| //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file This file defines CallEvent and its subclasses, which represent path- |
| /// sensitive instances of different kinds of function and method calls |
| /// (C, C++, and Objective-C). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/Analysis/ProgramPoint.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace clang; |
| using namespace ento; |
| |
| QualType CallEvent::getResultType() const { |
| const Expr *E = getOriginExpr(); |
| assert(E && "Calls without origin expressions do not have results"); |
| QualType ResultTy = E->getType(); |
| |
| ASTContext &Ctx = getState()->getStateManager().getContext(); |
| |
| // A function that returns a reference to 'int' will have a result type |
| // of simply 'int'. Check the origin expr's value kind to recover the |
| // proper type. |
| switch (E->getValueKind()) { |
| case VK_LValue: |
| ResultTy = Ctx.getLValueReferenceType(ResultTy); |
| break; |
| case VK_XValue: |
| ResultTy = Ctx.getRValueReferenceType(ResultTy); |
| break; |
| case VK_RValue: |
| // No adjustment is necessary. |
| break; |
| } |
| |
| return ResultTy; |
| } |
| |
| static bool isCallbackArg(SVal V, QualType T) { |
| // If the parameter is 0, it's harmless. |
| if (V.isZeroConstant()) |
| return false; |
| |
| // If a parameter is a block or a callback, assume it can modify pointer. |
| if (T->isBlockPointerType() || |
| T->isFunctionPointerType() || |
| T->isObjCSelType()) |
| return true; |
| |
| // Check if a callback is passed inside a struct (for both, struct passed by |
| // reference and by value). Dig just one level into the struct for now. |
| |
| if (T->isAnyPointerType() || T->isReferenceType()) |
| T = T->getPointeeType(); |
| |
| if (const RecordType *RT = T->getAsStructureType()) { |
| const RecordDecl *RD = RT->getDecl(); |
| for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); |
| I != E; ++I) { |
| QualType FieldT = I->getType(); |
| if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool CallEvent::hasNonZeroCallbackArg() const { |
| unsigned NumOfArgs = getNumArgs(); |
| |
| // If calling using a function pointer, assume the function does not |
| // have a callback. TODO: We could check the types of the arguments here. |
| if (!getDecl()) |
| return false; |
| |
| unsigned Idx = 0; |
| for (CallEvent::param_type_iterator I = param_type_begin(), |
| E = param_type_end(); |
| I != E && Idx < NumOfArgs; ++I, ++Idx) { |
| if (NumOfArgs <= Idx) |
| break; |
| |
| if (isCallbackArg(getArgSVal(Idx), *I)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { |
| const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); |
| if (!FD) |
| return false; |
| |
| return CheckerContext::isCLibraryFunction(FD, FunctionName); |
| } |
| |
| /// \brief Returns true if a type is a pointer-to-const or reference-to-const |
| /// with no further indirection. |
| static bool isPointerToConst(QualType Ty) { |
| QualType PointeeTy = Ty->getPointeeType(); |
| if (PointeeTy == QualType()) |
| return false; |
| if (!PointeeTy.isConstQualified()) |
| return false; |
| if (PointeeTy->isAnyPointerType()) |
| return false; |
| return true; |
| } |
| |
| // Try to retrieve the function declaration and find the function parameter |
| // types which are pointers/references to a non-pointer const. |
| // We will not invalidate the corresponding argument regions. |
| static void findPtrToConstParams(llvm::SmallSet<unsigned, 1> &PreserveArgs, |
| const CallEvent &Call) { |
| unsigned Idx = 0; |
| for (CallEvent::param_type_iterator I = Call.param_type_begin(), |
| E = Call.param_type_end(); |
| I != E; ++I, ++Idx) { |
| if (isPointerToConst(*I)) |
| PreserveArgs.insert(Idx); |
| } |
| } |
| |
| ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, |
| ProgramStateRef Orig) const { |
| ProgramStateRef Result = (Orig ? Orig : getState()); |
| |
| SmallVector<const MemRegion *, 8> RegionsToInvalidate; |
| getExtraInvalidatedRegions(RegionsToInvalidate); |
| |
| // Indexes of arguments whose values will be preserved by the call. |
| llvm::SmallSet<unsigned, 1> PreserveArgs; |
| if (!argumentsMayEscape()) |
| findPtrToConstParams(PreserveArgs, *this); |
| |
| for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { |
| if (PreserveArgs.count(Idx)) |
| continue; |
| |
| SVal V = getArgSVal(Idx); |
| |
| // If we are passing a location wrapped as an integer, unwrap it and |
| // invalidate the values referred by the location. |
| if (Optional<nonloc::LocAsInteger> Wrapped = |
| V.getAs<nonloc::LocAsInteger>()) |
| V = Wrapped->getLoc(); |
| else if (!V.getAs<Loc>()) |
| continue; |
| |
| if (const MemRegion *R = V.getAsRegion()) { |
| // Invalidate the value of the variable passed by reference. |
| |
| // Are we dealing with an ElementRegion? If the element type is |
| // a basic integer type (e.g., char, int) and the underlying region |
| // is a variable region then strip off the ElementRegion. |
| // FIXME: We really need to think about this for the general case |
| // as sometimes we are reasoning about arrays and other times |
| // about (char*), etc., is just a form of passing raw bytes. |
| // e.g., void *p = alloca(); foo((char*)p); |
| if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { |
| // Checking for 'integral type' is probably too promiscuous, but |
| // we'll leave it in for now until we have a systematic way of |
| // handling all of these cases. Eventually we need to come up |
| // with an interface to StoreManager so that this logic can be |
| // appropriately delegated to the respective StoreManagers while |
| // still allowing us to do checker-specific logic (e.g., |
| // invalidating reference counts), probably via callbacks. |
| if (ER->getElementType()->isIntegralOrEnumerationType()) { |
| const MemRegion *superReg = ER->getSuperRegion(); |
| if (isa<VarRegion>(superReg) || isa<FieldRegion>(superReg) || |
| isa<ObjCIvarRegion>(superReg)) |
| R = cast<TypedRegion>(superReg); |
| } |
| // FIXME: What about layers of ElementRegions? |
| } |
| |
| // Mark this region for invalidation. We batch invalidate regions |
| // below for efficiency. |
| RegionsToInvalidate.push_back(R); |
| } |
| } |
| |
| // Invalidate designated regions using the batch invalidation API. |
| // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate |
| // global variables. |
| return Result->invalidateRegions(RegionsToInvalidate, getOriginExpr(), |
| BlockCount, getLocationContext(), |
| /*CausedByPointerEscape*/ true, |
| /*Symbols=*/0, this); |
| } |
| |
| ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, |
| const ProgramPointTag *Tag) const { |
| if (const Expr *E = getOriginExpr()) { |
| if (IsPreVisit) |
| return PreStmt(E, getLocationContext(), Tag); |
| return PostStmt(E, getLocationContext(), Tag); |
| } |
| |
| const Decl *D = getDecl(); |
| assert(D && "Cannot get a program point without a statement or decl"); |
| |
| SourceLocation Loc = getSourceRange().getBegin(); |
| if (IsPreVisit) |
| return PreImplicitCall(D, Loc, getLocationContext(), Tag); |
| return PostImplicitCall(D, Loc, getLocationContext(), Tag); |
| } |
| |
| SVal CallEvent::getArgSVal(unsigned Index) const { |
| const Expr *ArgE = getArgExpr(Index); |
| if (!ArgE) |
| return UnknownVal(); |
| return getSVal(ArgE); |
| } |
| |
| SourceRange CallEvent::getArgSourceRange(unsigned Index) const { |
| const Expr *ArgE = getArgExpr(Index); |
| if (!ArgE) |
| return SourceRange(); |
| return ArgE->getSourceRange(); |
| } |
| |
| SVal CallEvent::getReturnValue() const { |
| const Expr *E = getOriginExpr(); |
| if (!E) |
| return UndefinedVal(); |
| return getSVal(E); |
| } |
| |
| void CallEvent::dump() const { |
| dump(llvm::errs()); |
| } |
| |
| void CallEvent::dump(raw_ostream &Out) const { |
| ASTContext &Ctx = getState()->getStateManager().getContext(); |
| if (const Expr *E = getOriginExpr()) { |
| E->printPretty(Out, 0, Ctx.getPrintingPolicy()); |
| Out << "\n"; |
| return; |
| } |
| |
| if (const Decl *D = getDecl()) { |
| Out << "Call to "; |
| D->print(Out, Ctx.getPrintingPolicy()); |
| return; |
| } |
| |
