| //===--- ASTMatchFinder.cpp - Structural query framework ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implements an algorithm to efficiently search for matches on AST nodes. |
| // Uses memoization to support recursive matches like HasDescendant. |
| // |
| // The general idea is to visit all AST nodes with a RecursiveASTVisitor, |
| // calling the Matches(...) method of each matcher we are running on each |
| // AST node. The matcher can recurse via the ASTMatchFinder interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/ASTMatchers/ASTMatchFinder.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include <set> |
| |
| namespace clang { |
| namespace ast_matchers { |
| namespace internal { |
| namespace { |
| |
| typedef MatchFinder::MatchCallback MatchCallback; |
| |
| // We use memoization to avoid running the same matcher on the same |
| // AST node twice. This pair is the key for looking up match |
| // result. It consists of an ID of the MatcherInterface (for |
| // identifying the matcher) and a pointer to the AST node. |
| // |
| // We currently only memoize on nodes whose pointers identify the |
| // nodes (\c Stmt and \c Decl, but not \c QualType or \c TypeLoc). |
| // For \c QualType and \c TypeLoc it is possible to implement |
| // generation of keys for each type. |
| // FIXME: Benchmark whether memoization of non-pointer typed nodes |
| // provides enough benefit for the additional amount of code. |
| typedef std::pair<uint64_t, const void*> UntypedMatchInput; |
| |
| // Used to store the result of a match and possibly bound nodes. |
| struct MemoizedMatchResult { |
| bool ResultOfMatch; |
| BoundNodesTree Nodes; |
| }; |
| |
| // A RecursiveASTVisitor that traverses all children or all descendants of |
| // a node. |
| class MatchChildASTVisitor |
| : public RecursiveASTVisitor<MatchChildASTVisitor> { |
| public: |
| typedef RecursiveASTVisitor<MatchChildASTVisitor> VisitorBase; |
| |
| // Creates an AST visitor that matches 'matcher' on all children or |
| // descendants of a traversed node. max_depth is the maximum depth |
| // to traverse: use 1 for matching the children and INT_MAX for |
| // matching the descendants. |
| MatchChildASTVisitor(const DynTypedMatcher *Matcher, |
| ASTMatchFinder *Finder, |
| BoundNodesTreeBuilder *Builder, |
| int MaxDepth, |
| ASTMatchFinder::TraversalKind Traversal, |
| ASTMatchFinder::BindKind Bind) |
| : Matcher(Matcher), |
| Finder(Finder), |
| Builder(Builder), |
| CurrentDepth(0), |
| MaxDepth(MaxDepth), |
| Traversal(Traversal), |
| Bind(Bind), |
| Matches(false) {} |
| |
| // Returns true if a match is found in the subtree rooted at the |
| // given AST node. This is done via a set of mutually recursive |
| // functions. Here's how the recursion is done (the *wildcard can |
| // actually be Decl, Stmt, or Type): |
| // |
| // - Traverse(node) calls BaseTraverse(node) when it needs |
| // to visit the descendants of node. |
| // - BaseTraverse(node) then calls (via VisitorBase::Traverse*(node)) |
| // Traverse*(c) for each child c of 'node'. |
| // - Traverse*(c) in turn calls Traverse(c), completing the |
| // recursion. |
| bool findMatch(const ast_type_traits::DynTypedNode &DynNode) { |
| reset(); |
| if (const Decl *D = DynNode.get<Decl>()) |
| traverse(*D); |
| else if (const Stmt *S = DynNode.get<Stmt>()) |
| traverse(*S); |
| else if (const NestedNameSpecifier *NNS = |
| DynNode.get<NestedNameSpecifier>()) |
| traverse(*NNS); |
| else if (const NestedNameSpecifierLoc *NNSLoc = |
| DynNode.get<NestedNameSpecifierLoc>()) |
| traverse(*NNSLoc); |
| else if (const QualType *Q = DynNode.get<QualType>()) |
| traverse(*Q); |
| else if (const TypeLoc *T = DynNode.get<TypeLoc>()) |
| traverse(*T); |
| // FIXME: Add other base types after adding tests. |
| return Matches; |
| } |
| |
| // The following are overriding methods from the base visitor class. |
| // They are public only to allow CRTP to work. They are *not *part |
