |
| return ExprError(); |
| |
| if (Key.get() != OrigElement.Key) |
| ArgChanged = true; |
| |
| // Transform and check value. |
| ExprResult Value |
| = getDerived().TransformExpr(OrigElement.Value); |
| if (Value.isInvalid()) |
| return ExprError(); |
| |
| if (Value.get() != OrigElement.Value) |
| ArgChanged = true; |
| |
| ObjCDictionaryElement Element = { |
| Key.get(), Value.get(), SourceLocation(), None |
| }; |
| Elements.push_back(Element); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(), |
| Elements.data(), |
| Elements.size()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) { |
| TypeSourceInfo *EncodedTypeInfo |
| = getDerived().TransformType(E->getEncodedTypeSourceInfo()); |
| if (!EncodedTypeInfo) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| EncodedTypeInfo == E->getEncodedTypeSourceInfo()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(), |
| EncodedTypeInfo, |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>:: |
| TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) { |
| ExprResult result = getDerived().TransformExpr(E->getSubExpr()); |
| if (result.isInvalid()) return ExprError(); |
| Expr *subExpr = result.take(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| subExpr == E->getSubExpr()) |
| return SemaRef.Owned(E); |
| |
| return SemaRef.Owned(new(SemaRef.Context) |
| ObjCIndirectCopyRestoreExpr(subExpr, E->getType(), E->shouldCopy())); |
| } |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>:: |
| TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) { |
| TypeSourceInfo *TSInfo |
| = getDerived().TransformType(E->getTypeInfoAsWritten()); |
| if (!TSInfo) |
| return ExprError(); |
| |
| ExprResult Result = getDerived().TransformExpr(E->getSubExpr()); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TSInfo == E->getTypeInfoAsWritten() && |
| Result.get() == E->getSubExpr()) |
| return SemaRef.Owned(E); |
| |
| return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(), |
| E->getBridgeKeywordLoc(), TSInfo, |
| Result.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) { |
| // Transform arguments. |
| bool ArgChanged = false; |
| SmallVector<Expr*, 8> Args; |
| Args.reserve(E->getNumArgs()); |
| if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args, |
| &ArgChanged)) |
| return ExprError(); |
| |
| if (E->getReceiverKind() == ObjCMessageExpr::Class) { |
| // Class message: transform the receiver type. |
| TypeSourceInfo *ReceiverTypeInfo |
| = getDerived().TransformType(E->getClassReceiverTypeInfo()); |
| if (!ReceiverTypeInfo) |
| return ExprError(); |
| |
| // If nothing changed, just retain the existing message send. |
| if (!getDerived().AlwaysRebuild() && |
| ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| // Build a new class message send. |
| SmallVector<SourceLocation, 16> SelLocs; |
| E->getSelectorLocs(SelLocs); |
| return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo, |
| E->getSelector(), |
| SelLocs, |
| E->getMethodDecl(), |
| E->getLeftLoc(), |
| Args, |
| E->getRightLoc()); |
| } |
| |
| // Instance message: transform the receiver |
| assert(E->getReceiverKind() == ObjCMessageExpr::Instance && |
| "Only class and instance messages may be instantiated"); |
| ExprResult Receiver |
| = getDerived().TransformExpr(E->getInstanceReceiver()); |
| if (Receiver.isInvalid()) |
| return ExprError(); |
| |
| // If nothing changed, just retain the existing message send. |
| if (!getDerived().AlwaysRebuild() && |
| Receiver.get() == E->getInstanceReceiver() && !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| // Build a new instance message send. |
| SmallVector<SourceLocation, 16> SelLocs; |
| E->getSelectorLocs(SelLocs); |
| return getDerived().RebuildObjCMessageExpr(Receiver.get(), |
| E->getSelector(), |
| SelLocs, |
| E->getMethodDecl(), |
| E->getLeftLoc(), |
| Args, |
| E->getRightLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) { |
| return SemaRef.Owned(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
| // Transform the base expression. |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| // We don't need to transform the ivar; it will never change. |
| |
| // If nothing changed, just retain the existing expression. |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(), |
| E->getLocation(), |