| // FIXME: a string representation of the kind would be nice. |
| Out << "Unknown call (type " << getKind() << ")"; |
| } |
| |
| |
| bool CallEvent::isCallStmt(const Stmt *S) { |
| return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S) |
| || isa<CXXConstructExpr>(S) |
| || isa<CXXNewExpr>(S); |
| } |
| |
| QualType CallEvent::getDeclaredResultType(const Decl *D) { |
| assert(D); |
| if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) |
| return FD->getResultType(); |
| else if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D)) |
| return MD->getResultType(); |
| return QualType(); |
| } |
| |
| static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, |
| CallEvent::BindingsTy &Bindings, |
| SValBuilder &SVB, |
| const CallEvent &Call, |
| CallEvent::param_iterator I, |
| CallEvent::param_iterator E) { |
| MemRegionManager &MRMgr = SVB.getRegionManager(); |
| |
| unsigned Idx = 0; |
| for (; I != E; ++I, ++Idx) { |
| const ParmVarDecl *ParamDecl = *I; |
| assert(ParamDecl && "Formal parameter has no decl?"); |
| |
| SVal ArgVal = Call.getArgSVal(Idx); |
| if (!ArgVal.isUnknown()) { |
| Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx)); |
| Bindings.push_back(std::make_pair(ParamLoc, ArgVal)); |
| } |
| } |
| |
| // FIXME: Variadic arguments are not handled at all right now. |
| } |
| |
| |
| CallEvent::param_iterator AnyFunctionCall::param_begin() const { |
| const FunctionDecl *D = getDecl(); |
| if (!D) |
| return 0; |
| |
| return D->param_begin(); |
| } |
| |
| CallEvent::param_iterator AnyFunctionCall::param_end() const { |
| const FunctionDecl *D = getDecl(); |
| if (!D) |
| return 0; |
| |
| return D->param_end(); |
| } |
| |
| void AnyFunctionCall::getInitialStackFrameContents( |
| const StackFrameContext *CalleeCtx, |
| BindingsTy &Bindings) const { |
| const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl()); |
| SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); |
| addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, |
| D->param_begin(), D->param_end()); |
| } |
| |
| bool AnyFunctionCall::argumentsMayEscape() const { |
| if (hasNonZeroCallbackArg()) |
| return true; |
| |
| const FunctionDecl *D = getDecl(); |
| if (!D) |
| return true; |
| |
| const IdentifierInfo *II = D->getIdentifier(); |
| if (!II) |
| return false; |
| |
| // This set of "escaping" APIs is |
| |
| // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a |
| // value into thread local storage. The value can later be retrieved with |
| // 'void *ptheread_getspecific(pthread_key)'. So even thought the |
| // parameter is 'const void *', the region escapes through the call. |
| if (II->isStr("pthread_setspecific")) |
| return true; |
| |
| // - xpc_connection_set_context stores a value which can be retrieved later |
| // with xpc_connection_get_context. |
| if (II->isStr("xpc_connection_set_context")) |
| return true; |
| |
| // - funopen - sets a buffer for future IO calls. |
| if (II->isStr("funopen")) |
| return true; |
| |
| StringRef FName = II->getName(); |
| |
| // - CoreFoundation functions that end with "NoCopy" can free a passed-in |
| // buffer even if it is const. |
| if (FName.endswith("NoCopy")) |
| return true; |
| |
| // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can |
| // be deallocated by NSMapRemove. |
| if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) |
| return true; |
| |
| // - Many CF containers allow objects to escape through custom |
| // allocators/deallocators upon container construction. (PR12101) |
| if (FName.startswith("CF") || FName.startswith("CG")) { |
| return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || |
| StrInStrNoCase(FName, "AddValue") != StringRef::npos || |
| StrInStrNoCase(FName, "SetValue") != StringRef::npos || |
| StrInStrNoCase(FName, "WithData") != StringRef::npos || |
| StrInStrNoCase(FName, "AppendValue") != StringRef::npos || |
| StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; |
| } |
| |
| return false; |
| } |
| |
| |
| const FunctionDecl *SimpleCall::getDecl() const { |
