| //=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the template classes ExplodedNode and ExplodedGraph, |
| // which represent a path-sensitive, intra-procedural "exploded graph." |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <vector> |
| |
| using namespace clang; |
| using namespace ento; |
| |
| //===----------------------------------------------------------------------===// |
| // Node auditing. |
| //===----------------------------------------------------------------------===// |
| |
| // An out of line virtual method to provide a home for the class vtable. |
| ExplodedNode::Auditor::~Auditor() {} |
| |
| #ifndef NDEBUG |
| static ExplodedNode::Auditor* NodeAuditor = 0; |
| #endif |
| |
| void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { |
| #ifndef NDEBUG |
| NodeAuditor = A; |
| #endif |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Cleanup. |
| //===----------------------------------------------------------------------===// |
| |
| ExplodedGraph::ExplodedGraph() |
| : NumNodes(0), ReclaimNodeInterval(0) {} |
| |
| ExplodedGraph::~ExplodedGraph() {} |
| |
| //===----------------------------------------------------------------------===// |
| // Node reclamation. |
| //===----------------------------------------------------------------------===// |
| |
| bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) { |
| if (!Ex->isLValue()) |
| return false; |
| return isa<DeclRefExpr>(Ex) || |
| isa<MemberExpr>(Ex) || |
| isa<ObjCIvarRefExpr>(Ex); |
| } |
| |
| bool ExplodedGraph::shouldCollect(const ExplodedNode *node) { |
| // First, we only consider nodes for reclamation of the following |
| // conditions apply: |
| // |
| // (1) 1 predecessor (that has one successor) |
| // (2) 1 successor (that has one predecessor) |
| // |
| // If a node has no successor it is on the "frontier", while a node |
| // with no predecessor is a root. |
| // |
| // After these prerequisites, we discard all "filler" nodes that |
| // are used only for intermediate processing, and are not essential |
| // for analyzer history: |
| // |
| // (a) PreStmtPurgeDeadSymbols |
| // |
| // We then discard all other nodes where *all* of the following conditions |
| // apply: |
| // |
| // (3) The ProgramPoint is for a PostStmt, but not a PostStore. |
| // (4) There is no 'tag' for the ProgramPoint. |
| // (5) The 'store' is the same as the predecessor. |
| // (6) The 'GDM' is the same as the predecessor. |
| // (7) The LocationContext is the same as the predecessor. |
| // (8) Expressions that are *not* lvalue expressions. |
| // (9) The PostStmt isn't for a non-consumed Stmt or Expr. |
| // (10) The successor is not a CallExpr StmtPoint (so that we would |
| // be able to find it when retrying a call with no inlining). |
| // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well. |
| |
| // Conditions 1 and 2. |
| if (node->pred_size() != 1 || node->succ_size() != 1) |
| return false; |
| |
| const ExplodedNode *pred = *(node->pred_begin()); |
| if (pred->succ_size() != 1) |
| return false; |
| |
| const ExplodedNode *succ = *(node->succ_begin()); |
| if (succ->pred_size() != 1) |
| return false; |
| |
| // Now reclaim any nodes that are (by definition) not essential to |
| // analysis history and are not consulted by any client code. |
| ProgramPoint progPoint = node->getLocation(); |
| if (progPoint.getAs<PreStmtPurgeDeadSymbols>()) |
| return !progPoint.getTag(); |
| |
| // Condition 3. |
| if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>()) |
| return false; |
| |
| // Condition 4. |
| PostStmt ps = progPoint.castAs<PostStmt>(); |
| if (ps.getTag()) |
| return false; |
| |
| // Conditions 5, 6, and 7. |
| ProgramStateRef state = node->getState(); |
| ProgramStateRef pred_state = pred->getState(); |
| if (state->store != pred_state->store || state->GDM != pred_state->GDM || |
| progPoint.getLocationContext() != pred->getLocationContext()) |
| return false; |
| |
| // All further checks require expressions. |
| const Expr *Ex = dyn_cast<Expr>(ps.getStmt()); |
| if (!Ex) |
| return false; |
| |
| // Condition 8. |
| // Do not collect nodes for "interesting" lvalue expressions since they are |
| // used extensively for generating path diagnostics. |
| if (isInterestingLValueExpr(Ex)) |
| return false; |
| |
| // Condition 9. |
| // Do not collect nodes for non-consumed Stmt or Expr to ensure precise |
| // diagnostic generation; specifically, so that we could anchor arrows |
| // pointing to the beginning of statements (as written in code). |
| ParentMap &PM = progPoint.getLocationContext()->getParentMap(); |
| if (!PM.isConsumedExpr(Ex)) |
| return false; |
| |
| // Condition 10. |
| const ProgramPoint SuccLoc = succ->getLocation(); |
| if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>()) |