| E->isArrow(), E->isFreeIvar()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { |
| // 'super' and types never change. Property never changes. Just |
| // retain the existing expression. |
| if (!E->isObjectReceiver()) |
| return SemaRef.Owned(E); |
| |
| // Transform the base expression. |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| // We don't need to transform the property; it will never change. |
| |
| // If nothing changed, just retain the existing expression. |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase()) |
| return SemaRef.Owned(E); |
| |
| if (E->isExplicitProperty()) |
| return getDerived().RebuildObjCPropertyRefExpr(Base.get(), |
| E->getExplicitProperty(), |
| E->getLocation()); |
| |
| return getDerived().RebuildObjCPropertyRefExpr(Base.get(), |
| SemaRef.Context.PseudoObjectTy, |
| E->getImplicitPropertyGetter(), |
| E->getImplicitPropertySetter(), |
| E->getLocation()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) { |
| // Transform the base expression. |
| ExprResult Base = getDerived().TransformExpr(E->getBaseExpr()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| // Transform the key expression. |
| ExprResult Key = getDerived().TransformExpr(E->getKeyExpr()); |
| if (Key.isInvalid()) |
| return ExprError(); |
| |
| // If nothing changed, just retain the existing expression. |
| if (!getDerived().AlwaysRebuild() && |
| Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(), |
| Base.get(), Key.get(), |
| E->getAtIndexMethodDecl(), |
| E->setAtIndexMethodDecl()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) { |
| // Transform the base expression. |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| // If nothing changed, just retain the existing expression. |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase()) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(), |
| E->isArrow()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) { |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> SubExprs; |
| SubExprs.reserve(E->getNumSubExprs()); |
| if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false, |
| SubExprs, &ArgumentChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| !ArgumentChanged) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(), |
| SubExprs, |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) { |
| BlockDecl *oldBlock = E->getBlockDecl(); |
| |
| SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/0); |
| BlockScopeInfo *blockScope = SemaRef.getCurBlock(); |
| |
| blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic()); |
| blockScope->TheDecl->setBlockMissingReturnType( |
| oldBlock->blockMissingReturnType()); |
| |
| SmallVector<ParmVarDecl*, 4> params; |
| SmallVector<QualType, 4> paramTypes; |
| |
| // Parameter substitution. |
| if (getDerived().TransformFunctionTypeParams(E->getCaretLocation(), |
| oldBlock->param_begin(), |
| oldBlock->param_size(), |
| 0, paramTypes, ¶ms)) { |
| getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/0); |
| return ExprError(); |
| } |
| |
| const FunctionProtoType *exprFunctionType = E->getFunctionType(); |
| QualType exprResultType = |
| getDerived().TransformType(exprFunctionType->getResultType()); |
| |
| // Don't allow returning a objc interface by value. |
| if (exprResultType->isObjCObjectType()) { |
| getSema().Diag(E->getCaretLocation(), |
| diag::err_object_cannot_be_passed_returned_by_value) |
| << 0 << exprResultType; |
| getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/0); |
| return ExprError(); |
| } |
| |
| QualType functionType = |
| getDerived().RebuildFunctionProtoType(exprResultType, paramTypes, |
| exprFunctionType->getExtProtoInfo()); |
| blockScope->FunctionType = functionType; |
| |
| // Set the parameters on the block decl. |
| if (!params.empty()) |
| blockScope->TheDecl->setParams(params); |
| |
| if (!oldBlock->blockMissingReturnType()) { |
| blockScope->HasImplicitReturnType = false; |
| blockScope->ReturnType = exprResultType; |
| } |
| |
| // Transform the body |
| StmtResult body = getDerived().TransformStmt(E->getBody()); |
| if (body.isInvalid()) { |
| getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/0); |
| return ExprError(); |
| } |
| |
| #ifndef NDEBUG |
| // In builds with assertions, make sure that we captured everything we |