| // of the public API of this class. |
| bool TraverseDecl(Decl *DeclNode) { |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| return (DeclNode == NULL) || traverse(*DeclNode); |
| } |
| bool TraverseStmt(Stmt *StmtNode) { |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| const Stmt *StmtToTraverse = StmtNode; |
| if (Traversal == |
| ASTMatchFinder::TK_IgnoreImplicitCastsAndParentheses) { |
| const Expr *ExprNode = dyn_cast_or_null<Expr>(StmtNode); |
| if (ExprNode != NULL) { |
| StmtToTraverse = ExprNode->IgnoreParenImpCasts(); |
| } |
| } |
| return (StmtToTraverse == NULL) || traverse(*StmtToTraverse); |
| } |
| // We assume that the QualType and the contained type are on the same |
| // hierarchy level. Thus, we try to match either of them. |
| bool TraverseType(QualType TypeNode) { |
| if (TypeNode.isNull()) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| // Match the Type. |
| if (!match(*TypeNode)) |
| return false; |
| // The QualType is matched inside traverse. |
| return traverse(TypeNode); |
| } |
| // We assume that the TypeLoc, contained QualType and contained Type all are |
| // on the same hierarchy level. Thus, we try to match all of them. |
| bool TraverseTypeLoc(TypeLoc TypeLocNode) { |
| if (TypeLocNode.isNull()) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| // Match the Type. |
| if (!match(*TypeLocNode.getType())) |
| return false; |
| // Match the QualType. |
| if (!match(TypeLocNode.getType())) |
| return false; |
| // The TypeLoc is matched inside traverse. |
| return traverse(TypeLocNode); |
| } |
| bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) { |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| return (NNS == NULL) || traverse(*NNS); |
| } |
| bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS) { |
| if (!NNS) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| if (!match(*NNS.getNestedNameSpecifier())) |
| return false; |
| return traverse(NNS); |
| } |
| |
| bool shouldVisitTemplateInstantiations() const { return true; } |
| bool shouldVisitImplicitCode() const { return true; } |
| // Disables data recursion. We intercept Traverse* methods in the RAV, which |
| // are not triggered during data recursion. |
| bool shouldUseDataRecursionFor(clang::Stmt *S) const { return false; } |
| |
| private: |
| // Used for updating the depth during traversal. |
| struct ScopedIncrement { |
| explicit ScopedIncrement(int *Depth) : Depth(Depth) { ++(*Depth); } |
| ~ScopedIncrement() { --(*Depth); } |
| |
| private: |
| int *Depth; |
| }; |
| |
| // Resets the state of this object. |
| void reset() { |
| Matches = false; |
| CurrentDepth = 0; |
| } |
| |
| // Forwards the call to the corresponding Traverse*() method in the |
| // base visitor class. |
| bool baseTraverse(const Decl &DeclNode) { |
| return VisitorBase::TraverseDecl(const_cast<Decl*>(&DeclNode)); |
| } |
| bool baseTraverse(const Stmt &StmtNode) { |
| return VisitorBase::TraverseStmt(const_cast<Stmt*>(&StmtNode)); |
| } |
| bool baseTraverse(QualType TypeNode) { |
| return VisitorBase::TraverseType(TypeNode); |
| } |
| bool baseTraverse(TypeLoc TypeLocNode) { |
| return VisitorBase::TraverseTypeLoc(TypeLocNode); |
| } |
| bool baseTraverse(const NestedNameSpecifier &NNS) { |
| return VisitorBase::TraverseNestedNameSpecifier( |
| const_cast<NestedNameSpecifier*>(&NNS)); |
| } |
| bool baseTraverse(NestedNameSpecifierLoc NNS) { |
| return VisitorBase::TraverseNestedNameSpecifierLoc(NNS); |
| } |
| |
| // Sets 'Matched' to true if 'Matcher' matches 'Node' and: |
| // 0 < CurrentDepth <= MaxDepth. |
| // |
| // Returns 'true' if traversal should continue after this function |
| // returns, i.e. if no match is found or 'Bind' is 'BK_All'. |
| template <typename T> |
| bool match(const T &Node) { |
| if (CurrentDepth == 0 || CurrentDepth > MaxDepth) { |
| return true; |
| } |
| if (Bind != ASTMatchFinder::BK_All) { |
| if (Matcher->matches(ast_type_traits::DynTypedNode::create(Node), |
| Finder, