| //== SymbolManager.h - Management of Symbolic Values ------------*- C++ -*--==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines SymbolManager, a class that manages symbolic values |
| // created for use by ExprEngine and related classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" |
| #include "clang/Analysis/Analyses/LiveVariables.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace clang; |
| using namespace ento; |
| |
| void SymExpr::anchor() { } |
| |
| void SymExpr::dump() const { |
| dumpToStream(llvm::errs()); |
| } |
| |
| void SymIntExpr::dumpToStream(raw_ostream &os) const { |
| os << '('; |
| getLHS()->dumpToStream(os); |
| os << ") " |
| << BinaryOperator::getOpcodeStr(getOpcode()) << ' ' |
| << getRHS().getZExtValue(); |
| if (getRHS().isUnsigned()) |
| os << 'U'; |
| } |
| |
| void IntSymExpr::dumpToStream(raw_ostream &os) const { |
| os << getLHS().getZExtValue(); |
| if (getLHS().isUnsigned()) |
| os << 'U'; |
| os << ' ' |
| << BinaryOperator::getOpcodeStr(getOpcode()) |
| << " ("; |
| getRHS()->dumpToStream(os); |
| os << ')'; |
| } |
| |
| void SymSymExpr::dumpToStream(raw_ostream &os) const { |
| os << '('; |
| getLHS()->dumpToStream(os); |
| os << ") " |
| << BinaryOperator::getOpcodeStr(getOpcode()) |
| << " ("; |
| getRHS()->dumpToStream(os); |
| os << ')'; |
| } |
| |
| void SymbolCast::dumpToStream(raw_ostream &os) const { |
| os << '(' << ToTy.getAsString() << ") ("; |
| Operand->dumpToStream(os); |
| os << ')'; |
| } |
| |
| void SymbolConjured::dumpToStream(raw_ostream &os) const { |
| os << "conj_$" << getSymbolID() << '{' << T.getAsString() << '}'; |
| } |
| |
| void SymbolDerived::dumpToStream(raw_ostream &os) const { |
| os << "derived_$" << getSymbolID() << '{' |
| << getParentSymbol() << ',' << getRegion() << '}'; |
| } |
| |
| void SymbolExtent::dumpToStream(raw_ostream &os) const { |
| os << "extent_$" << getSymbolID() << '{' << getRegion() << '}'; |
| } |
| |
| void SymbolMetadata::dumpToStream(raw_ostream &os) const { |
| os << "meta_$" << getSymbolID() << '{' |
| << getRegion() << ',' << T.getAsString() << '}'; |
| } |
| |
| void SymbolData::anchor() { } |
| |
| void SymbolRegionValue::dumpToStream(raw_ostream &os) const { |
| os << "reg_$" << getSymbolID() << "<" << R << ">"; |
| } |
| |
| bool SymExpr::symbol_iterator::operator==(const symbol_iterator &X) const { |
| return itr == X.itr; |
| } |
| |
| bool SymExpr::symbol_iterator::operator!=(const symbol_iterator &X) const { |
| return itr != X.itr; |
| } |
| |
| SymExpr::symbol_iterator::symbol_iterator(const SymExpr *SE) { |
| itr.push_back(SE); |
| } |
| |
| SymExpr::symbol_iterator &SymExpr::symbol_iterator::operator++() { |
| assert(!itr.empty() && "attempting to iterate on an 'end' iterator"); |
| expand(); |
| return *this; |
| } |
| |
| SymbolRef SymExpr::symbol_iterator::operator*() { |
| assert(!itr.empty() && "attempting to dereference an 'end' iterator"); |
| return itr.back(); |
| } |
| |
| void SymExpr::symbol_iterator::expand() { |
| const SymExpr *SE = itr.back(); |
| itr.pop_back(); |
| |
| switch (SE->getKind()) { |
| case SymExpr::RegionValueKind: |
| case SymExpr::ConjuredKind: |
| case SymExpr::DerivedKind: |
| case SymExpr::ExtentKind: |
| case SymExpr::MetadataKind: |
| return; |
| case SymExpr::CastSymbolKind: |
| itr.push_back(cast<SymbolCast>(SE)->getOperand()); |
| return; |
| case SymExpr::SymIntKind: |
| itr.push_back(cast<SymIntExpr>(SE)->getLHS()); |
| return; |
| case SymExpr::IntSymKind: |
| itr.push_back(cast<IntSymExpr>(SE)->getRHS()); |
| return; |
| case SymExpr::SymSymKind: { |
| const SymSymExpr *x = cast<SymSymExpr>(SE); |
| itr.push_back(x->getLHS()); |
| itr.push_back(x->getRHS()); |
| return; |
| } |
| } |
| llvm_unreachable("unhandled expansion case"); |
| } |
| |
| unsigned SymExpr::computeComplexity() const { |