| const FunctionDecl *D = getOriginExpr()->getDirectCallee(); |
| if (D) |
| return D; |
| |
| return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); |
| } |
| |
| |
| const FunctionDecl *CXXInstanceCall::getDecl() const { |
| const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr()); |
| if (!CE) |
| return AnyFunctionCall::getDecl(); |
| |
| const FunctionDecl *D = CE->getDirectCallee(); |
| if (D) |
| return D; |
| |
| return getSVal(CE->getCallee()).getAsFunctionDecl(); |
| } |
| |
| void CXXInstanceCall::getExtraInvalidatedRegions(RegionList &Regions) const { |
| if (const MemRegion *R = getCXXThisVal().getAsRegion()) |
| Regions.push_back(R); |
| } |
| |
| SVal CXXInstanceCall::getCXXThisVal() const { |
| const Expr *Base = getCXXThisExpr(); |
| // FIXME: This doesn't handle an overloaded ->* operator. |
| if (!Base) |
| return UnknownVal(); |
| |
| SVal ThisVal = getSVal(Base); |
| assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); |
| return ThisVal; |
| } |
| |
| |
| RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { |
| // Do we have a decl at all? |
| const Decl *D = getDecl(); |
| if (!D) |
| return RuntimeDefinition(); |
| |
| // If the method is non-virtual, we know we can inline it. |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); |
| if (!MD->isVirtual()) |
| return AnyFunctionCall::getRuntimeDefinition(); |
| |
| // Do we know the implicit 'this' object being called? |
| const MemRegion *R = getCXXThisVal().getAsRegion(); |
| if (!R) |
| return RuntimeDefinition(); |
| |
| // Do we know anything about the type of 'this'? |
| DynamicTypeInfo DynType = getState()->getDynamicTypeInfo(R); |
| if (!DynType.isValid()) |
| return RuntimeDefinition(); |
| |
| // Is the type a C++ class? (This is mostly a defensive check.) |
| QualType RegionType = DynType.getType()->getPointeeType(); |
| assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); |
| |
| const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); |
| if (!RD || !RD->hasDefinition()) |
| return RuntimeDefinition(); |
| |
| // Find the decl for this method in that class. |
| const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); |
| if (!Result) { |
| // We might not even get the original statically-resolved method due to |
| // some particularly nasty casting (e.g. casts to sister classes). |
| // However, we should at least be able to search up and down our own class |
| // hierarchy, and some real bugs have been caught by checking this. |
| assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); |
| |
| // FIXME: This is checking that our DynamicTypeInfo is at least as good as |
| // the static type. However, because we currently don't update |
| // DynamicTypeInfo when an object is cast, we can't actually be sure the |
| // DynamicTypeInfo is up to date. This assert should be re-enabled once |
| // this is fixed. <rdar://problem/12287087> |
| //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); |
| |
| return RuntimeDefinition(); |
| } |
| |
| // Does the decl that we found have an implementation? |
| const FunctionDecl *Definition; |
| if (!Result->hasBody(Definition)) |
| return RuntimeDefinition(); |
| |
| // We found a definition. If we're not sure that this devirtualization is |
| // actually what will happen at runtime, make sure to provide the region so |
| // that ExprEngine can decide what to do with it. |
| if (DynType.canBeASubClass()) |
| return RuntimeDefinition(Definition, R->StripCasts()); |
| return RuntimeDefinition(Definition, /*DispatchRegion=*/0); |
| } |
| |
| void CXXInstanceCall::getInitialStackFrameContents( |
| const StackFrameContext *CalleeCtx, |
| BindingsTy &Bindings) const { |
| AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); |
| |
| // Handle the binding of 'this' in the new stack frame. |
| SVal ThisVal = getCXXThisVal(); |
| if (!ThisVal.isUnknown()) { |
| ProgramStateManager &StateMgr = getState()->getStateManager(); |
| SValBuilder &SVB = StateMgr.getSValBuilder(); |
| |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); |
| Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); |
| |
| // If we devirtualized to a different member function, we need to make sure |
| // we have the proper layering of CXXBaseObjectRegions. |
| if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { |
| ASTContext &Ctx = SVB.getContext(); |
| const CXXRecordDecl *Class = MD->getParent(); |
| QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); |
| |
| // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. |
| bool Failed; |
| ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed); |
| assert(!Failed && "Calling an incorrectly devirtualized method"); |
| } |
| |
| if (!ThisVal.isUnknown()) |
| Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); |
| } |
| } |
| |
| |
| |
| const Expr *CXXMemberCall::getCXXThisExpr() const { |
| return getOriginExpr()->getImplicitObjectArgument(); |
| } |
| |
| RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { |
| // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the |
| // id-expression in the class member access expression is a qualified-id, |
| // that function is called. Otherwise, its final overrider in the dynamic type |
| // of the object expression is called. |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) |
| if (ME->hasQualifier()) |
| return AnyFunctionCall::getRuntimeDefinition(); |
| |
| return CXXInstanceCall::getRuntimeDefinition(); |
| } |
| |
| |
| const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { |
| return getOriginExpr()->getArg(0); |
| } |
| |
| |
| const BlockDataRegion *BlockCall::getBlockRegion() const { |
| const Expr *Callee = getOriginExpr()->getCallee(); |
| const MemRegion *DataReg = getSVal(Callee).getAsRegion(); |
| |
| return dyn_cast_or_null<BlockDataRegion>(DataReg); |
| } |
| |
| CallEvent::param_iterator BlockCall::param_begin() const { |
| const BlockDecl *D = getBlockDecl(); |
| if (!D) |
| return 0; |
| return D->param_begin(); |
| } |
| |
| CallEvent::param_iterator BlockCall::param_end() const { |
| const BlockDecl *D = getBlockDecl(); |
| if (!D) |
| return 0; |
| return D->param_end(); |
| } |
| |
| void BlockCall::getExtraInvalidatedRegions(RegionList &Regions) const { |
| // FIXME: This also needs to invalidate captured globals. |
| if (const MemRegion *R = getBlockRegion()) |
| Regions.push_back(R); |
| } |
| |
| void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, |
| BindingsTy &Bindings) const { |
| const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl()); |
| SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); |
| addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, |
| D->param_begin(), D->param_end()); |
| } |
| |
| |
| SVal CXXConstructorCall::getCXXThisVal() const { |
| if (Data) |
| return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); |
| return UnknownVal(); |
| } |
| |
| void CXXConstructorCall::getExtraInvalidatedRegions(RegionList &Regions) const { |
| if (Data) |
| Regions.push_back(static_cast<const MemRegion *>(Data)); |
| } |
| |
| void CXXConstructorCall::getInitialStackFrameContents( |
| const StackFrameContext *CalleeCtx, |
| BindingsTy &Bindings) const { |
| AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); |
| |
| SVal ThisVal = getCXXThisVal(); |
| if (!ThisVal.isUnknown()) { |
| SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); |
| Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); |
| Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); |
| } |
| } |
| |
| |
| |
| SVal CXXDestructorCall::getCXXThisVal() const { |
| if (Data) |
| return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); |
| return UnknownVal(); |
| } |
| |
| RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { |
| // Base destructors are always called non-virtually. |
| // Skip CXXInstanceCall's devirtualization logic in this case. |
| if (isBaseDestructor()) |
| return AnyFunctionCall::getRuntimeDefinition(); |
| |
| return CXXInstanceCall::getRuntimeDefinition(); |
| } |
| |
| |
| CallEvent::param_iterator ObjCMethodCall::param_begin() const { |