| if (CallEvent::isCallStmt(SP->getStmt())) |
| return false; |
| |
| return true; |
| } |
| |
| void ExplodedGraph::collectNode(ExplodedNode *node) { |
| // Removing a node means: |
| // (a) changing the predecessors successor to the successor of this node |
| // (b) changing the successors predecessor to the predecessor of this node |
| // (c) Putting 'node' onto freeNodes. |
| assert(node->pred_size() == 1 || node->succ_size() == 1); |
| ExplodedNode *pred = *(node->pred_begin()); |
| ExplodedNode *succ = *(node->succ_begin()); |
| pred->replaceSuccessor(succ); |
| succ->replacePredecessor(pred); |
| FreeNodes.push_back(node); |
| Nodes.RemoveNode(node); |
| --NumNodes; |
| node->~ExplodedNode(); |
| } |
| |
| void ExplodedGraph::reclaimRecentlyAllocatedNodes() { |
| if (ChangedNodes.empty()) |
| return; |
| |
| // Only periodically reclaim nodes so that we can build up a set of |
| // nodes that meet the reclamation criteria. Freshly created nodes |
| // by definition have no successor, and thus cannot be reclaimed (see below). |
| assert(ReclaimCounter > 0); |
| if (--ReclaimCounter != 0) |
| return; |
| ReclaimCounter = ReclaimNodeInterval; |
| |
| for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end(); |
| it != et; ++it) { |
| ExplodedNode *node = *it; |
| if (shouldCollect(node)) |
| collectNode(node); |
| } |
| ChangedNodes.clear(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExplodedNode. |
| //===----------------------------------------------------------------------===// |
| |
| // An NodeGroup's storage type is actually very much like a TinyPtrVector: |
| // it can be either a pointer to a single ExplodedNode, or a pointer to a |
| // BumpVector allocated with the ExplodedGraph's allocator. This allows the |
| // common case of single-node NodeGroups to be implemented with no extra memory. |
| // |
| // Consequently, each of the NodeGroup methods have up to four cases to handle: |
| // 1. The flag is set and this group does not actually contain any nodes. |
| // 2. The group is empty, in which case the storage value is null. |
| // 3. The group contains a single node. |
| // 4. The group contains more than one node. |
| typedef BumpVector<ExplodedNode *> ExplodedNodeVector; |
| typedef llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *> GroupStorage; |
| |
| void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { |
| assert (!V->isSink()); |
| Preds.addNode(V, G); |
| V->Succs.addNode(this, G); |
| #ifndef NDEBUG |
| if (NodeAuditor) NodeAuditor->AddEdge(V, this); |
| #endif |
| } |
| |
| void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { |
| assert(!getFlag()); |
| |
| GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); |
| assert(Storage.is<ExplodedNode *>()); |
| Storage = node; |
| assert(Storage.is<ExplodedNode *>()); |
| } |
| |
| void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { |
| assert(!getFlag()); |
| |
| GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); |
| if (Storage.isNull()) { |
| Storage = N; |
| assert(Storage.is<ExplodedNode *>()); |
| return; |
| } |
| |
| ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>(); |
| |
| if (!V) { |
| // Switch from single-node to multi-node representation. |
| ExplodedNode *Old = Storage.get<ExplodedNode *>(); |
| |
| BumpVectorContext &Ctx = G.getNodeAllocator(); |
| V = G.getAllocator().Allocate<ExplodedNodeVector>(); |
| new (V) ExplodedNodeVector(Ctx, 4); |
| V->push_back(Old, Ctx); |
| |
| Storage = V; |
| assert(!getFlag()); |
| assert(Storage.is<ExplodedNodeVector *>()); |
| } |
| |
| V->push_back(N, G.getNodeAllocator()); |
| } |
| |
| unsigned ExplodedNode::NodeGroup::size() const { |
| if (getFlag()) |
| return 0; |
| |
| const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); |
| if (Storage.isNull()) |
| return 0; |
| if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) |
| return V->size(); |
| return 1; |
| } |
| |
| ExplodedNode * const *ExplodedNode::NodeGroup::begin() const { |
| if (getFlag()) |
| return 0; |
| |
| const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); |
| if (Storage.isNull()) |
| return 0; |
| if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) |
| return V->begin(); |
| return Storage.getAddrOfPtr1(); |
| } |
| |
| ExplodedNode * const *ExplodedNode::NodeGroup::end() const { |
| if (getFlag()) |
| return 0; |
| |
| const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); |
| if (Storage.isNull()) |
| return 0; |
| if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) |
| return V->end(); |
| return Storage.getAddrOfPtr1() + 1; |
| } |
| |
| ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, |
| ProgramStateRef State, |
| bool IsSink, |
| bool* IsNew) { |
| // Profile 'State' to determine if we already have an existing node. |
| llvm::FoldingSetNodeID profile; |