| unsigned R = 0; |
| for (symbol_iterator I = symbol_begin(), E = symbol_end(); I != E; ++I) |
| R++; |
| return R; |
| } |
| |
| const SymbolRegionValue* |
| SymbolManager::getRegionValueSymbol(const TypedValueRegion* R) { |
| llvm::FoldingSetNodeID profile; |
| SymbolRegionValue::Profile(profile, R); |
| void *InsertPos; |
| SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); |
| if (!SD) { |
| SD = (SymExpr*) BPAlloc.Allocate<SymbolRegionValue>(); |
| new (SD) SymbolRegionValue(SymbolCounter, R); |
| DataSet.InsertNode(SD, InsertPos); |
| ++SymbolCounter; |
| } |
| |
| return cast<SymbolRegionValue>(SD); |
| } |
| |
| const SymbolConjured* SymbolManager::conjureSymbol(const Stmt *E, |
| const LocationContext *LCtx, |
| QualType T, |
| unsigned Count, |
| const void *SymbolTag) { |
| llvm::FoldingSetNodeID profile; |
| SymbolConjured::Profile(profile, E, T, Count, LCtx, SymbolTag); |
| void *InsertPos; |
| SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); |
| if (!SD) { |
| SD = (SymExpr*) BPAlloc.Allocate<SymbolConjured>(); |
| new (SD) SymbolConjured(SymbolCounter, E, LCtx, T, Count, SymbolTag); |
| DataSet.InsertNode(SD, InsertPos); |
| ++SymbolCounter; |
| } |
| |
| return cast<SymbolConjured>(SD); |
| } |
| |
| const SymbolDerived* |
| SymbolManager::getDerivedSymbol(SymbolRef parentSymbol, |
| const TypedValueRegion *R) { |
| |
| llvm::FoldingSetNodeID profile; |
| SymbolDerived::Profile(profile, parentSymbol, R); |
| void *InsertPos; |
| SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); |
| if (!SD) { |
| SD = (SymExpr*) BPAlloc.Allocate<SymbolDerived>(); |
| new (SD) SymbolDerived(SymbolCounter, parentSymbol, R); |
| DataSet.InsertNode(SD, InsertPos); |
| ++SymbolCounter; |
| } |
| |
| return cast<SymbolDerived>(SD); |
| } |
| |
| const SymbolExtent* |
| SymbolManager::getExtentSymbol(const SubRegion *R) { |
| llvm::FoldingSetNodeID profile; |
| SymbolExtent::Profile(profile, R); |
| void *InsertPos; |
| SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); |
| if (!SD) { |
| SD = (SymExpr*) BPAlloc.Allocate<SymbolExtent>(); |
| new (SD) SymbolExtent(SymbolCounter, R); |
| DataSet.InsertNode(SD, InsertPos); |
| ++SymbolCounter; |
| } |
| |
| return cast<SymbolExtent>(SD); |
| } |
| |
| const SymbolMetadata* |
| SymbolManager::getMetadataSymbol(const MemRegion* R, const Stmt *S, QualType T, |
| unsigned Count, const void *SymbolTag) { |
| |
| llvm::FoldingSetNodeID profile; |
| SymbolMetadata::Profile(profile, R, S, T, Count, SymbolTag); |
| void *InsertPos; |
| SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); |
| if (!SD) { |
| SD = (SymExpr*) BPAlloc.Allocate<SymbolMetadata>(); |
| new (SD) SymbolMetadata(SymbolCounter, R, S, T, Count, SymbolTag); |
| DataSet.InsertNode(SD, InsertPos); |
| ++SymbolCounter; |
| } |
| |
| return cast<SymbolMetadata>(SD); |
| } |
| |
| const SymbolCast* |
| SymbolManager::getCastSymbol(const SymExpr *Op, |
| QualType From, QualType To) { |
| llvm::FoldingSetNodeID ID; |
| SymbolCast::Profile(ID, Op, From, To); |
| void *InsertPos; |
| SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); |
| if (!data) { |
| data = (SymbolCast*) BPAlloc.Allocate<SymbolCast>(); |
| new (data) SymbolCast(Op, From, To); |
| DataSet.InsertNode(data, InsertPos); |
| } |
| |
| return cast<SymbolCast>(data); |
| } |
| |
| const SymIntExpr *SymbolManager::getSymIntExpr(const SymExpr *lhs, |
| BinaryOperator::Opcode op, |
| const llvm::APSInt& v, |
| QualType t) { |
| llvm::FoldingSetNodeID ID; |
| SymIntExpr::Profile(ID, lhs, op, v, t); |
| void *InsertPos; |
| SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!data) { |
| data = (SymIntExpr*) BPAlloc.Allocate<SymIntExpr>(); |
| new (data) SymIntExpr(lhs, op, v, t); |
| DataSet.InsertNode(data, InsertPos); |
| } |
| |
| return cast<SymIntExpr>(data); |
| } |
| |
| const IntSymExpr *SymbolManager::getIntSymExpr(const llvm::APSInt& lhs, |
| BinaryOperator::Opcode op, |
| const SymExpr *rhs, |
| QualType t) { |
| llvm::FoldingSetNodeID ID; |
| IntSymExpr::Profile(ID, lhs, op, rhs, t); |
| void *InsertPos; |
| SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!data) { |
| data = (IntSymExpr*) BPAlloc.Allocate<IntSymExpr>(); |
| new (data) IntSymExpr(lhs, op, rhs, t); |
| DataSet.InsertNode(data, InsertPos); |
| } |
| |
| return cast<IntSymExpr>(data); |
| } |
| |
| const SymSymExpr *SymbolManager::getSymSymExpr(const SymExpr *lhs, |
| BinaryOperator::Opcode op, |
| const SymExpr *rhs, |
| QualType t) { |
| llvm::FoldingSetNodeID ID; |
| SymSymExpr::Profile(ID, lhs, op, rhs, t); |
| void *InsertPos; |
| SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!data) { |
| data = (SymSymExpr*) BPAlloc.Allocate<SymSymExpr>(); |
| new (data) SymSymExpr(lhs, op, rhs, t); |
| DataSet.InsertNode(data, InsertPos); |
| } |
| |
| return cast<SymSymExpr>(data); |
| } |
| |
| QualType SymbolConjured::getType() const { |
| return T; |
| } |
| |
| QualType SymbolDerived::getType() const { |
| return R->getValueType(); |
| } |
| |
| QualType SymbolExtent::getType() const { |
| ASTContext &Ctx = R->getMemRegionManager()->getContext(); |
| return Ctx.getSizeType(); |
| } |
| |
| QualType SymbolMetadata::getType() const { |
| return T; |
| } |
| |
| QualType SymbolRegionValue::getType() const { |
| return R->getValueType(); |
| } |
| |
| SymbolManager::~SymbolManager() { |
| for (SymbolDependTy::const_iterator I = SymbolDependencies.begin(), |
| E = SymbolDependencies.end(); I != E; ++I) { |
| delete I->second; |
| } |
| |
| } |
| |
| bool SymbolManager::canSymbolicate(QualType T) { |
| T = T.getCanonicalType(); |
| |
| if (Loc::isLocType(T)) |
| return true; |
| |
| if (T->isIntegerType()) |
| return T->isScalarType(); |
| |
| if (T->isRecordType() && !T->isUnionType()) |
| return true; |
| |
| return false; |
| } |
| |
| void SymbolManager::addSymbolDependency(const SymbolRef Primary, |
| const SymbolRef Dependent) { |
| SymbolDependTy::iterator I = SymbolDependencies.find(Primary); |
| SymbolRefSmallVectorTy *dependencies = 0; |
| if (I == SymbolDependencies.end()) { |
| dependencies = new SymbolRefSmallVectorTy(); |
| SymbolDependencies[Primary] = dependencies; |
| } else { |
| dependencies = I->second; |
| } |
| dependencies->push_back(Dependent); |
| } |
| |
| const SymbolRefSmallVectorTy *SymbolManager::getDependentSymbols( |
| const SymbolRef Primary) { |
| SymbolDependTy::const_iterator I = SymbolDependencies.find(Primary); |
| if (I == SymbolDependencies.end()) |
| return 0; |
| return I->second; |
| } |
| |
| void SymbolReaper::markDependentsLive(SymbolRef sym) { |
| // Do not mark dependents more then once. |
| SymbolMapTy::iterator LI = TheLiving.find(sym); |
| assert(LI != TheLiving.end() && "The primary symbol is not live."); |
| if (LI->second == HaveMarkedDependents) |
| return; |
| LI->second = HaveMarkedDependents; |
| |
| if (const SymbolRefSmallVectorTy *Deps = SymMgr.getDependentSymbols(sym)) { |
| for (SymbolRefSmallVectorTy::const_iterator I = Deps->begin(), |
| E = Deps->end(); I != E; ++I) { |
| if (TheLiving.find(*I) != TheLiving.end()) |
| continue; |
| markLive(*I); |
| } |
| } |
| } |
| |
| void SymbolReaper::markLive(SymbolRef sym) { |
| TheLiving[sym] = NotProcessed; |
| TheDead.erase(sym); |
| markDependentsLive(sym); |
| } |
| |
| void SymbolReaper::markLive(const MemRegion *region) { |
| RegionRoots.insert(region); |
| } |
| |
| void SymbolReaper::markInUse(SymbolRef sym) { |
| if (isa<SymbolMetadata>(sym)) |
| MetadataInUse.insert(sym); |
| } |
| |
| bool SymbolReaper::maybeDead(SymbolRef sym) { |
| if (isLive(sym)) |
| return false; |
| |
| TheDead.insert(sym); |
| return true; |
| } |
| |
| bool SymbolReaper::isLiveRegion(const MemRegion *MR) { |
| if (RegionRoots.count(MR)) |
| return true; |
| |
| MR = MR->getBaseRegion(); |
| |
| if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR)) |
| return isLive(SR->getSymbol()); |
| |
| if (const VarRegion *VR = dyn_cast<VarRegion>(MR)) |
| return isLive(VR, true); |
| |
| // FIXME: This is a gross over-approximation. What we really need is a way to |
| // tell if anything still refers to this region. Unlike SymbolicRegions, |
| // AllocaRegions don't have associated symbols, though, so we don't actually |
| // have a way to track their liveness. |
| if (isa<AllocaRegion>(MR)) |
| return true; |
| |
| if (isa<CXXThisRegion>(MR)) |
| return true; |
| |
| if (isa<MemSpaceRegion>(MR)) |
| return true; |
| |
| return false; |
| } |
| |
| bool SymbolReaper::isLive(SymbolRef sym) { |
| if (TheLiving.count(sym)) { |
| markDependentsLive(sym); |
| return true; |
| } |
| |
| bool KnownLive; |
| |
| switch (sym->getKind()) { |
| case SymExpr::RegionValueKind: |
| KnownLive = isLiveRegion(cast<SymbolRegionValue>(sym)->getRegion()); |
| break; |
| case SymExpr::ConjuredKind: |
| KnownLive = false; |
| break; |
| case SymExpr::DerivedKind: |
| KnownLive = isLive(cast<SymbolDerived>(sym)->getParentSymbol()); |
| break; |
| case SymExpr::ExtentKind: |
| KnownLive = isLiveRegion(cast<SymbolExtent>(sym)->getRegion()); |
| break; |
| case SymExpr::MetadataKind: |
| KnownLive = MetadataInUse.count(sym) && |
| isLiveRegion(cast<SymbolMetadata>(sym)->getRegion()); |
| if (KnownLive) |
| MetadataInUse.erase(sym); |
| break; |
| case SymExpr::SymIntKind: |
| KnownLive = isLive(cast<SymIntExpr>(sym)->getLHS()); |
| break; |
| case SymExpr::IntSymKind: |
| KnownLive = isLive(cast<IntSymExpr>(sym)->getRHS()); |
| break; |
| case SymExpr::SymSymKind: |
| KnownLive = isLive(cast<SymSymExpr>(sym)->getLHS()) && |
| isLive(cast<SymSymExpr>(sym)->getRHS()); |
| break; |
| case SymExpr::CastSymbolKind: |
| KnownLive = isLive(cast<SymbolCast>(sym)->getOperand()); |
| break; |
| } |
| |
| if (KnownLive) |
| markLive(sym); |
| |
| return KnownLive; |
| } |
| |
| bool |
| SymbolReaper::isLive(const Stmt *ExprVal, const LocationContext *ELCtx) const { |
| if (LCtx == 0) |
| return false; |
| |
| if (LCtx != ELCtx) { |
| // If the reaper's location context is a parent of the expression's |
| // location context, then the expression value is now "out of scope". |
| if (LCtx->isParentOf(ELCtx)) |
| return false; |
| return true; |
| } |
| |
| // If no statement is provided, everything is this and parent contexts is live. |
| if (!Loc) |
| return true; |
| |
| return LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, ExprVal); |
| } |
| |
| bool SymbolReaper::isLive(const VarRegion *VR, bool includeStoreBindings) const{ |
| const StackFrameContext *VarContext = VR->getStackFrame(); |
| |
| if (!VarContext) |
| return true; |
| |
| if (!LCtx) |
| return false; |
| const StackFrameContext *CurrentContext = LCtx->getCurrentStackFrame(); |
| |
| if (VarContext == CurrentContext) { |
| // If no statement is provided, everything is live. |
| if (!Loc) |
| return true; |
| |
| if (LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, VR->getDecl())) |
| return true; |
| |
| if (!includeStoreBindings) |
| return false; |
| |
| unsigned &cachedQuery = |
| const_cast<SymbolReaper*>(this)->includedRegionCache[VR]; |
| |
| if (cachedQuery) { |
| return cachedQuery == 1; |
| } |
| |
| // Query the store to see if the region occurs in any live bindings. |
| if (Store store = reapedStore.getStore()) { |
| bool hasRegion = |
| reapedStore.getStoreManager().includedInBindings(store, VR); |
| cachedQuery = hasRegion ? 1 : 2; |
| return hasRegion; |
| } |
| |
| return false; |
| } |
| |
| return VarContext->isParentOf(CurrentContext); |
| } |
| |
| SymbolVisitor::~SymbolVisitor() {} |