| const ObjCMethodDecl *D = getDecl(); |
| if (!D) |
| return 0; |
| |
| return D->param_begin(); |
| } |
| |
| CallEvent::param_iterator ObjCMethodCall::param_end() const { |
| const ObjCMethodDecl *D = getDecl(); |
| if (!D) |
| return 0; |
| |
| return D->param_end(); |
| } |
| |
| void |
| ObjCMethodCall::getExtraInvalidatedRegions(RegionList &Regions) const { |
| if (const MemRegion *R = getReceiverSVal().getAsRegion()) |
| Regions.push_back(R); |
| } |
| |
| SVal ObjCMethodCall::getSelfSVal() const { |
| const LocationContext *LCtx = getLocationContext(); |
| const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); |
| if (!SelfDecl) |
| return SVal(); |
| return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx)); |
| } |
| |
| SVal ObjCMethodCall::getReceiverSVal() const { |
| // FIXME: Is this the best way to handle class receivers? |
| if (!isInstanceMessage()) |
| return UnknownVal(); |
| |
| if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) |
| return getSVal(RecE); |
| |
| // An instance message with no expression means we are sending to super. |
| // In this case the object reference is the same as 'self'. |
| assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); |
| SVal SelfVal = getSelfSVal(); |
| assert(SelfVal.isValid() && "Calling super but not in ObjC method"); |
| return SelfVal; |
| } |
| |
| bool ObjCMethodCall::isReceiverSelfOrSuper() const { |
| if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || |
| getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) |
| return true; |
| |
| if (!isInstanceMessage()) |
| return false; |
| |
| SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); |
| |
| return (RecVal == getSelfSVal()); |
| } |
| |
| SourceRange ObjCMethodCall::getSourceRange() const { |
| switch (getMessageKind()) { |
| case OCM_Message: |
| return getOriginExpr()->getSourceRange(); |
| case OCM_PropertyAccess: |
| case OCM_Subscript: |
| return getContainingPseudoObjectExpr()->getSourceRange(); |
| } |
| llvm_unreachable("unknown message kind"); |
| } |
| |
| typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy; |
| |
| const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { |
| assert(Data != 0 && "Lazy lookup not yet performed."); |
| assert(getMessageKind() != OCM_Message && "Explicit message send."); |
| return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); |
| } |
| |
| ObjCMessageKind ObjCMethodCall::getMessageKind() const { |
| if (Data == 0) { |
| ParentMap &PM = getLocationContext()->getParentMap(); |
| const Stmt *S = PM.getParent(getOriginExpr()); |
| if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { |
| const Expr *Syntactic = POE->getSyntacticForm(); |
| |
| // This handles the funny case of assigning to the result of a getter. |
| // This can happen if the getter returns a non-const reference. |
| if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic)) |
| Syntactic = BO->getLHS(); |
| |
| ObjCMessageKind K; |
| switch (Syntactic->getStmtClass()) { |
| case Stmt::ObjCPropertyRefExprClass: |
| K = OCM_PropertyAccess; |
| break; |
| case Stmt::ObjCSubscriptRefExprClass: |
| K = OCM_Subscript; |
| break; |
| default: |
| // FIXME: Can this ever happen? |
| K = OCM_Message; |
| break; |
| } |
| |
| if (K != OCM_Message) { |
| const_cast<ObjCMethodCall *>(this)->Data |
| = ObjCMessageDataTy(POE, K).getOpaqueValue(); |
| assert(getMessageKind() == K); |
| return K; |
| } |
| } |
| |
| const_cast<ObjCMethodCall *>(this)->Data |
| = ObjCMessageDataTy(0, 1).getOpaqueValue(); |
| assert(getMessageKind() == OCM_Message); |
| return OCM_Message; |
| } |
| |
| ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); |
| if (!Info.getPointer()) |
| return OCM_Message; |
| return static_cast<ObjCMessageKind>(Info.getInt()); |
| } |
| |
| |
| bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, |
| Selector Sel) const { |
| assert(IDecl); |
| const SourceManager &SM = |
| getState()->getStateManager().getContext().getSourceManager(); |
| |
| // If the class interface is declared inside the main file, assume it is not |
| // subcassed. |
| // TODO: It could actually be subclassed if the subclass is private as well. |
| // This is probably very rare. |
| SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); |
| if (InterfLoc.isValid() && SM.isFromMainFile(InterfLoc)) |
| return false; |
| |
| // Assume that property accessors are not overridden. |
| if (getMessageKind() == OCM_PropertyAccess) |
| return false; |
| |
| // We assume that if the method is public (declared outside of main file) or |
| // has a parent which publicly declares the method, the method could be |
| // overridden in a subclass. |
| |
| // Find the first declaration in the class hierarchy that declares |
| // the selector. |
| ObjCMethodDecl *D = 0; |
| while (true) { |
| D = IDecl->lookupMethod(Sel, true); |
| |
| // Cannot find a public definition. |
| if (!D) |
| return false; |
| |
| // If outside the main file, |
| if (D->getLocation().isValid() && !SM.isFromMainFile(D->getLocation())) |
| return true; |
| |
| if (D->isOverriding()) { |
| // Search in the superclass on the next iteration. |
| IDecl = D->getClassInterface(); |
| if (!IDecl) |
| return false; |
| |
| IDecl = IDecl->getSuperClass(); |
| if (!IDecl) |
| return false; |
| |
| continue; |
| } |
| |
| return false; |
| }; |
| |
| llvm_unreachable("The while loop should always terminate."); |
| } |
| |
| RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { |
| const ObjCMessageExpr *E = getOriginExpr(); |
| assert(E); |
| Selector Sel = E->getSelector(); |
| |
| if (E->isInstanceMessage()) { |
| |
| // Find the the receiver type. |
| const ObjCObjectPointerType *ReceiverT = 0; |
| bool CanBeSubClassed = false; |
| QualType SupersType = E->getSuperType(); |
| const MemRegion *Receiver = 0; |
| |
| if (!SupersType.isNull()) { |
| // Super always means the type of immediate predecessor to the method |
| // where the call occurs. |
| ReceiverT = cast<ObjCObjectPointerType>(SupersType); |
| } else { |
| Receiver = getReceiverSVal().getAsRegion(); |
| if (!Receiver) |
| return RuntimeDefinition(); |
| |
| DynamicTypeInfo DTI = getState()->getDynamicTypeInfo(Receiver); |
| QualType DynType = DTI.getType(); |
| CanBeSubClassed = DTI.canBeASubClass(); |
| ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType); |
| |
| if (ReceiverT && CanBeSubClassed) |
| if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) |
| if (!canBeOverridenInSubclass(IDecl, Sel)) |
| CanBeSubClassed = false; |
| } |
| |
| // Lookup the method implementation. |
| if (ReceiverT) |
| if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) { |
| // Repeatedly calling lookupPrivateMethod() is expensive, especially |
| // when in many cases it returns null. We cache the results so |
| // that repeated queries on the same ObjCIntefaceDecl and Selector |
| // don't incur the same cost. On some test cases, we can see the |
| // same query being issued thousands of times. |
| // |
| // NOTE: This cache is essentially a "global" variable, but it |
| // only gets lazily created when we get here. The value of the |
| // cache probably comes from it being global across ExprEngines, |
| // where the same queries may get issued. If we are worried about |
| // concurrency, or possibly loading/unloading ASTs, etc., we may |
| // need to revisit this someday. In terms of memory, this table |
| // stays around until clang quits, which also may be bad if we |
| // need to release memory. |
| typedef std::pair<const ObjCInterfaceDecl*, Selector> |
| PrivateMethodKey; |
| typedef llvm::DenseMap<PrivateMethodKey, |
| Optional<const ObjCMethodDecl *> > |
| PrivateMethodCache; |
| |
| static PrivateMethodCache PMC; |
| Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)]; |
| |
| // Query lookupPrivateMethod() if the cache does not hit. |
| if (!Val.hasValue()) |
| Val = IDecl->lookupPrivateMethod(Sel); |
| |
| const ObjCMethodDecl *MD = Val.getValue(); |
| if (CanBeSubClassed) |
| return RuntimeDefinition(MD, Receiver); |
| else |
| return RuntimeDefinition(MD, 0); |