| void *InsertPos = 0; |
| |
| NodeTy::Profile(profile, L, State, IsSink); |
| NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); |
| |
| if (!V) { |
| if (!FreeNodes.empty()) { |
| V = FreeNodes.back(); |
| FreeNodes.pop_back(); |
| } |
| else { |
| // Allocate a new node. |
| V = (NodeTy*) getAllocator().Allocate<NodeTy>(); |
| } |
| |
| new (V) NodeTy(L, State, IsSink); |
| |
| if (ReclaimNodeInterval) |
| ChangedNodes.push_back(V); |
| |
| // Insert the node into the node set and return it. |
| Nodes.InsertNode(V, InsertPos); |
| ++NumNodes; |
| |
| if (IsNew) *IsNew = true; |
| } |
| else |
| if (IsNew) *IsNew = false; |
| |
| return V; |
| } |
| |
| std::pair<ExplodedGraph*, InterExplodedGraphMap*> |
| ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd, |
| llvm::DenseMap<const void*, const void*> *InverseMap) const { |
| |
| if (NBeg == NEnd) |
| return std::make_pair((ExplodedGraph*) 0, |
| (InterExplodedGraphMap*) 0); |
| |
| assert (NBeg < NEnd); |
| |
| OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap()); |
| |
| ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap); |
| |
| return std::make_pair(static_cast<ExplodedGraph*>(G), M.take()); |
| } |
| |
| ExplodedGraph* |
| ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources, |
| const ExplodedNode* const* EndSources, |
| InterExplodedGraphMap* M, |
| llvm::DenseMap<const void*, const void*> *InverseMap) const { |
| |
| typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty; |
| Pass1Ty Pass1; |
| |
| typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty; |
| Pass2Ty& Pass2 = M->M; |
| |
| SmallVector<const ExplodedNode*, 10> WL1, WL2; |
| |
| // ===- Pass 1 (reverse DFS) -=== |
| for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) { |
| if (*I) |
| WL1.push_back(*I); |
| } |
| |
| // Process the first worklist until it is empty. Because it is a std::list |
| // it acts like a FIFO queue. |
| while (!WL1.empty()) { |
| const ExplodedNode *N = WL1.back(); |
| WL1.pop_back(); |
| |
| // Have we already visited this node? If so, continue to the next one. |
| if (Pass1.count(N)) |
| continue; |
| |
| // Otherwise, mark this node as visited. |
| Pass1.insert(N); |
| |
| // If this is a root enqueue it to the second worklist. |
| if (N->Preds.empty()) { |
| WL2.push_back(N); |
| continue; |
| } |
| |
| // Visit our predecessors and enqueue them. |
| for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end(); |
| I != E; ++I) |
| WL1.push_back(*I); |
| } |
| |
| // We didn't hit a root? Return with a null pointer for the new graph. |
| if (WL2.empty()) |
| return 0; |
| |
| // Create an empty graph. |
| ExplodedGraph* G = MakeEmptyGraph(); |
| |
| // ===- Pass 2 (forward DFS to construct the new graph) -=== |
| while (!WL2.empty()) { |
| const ExplodedNode *N = WL2.back(); |
| WL2.pop_back(); |
| |
| // Skip this node if we have already processed it. |
| if (Pass2.find(N) != Pass2.end()) |
| continue; |
| |
| // Create the corresponding node in the new graph and record the mapping |
| // from the old node to the new node. |
| ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0); |
| Pass2[N] = NewN; |
| |
| // Also record the reverse mapping from the new node to the old node. |
| if (InverseMap) (*InverseMap)[NewN] = N; |
| |
| // If this node is a root, designate it as such in the graph. |
| if (N->Preds.empty()) |
| G->addRoot(NewN); |
| |
| // In the case that some of the intended predecessors of NewN have already |
| // been created, we should hook them up as predecessors. |
| |
| // Walk through the predecessors of 'N' and hook up their corresponding |
| // nodes in the new graph (if any) to the freshly created node. |
| for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end(); |
| I != E; ++I) { |
| Pass2Ty::iterator PI = Pass2.find(*I); |
| if (PI == Pass2.end()) |
| continue; |
| |
| NewN->addPredecessor(PI->second, *G); |
| } |
| |
| // In the case that some of the intended successors of NewN have already |
| // been created, we should hook them up as successors. Otherwise, enqueue |
| // the new nodes from the original graph that should have nodes created |
| // in the new graph. |
| for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end(); |
| I != E; ++I) { |
| Pass2Ty::iterator PI = Pass2.find(*I); |
| if (PI != Pass2.end()) { |
| PI->second->addPredecessor(NewN, *G); |
| continue; |
| } |
| |
| // Enqueue nodes to the worklist that were marked during pass 1. |
| if (Pass1.count(*I)) |
| WL2.push_back(*I); |
| } |
| } |
| |
| return G; |
| } |
| |
| void InterExplodedGraphMap::anchor() { } |
| |
| ExplodedNode* |
| InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const { |
| llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I = |
| M.find(N); |
| |
| return I == M.end() ? 0 : I->second; |
| } |
| |