| // captured before. |
| if (!SemaRef.getDiagnostics().hasErrorOccurred()) { |
| for (BlockDecl::capture_iterator i = oldBlock->capture_begin(), |
| e = oldBlock->capture_end(); i != e; ++i) { |
| VarDecl *oldCapture = i->getVariable(); |
| |
| // Ignore parameter packs. |
| if (isa<ParmVarDecl>(oldCapture) && |
| cast<ParmVarDecl>(oldCapture)->isParameterPack()) |
| continue; |
| |
| VarDecl *newCapture = |
| cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(), |
| oldCapture)); |
| assert(blockScope->CaptureMap.count(newCapture)); |
| } |
| assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured()); |
| } |
| #endif |
| |
| return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(), |
| /*Scope=*/0); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) { |
| llvm_unreachable("Cannot transform asType expressions yet"); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) { |
| QualType RetTy = getDerived().TransformType(E->getType()); |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> SubExprs; |
| SubExprs.reserve(E->getNumSubExprs()); |
| if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false, |
| SubExprs, &ArgumentChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| !ArgumentChanged) |
| return SemaRef.Owned(E); |
| |
| return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs, |
| RetTy, E->getOp(), E->getRParenLoc()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type reconstruction |
| //===----------------------------------------------------------------------===// |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType, |
| SourceLocation Star) { |
| return SemaRef.BuildPointerType(PointeeType, Star, |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType, |
| SourceLocation Star) { |
| return SemaRef.BuildBlockPointerType(PointeeType, Star, |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType, |
| bool WrittenAsLValue, |
| SourceLocation Sigil) { |
| return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue, |
| Sigil, getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType, |
| QualType ClassType, |
| SourceLocation Sigil) { |
| return SemaRef.BuildMemberPointerType(PointeeType, ClassType, |
| Sigil, getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| const llvm::APInt *Size, |
| Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| if (SizeExpr || !Size) |
| return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr, |
| IndexTypeQuals, BracketsRange, |
| getDerived().getBaseEntity()); |
| |
| QualType Types[] = { |
| SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy, |
| SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy, |
| SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty |
| }; |
| const unsigned NumTypes = sizeof(Types) / sizeof(QualType); |
| QualType SizeType; |
| for (unsigned I = 0; I != NumTypes; ++I) |
| if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) { |
| SizeType = Types[I]; |
| break; |
| } |
| |
| // Note that we can return a VariableArrayType here in the case where |
| // the element type was a dependent VariableArrayType. |
| IntegerLiteral *ArraySize |
| = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType, |
| /*FIXME*/BracketsRange.getBegin()); |
| return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize, |
| IndexTypeQuals, BracketsRange, |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| const llvm::APInt &Size, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, 0, |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, 0, 0, |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, 0, |
| SizeExpr, |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, 0, |
| SizeExpr, |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType, |
| unsigned NumElements, |
| VectorType::VectorKind VecKind) { |
| // FIXME: semantic checking! |
| return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType, |
| unsigned NumElements, |
| SourceLocation AttributeLoc) { |
| llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy), |
| NumElements, true); |
| IntegerLiteral *VectorSize |
| = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy, |
| AttributeLoc); |
| return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType, |
| Expr *SizeExpr, |
| SourceLocation AttributeLoc) { |
| return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildFunctionProtoType( |
| QualType T, |
| llvm::MutableArrayRef<QualType> ParamTypes, |
| const FunctionProtoType::ExtProtoInfo &EPI) { |
| return SemaRef.BuildFunctionType(T, ParamTypes, |
| getDerived().getBaseLocation(), |
| getDerived().getBaseEntity(), |
| EPI); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) { |
| return SemaRef.Context.getFunctionNoProtoType(T); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(Decl *D) { |
| assert(D && "no decl found"); |
| if (D->isInvalidDecl()) return QualType(); |
| |
| // FIXME: Doesn't account for ObjCInterfaceDecl! |
| TypeDecl *Ty; |
| if (isa<UsingDecl>(D)) { |
| UsingDecl *Using = cast<UsingDecl>(D); |
| assert(Using->isTypeName() && |
| "UnresolvedUsingTypenameDecl transformed to non-typename using"); |
| |
| // A valid resolved using typename decl points to exactly one type decl. |
| assert(++Using->shadow_begin() == Using->shadow_end()); |
| Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl()); |
| |
| } else { |
| assert(isa<UnresolvedUsingTypenameDecl>(D) && |
| "UnresolvedUsingTypenameDecl transformed to non-using decl"); |
| Ty = cast<UnresolvedUsingTypenameDecl>(D); |
| } |
| |
| return SemaRef.Context.getTypeDeclType(Ty); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E, |
| SourceLocation Loc) { |
| return SemaRef.BuildTypeofExprType(E, Loc); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) { |
| return SemaRef.Context.getTypeOfType(Underlying); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E, |
| SourceLocation Loc) { |
| return SemaRef.BuildDecltypeType(E, Loc); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType, |
| UnaryTransformType::UTTKind UKind, |
| SourceLocation Loc) { |
| return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildTemplateSpecializationType( |
| TemplateName Template, |
| SourceLocation TemplateNameLoc, |
| TemplateArgumentListInfo &TemplateArgs) { |
| return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType, |
| SourceLocation KWLoc) { |
| return SemaRef.BuildAtomicType(ValueType, KWLoc); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS, |
| bool TemplateKW, |
| TemplateDecl *Template) { |
| return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW, |
| Template); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS, |
| const IdentifierInfo &Name, |
| SourceLocation NameLoc, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope) { |
| UnqualifiedId TemplateName; |
| TemplateName.setIdentifier(&Name, NameLoc); |
| Sema::TemplateTy Template; |
| SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller. |
| getSema().ActOnDependentTemplateName(/*Scope=*/0, |
| SS, TemplateKWLoc, TemplateName, |
| ParsedType::make(ObjectType), |
| /*EnteringContext=*/false, |
| Template); |
| return Template.get(); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS, |
| OverloadedOperatorKind Operator, |
| SourceLocation NameLoc, |
| QualType ObjectType) { |
| UnqualifiedId Name; |
| // FIXME: Bogus location information. |
| SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc }; |
| Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations); |
| SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller. |
| Sema::TemplateTy Template; |
| getSema().ActOnDependentTemplateName(/*Scope=*/0, |
| SS, TemplateKWLoc, Name, |
| ParsedType::make(ObjectType), |
| /*EnteringContext=*/false, |
| Template); |
| return Template.template getAsVal<TemplateName>(); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, |
| SourceLocation OpLoc, |
| Expr *OrigCallee, |
| Expr *First, |
| Expr *Second) { |
| Expr *Callee = OrigCallee->IgnoreParenCasts(); |
| bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus); |
| |
| // Determine whether this should be a builtin operation. |
| if (Op == OO_Subscript) { |
| if (!First->getType()->isOverloadableType() && |
| !Second->getType()->isOverloadableType()) |
| return getSema().CreateBuiltinArraySubscriptExpr(First, |
| Callee->getLocStart(), |
| Second, OpLoc); |
| } else if (Op == OO_Arrow) { |
| // -> is never a builtin operation. |
| return SemaRef.BuildOverloadedArrowExpr(0, First, OpLoc); |
| } else if (Second == 0 || isPostIncDec) { |
| if (!First->getType()->isOverloadableType()) { |
| // The argument is not of overloadable type, so try to create a |
| // built-in unary operation. |
| UnaryOperatorKind Opc |
| = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); |
| |
| return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First); |
| } |
| } else { |
| if (!First->getType()->isOverloadableType() && |
| !Second->getType()->isOverloadableType()) { |
| // Neither of the arguments is an overloadable type, so try to |
| // create a built-in binary operation. |
| BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); |
| ExprResult Result |
| = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return Result; |
| } |
| } |
| |
| // Compute the transformed set of functions (and function templates) to be |
| // used during overload resolution. |
| UnresolvedSet<16> Functions; |
| |
| if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) { |
| assert(ULE->requiresADL()); |
| |
| // FIXME: Do we have to check |
| // IsAcceptableNonMemberOperatorCandidate for each of these? |
| Functions.append(ULE->decls_begin(), ULE->decls_end()); |
| } else { |
| // If we've resolved this to a particular non-member function, just call |
| // that function. If we resolved it to a member function, |
| // CreateOverloaded* will find that function for us. |
| NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl(); |
| if (!isa<CXXMethodDecl>(ND)) |
| Functions.addDecl(ND); |
| } |
| |
| // Add any functions found via argument-dependent lookup. |
| Expr *Args[2] = { First, Second }; |
| unsigned NumArgs = 1 + (Second != 0); |
| |
| // Create the overloaded operator invocation for unary operators. |
| if (NumArgs == 1 || isPostIncDec) { |
| UnaryOperatorKind Opc |
| = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); |
| return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First); |
| } |
| |
| if (Op == OO_Subscript) { |
| SourceLocation LBrace; |
| SourceLocation RBrace; |
| |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) { |
| DeclarationNameLoc &NameLoc = DRE->getNameInfo().getInfo(); |
| LBrace = SourceLocation::getFromRawEncoding( |
| NameLoc.CXXOperatorName.BeginOpNameLoc); |
| RBrace = SourceLocation::getFromRawEncoding( |
| NameLoc.CXXOperatorName.EndOpNameLoc); |
| } else { |
| LBrace = Callee->getLocStart(); |
| RBrace = OpLoc; |
| } |
| |
| return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace, |
| First, Second); |
| } |
| |
| // Create the overloaded operator invocation for binary operators. |
| BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); |
| ExprResult Result |
| = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base, |
| SourceLocation OperatorLoc, |
| bool isArrow, |
| CXXScopeSpec &SS, |
| TypeSourceInfo *ScopeType, |
| SourceLocation CCLoc, |
| SourceLocation TildeLoc, |
| PseudoDestructorTypeStorage Destroyed) { |
| QualType BaseType = Base->getType(); |
| if (Base->isTypeDependent() || Destroyed.getIdentifier() || |
| (!isArrow && !BaseType->getAs<RecordType>()) || |
| (isArrow && BaseType->getAs<PointerType>() && |
| !BaseType->getAs<PointerType>()->getPointeeType() |
| ->template getAs<RecordType>())){ |
| // This pseudo-destructor expression is still a pseudo-destructor. |
| return SemaRef.BuildPseudoDestructorExpr(Base, OperatorLoc, |
| isArrow? tok::arrow : tok::period, |
| SS, ScopeType, CCLoc, TildeLoc, |
| Destroyed, |
| /*FIXME?*/true); |
| } |
| |
| TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo(); |
| DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName( |
| SemaRef.Context.getCanonicalType(DestroyedType->getType()))); |
| DeclarationNameInfo NameInfo(Name, Destroyed.getLocation()); |
| NameInfo.setNamedTypeInfo(DestroyedType); |
| |
| // The scope type is now known to be a valid nested name specifier |
| // component. Tack it on to the end of the nested name specifier. |
| if (ScopeType) |
| SS.Extend(SemaRef.Context, SourceLocation(), |
| ScopeType->getTypeLoc(), CCLoc); |
| |
| SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller. |
| return getSema().BuildMemberReferenceExpr(Base, BaseType, |
| OperatorLoc, isArrow, |
| SS, TemplateKWLoc, |
| /*FIXME: FirstQualifier*/ 0, |
| NameInfo, |
| /*TemplateArgs*/ 0); |
| } |
| |
| } // end namespace clang |
| |
| #endif // LLVM_CLANG_SEMA_TREETRANSFORM_H |