| } |
| |
| } else { |
| // This is a class method. |
| // If we have type info for the receiver class, we are calling via |
| // class name. |
| if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { |
| // Find/Return the method implementation. |
| return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); |
| } |
| } |
| |
| return RuntimeDefinition(); |
| } |
| |
| void ObjCMethodCall::getInitialStackFrameContents( |
| const StackFrameContext *CalleeCtx, |
| BindingsTy &Bindings) const { |
| const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); |
| SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); |
| addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, |
| D->param_begin(), D->param_end()); |
| |
| SVal SelfVal = getReceiverSVal(); |
| if (!SelfVal.isUnknown()) { |
| const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); |
| MemRegionManager &MRMgr = SVB.getRegionManager(); |
| Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); |
| Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); |
| } |
| } |
| |
| CallEventRef<> |
| CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, |
| const LocationContext *LCtx) { |
| if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) |
| return create<CXXMemberCall>(MCE, State, LCtx); |
| |
| if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { |
| const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) |
| if (MD->isInstance()) |
| return create<CXXMemberOperatorCall>(OpCE, State, LCtx); |
| |
| } else if (CE->getCallee()->getType()->isBlockPointerType()) { |
| return create<BlockCall>(CE, State, LCtx); |
| } |
| |
| // Otherwise, it's a normal function call, static member function call, or |
| // something we can't reason about. |
| return create<FunctionCall>(CE, State, LCtx); |
| } |
| |
| |
| CallEventRef<> |
| CallEventManager::getCaller(const StackFrameContext *CalleeCtx, |
| ProgramStateRef State) { |
| const LocationContext *ParentCtx = CalleeCtx->getParent(); |
| const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame(); |
| assert(CallerCtx && "This should not be used for top-level stack frames"); |
| |
| const Stmt *CallSite = CalleeCtx->getCallSite(); |
| |
| if (CallSite) { |
| if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite)) |
| return getSimpleCall(CE, State, CallerCtx); |
| |
| switch (CallSite->getStmtClass()) { |
| case Stmt::CXXConstructExprClass: |
| case Stmt::CXXTemporaryObjectExprClass: { |
| SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
| const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); |
| Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); |
| SVal ThisVal = State->getSVal(ThisPtr); |
| |
| return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite), |
| ThisVal.getAsRegion(), State, CallerCtx); |
| } |
| case Stmt::CXXNewExprClass: |
| return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx); |
| case Stmt::ObjCMessageExprClass: |
| return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite), |
| State, CallerCtx); |
| default: |
| llvm_unreachable("This is not an inlineable statement."); |
| } |
| } |
| |
| // Fall back to the CFG. The only thing we haven't handled yet is |
| // destructors, though this could change in the future. |
| const CFGBlock *B = CalleeCtx->getCallSiteBlock(); |
| CFGElement E = (*B)[CalleeCtx->getIndex()]; |
| assert(E.getAs<CFGImplicitDtor>() && |
| "All other CFG elements should have exprs"); |
| assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet"); |
| |
| SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
| const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); |
| Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); |
| SVal ThisVal = State->getSVal(ThisPtr); |
| |
| const Stmt *Trigger; |
| if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) |
| Trigger = AutoDtor->getTriggerStmt(); |
| else |
| Trigger = Dtor->getBody(); |
| |
| return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), |
| E.getAs<CFGBaseDtor>().hasValue(), State, |
| CallerCtx); |
| } |