| //== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines SimpleConstraintManager, a class that holds code shared |
| // between BasicConstraintManager and RangeConstraintManager. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SimpleConstraintManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| |
| namespace clang { |
| |
| namespace ento { |
| |
| SimpleConstraintManager::~SimpleConstraintManager() {} |
| |
| bool SimpleConstraintManager::canReasonAbout(SVal X) const { |
| Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>(); |
| if (SymVal && SymVal->isExpression()) { |
| const SymExpr *SE = SymVal->getSymbol(); |
| |
| if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) { |
| switch (SIE->getOpcode()) { |
| // We don't reason yet about bitwise-constraints on symbolic values. |
| case BO_And: |
| case BO_Or: |
| case BO_Xor: |
| return false; |
| // We don't reason yet about these arithmetic constraints on |
| // symbolic values. |
| case BO_Mul: |
| case BO_Div: |
| case BO_Rem: |
| case BO_Shl: |
| case BO_Shr: |
| return false; |
| // All other cases. |
| default: |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state, |
| DefinedSVal Cond, |
| bool Assumption) { |
| if (Optional<NonLoc> NV = Cond.getAs<NonLoc>()) |
| return assume(state, *NV, Assumption); |
| return assume(state, Cond.castAs<Loc>(), Assumption); |
| } |
| |
| ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state, Loc cond, |
| bool assumption) { |
| state = assumeAux(state, cond, assumption); |
| if (NotifyAssumeClients && SU) |
| return SU->processAssume(state, cond, assumption); |
| return state; |
| } |
| |
| ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state, |
| Loc Cond, bool Assumption) { |
| switch (Cond.getSubKind()) { |
| default: |
| assert (false && "'Assume' not implemented for this Loc."); |
| return state; |
| |
| case loc::MemRegionKind: { |
| // FIXME: Should this go into the storemanager? |
| |
| const MemRegion *R = Cond.castAs<loc::MemRegionVal>().getRegion(); |
| const SubRegion *SubR = dyn_cast<SubRegion>(R); |
| |
| while (SubR) { |
| // FIXME: now we only find the first symbolic region. |
| if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) { |
| const llvm::APSInt &zero = getBasicVals().getZeroWithPtrWidth(); |
| if (Assumption) |
| return assumeSymNE(state, SymR->getSymbol(), zero, zero); |
| else |
| return assumeSymEQ(state, SymR->getSymbol(), zero, zero); |
| } |
| SubR = dyn_cast<SubRegion>(SubR->getSuperRegion()); |
| } |
| |
| // FALL-THROUGH. |
| } |
| |
| case loc::GotoLabelKind: |
| return Assumption ? state : NULL; |
| |
| case loc::ConcreteIntKind: { |
| bool b = Cond.castAs<loc::ConcreteInt>().getValue() != 0; |
| bool isFeasible = b ? Assumption : !Assumption; |
| return isFeasible ? state : NULL; |
| } |
| } // end switch |
| } |
| |
| ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state, |
| NonLoc cond, |
| bool assumption) { |
| state = assumeAux(state, cond, assumption); |
| if (NotifyAssumeClients && SU) |
| return SU->processAssume(state, cond, assumption); |
| return state; |
| } |
| |
| static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) { |
| // FIXME: This should probably be part of BinaryOperator, since this isn't |
| // the only place it's used. (This code was copied from SimpleSValBuilder.cpp.) |
| switch (op) { |
| default: |
| llvm_unreachable("Invalid opcode."); |
| case BO_LT: return BO_GE; |
| case BO_GT: return BO_LE; |
| case BO_LE: return BO_GT; |
| case BO_GE: return BO_LT; |
| case BO_EQ: return BO_NE; |
| case BO_NE: return BO_EQ; |
| } |
| } |
| |
| |
| ProgramStateRef |
| SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State, |
| SymbolRef Sym, bool Assumption) { |
| BasicValueFactory &BVF = getBasicVals(); |
| QualType T = Sym->getType(); |
| |
| // None of the constraint solvers currently support non-integer types. |
| if (!T->isIntegerType()) |
| return State; |
| |
| const llvm::APSInt &zero = BVF.getValue(0, T); |
| if (Assumption) |
| return assumeSymNE(State, Sym, zero, zero); |
| else |
| return assumeSymEQ(State, Sym, zero, zero); |
| } |
| |
| ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state, |
| NonLoc Cond, |
| bool Assumption) { |
| |
| // We cannot reason about SymSymExprs, and can only reason about some |
| // SymIntExprs. |
| if (!canReasonAbout(Cond)) { |
| // Just add the constraint to the expression without trying to simplify. |
| SymbolRef sym = Cond.getAsSymExpr(); |
| return assumeAuxForSymbol(state, sym, Assumption); |
| } |
| |
| BasicValueFactory &BasicVals = getBasicVals(); |
| |
| switch (Cond.getSubKind()) { |
| default: |
| llvm_unreachable("'Assume' not implemented for this NonLoc"); |
| |
| case nonloc::SymbolValKind: { |
| nonloc::SymbolVal SV = Cond.castAs<nonloc::SymbolVal>(); |
| SymbolRef sym = SV.getSymbol(); |
| assert(sym); |
| |
| // Handle SymbolData. |
| if (!SV.isExpression()) { |
| return assumeAuxForSymbol(state, sym, Assumption); |
| |
| // Handle symbolic expression. |
| } else { |
| // We can only simplify expressions whose RHS is an integer. |
| const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym); |
| if (!SE) |
| return assumeAuxForSymbol(state, sym, Assumption); |
| |
| BinaryOperator::Opcode op = SE->getOpcode(); |
| // Implicitly compare non-comparison expressions to 0. |
| if (!BinaryOperator::isComparisonOp(op)) { |
| QualType T = SE->getType(); |
| const llvm::APSInt &zero = BasicVals.getValue(0, T); |
| op = (Assumption ? BO_NE : BO_EQ); |
| return assumeSymRel(state, SE, op, zero); |
| } |
| // From here on out, op is the real comparison we'll be testing. |
| if (!Assumption) |
| op = NegateComparison(op); |
| |
| return assumeSymRel(state, SE->getLHS(), op, SE->getRHS()); |
| } |
| } |
| |
| case nonloc::ConcreteIntKind: { |
| bool b = Cond.castAs<nonloc::ConcreteInt>().getValue() != 0; |
| bool isFeasible = b ? Assumption : !Assumption; |
| return isFeasible ? state : NULL; |
| } |
| |
| case nonloc::LocAsIntegerKind: |
| return assumeAux(state, Cond.castAs<nonloc::LocAsInteger>().getLoc(), |
| Assumption); |
| } // end switch |
| } |
| |
| static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment) { |
| // Is it a "($sym+constant1)" expression? |
| if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) { |
| BinaryOperator::Opcode Op = SE->getOpcode(); |
| if (Op == BO_Add || Op == BO_Sub) { |
| Sym = SE->getLHS(); |
| Adjustment = APSIntType(Adjustment).convert(SE->getRHS()); |
| |
| // Don't forget to negate the adjustment if it's being subtracted. |
| // This should happen /after/ promotion, in case the value being |
| // subtracted is, say, CHAR_MIN, and the promoted type is 'int'. |
| if (Op == BO_Sub) |
| Adjustment = -Adjustment; |
| } |
| } |
| } |
| |
| ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state, |
| const SymExpr *LHS, |
| BinaryOperator::Opcode op, |
| const llvm::APSInt& Int) { |
| assert(BinaryOperator::isComparisonOp(op) && |
| "Non-comparison ops should be rewritten as comparisons to zero."); |
| |
| // Get the type used for calculating wraparound. |
| BasicValueFactory &BVF = getBasicVals(); |
| APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType()); |
| |
| // We only handle simple comparisons of the form "$sym == constant" |
| // or "($sym+constant1) == constant2". |
| // The adjustment is "constant1" in the above expression. It's used to |
| // "slide" the solution range around for modular arithmetic. For example, |
| // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which |
| // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to |
| // the subclasses of SimpleConstraintManager to handle the adjustment. |
| SymbolRef Sym = LHS; |
| llvm::APSInt Adjustment = WraparoundType.getZeroValue(); |
| computeAdjustment(Sym, Adjustment); |
| |
| // Convert the right-hand side integer as necessary. |
| APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int)); |
| llvm::APSInt ConvertedInt = ComparisonType.convert(Int); |
| |
| switch (op) { |
| default: |
| // No logic yet for other operators. assume the constraint is feasible. |
| return state; |
| |
| case BO_EQ: |
| return assumeSymEQ(state, Sym, ConvertedInt, Adjustment); |
| |
| case BO_NE: |
| return assumeSymNE(state, Sym, ConvertedInt, Adjustment); |
| |
| case BO_GT: |
| return assumeSymGT(state, Sym, ConvertedInt, Adjustment); |
| |
| case BO_GE: |
| return assumeSymGE(state, Sym, ConvertedInt, Adjustment); |
| |
| case BO_LT: |
| return assumeSymLT(state, Sym, ConvertedInt, Adjustment); |
| |
| case BO_LE: |
| return assumeSymLE(state, Sym, ConvertedInt, Adjustment); |
| } // end switch |
| } |
| |
| } // end of namespace ento |
| |
| } // end of namespace clang |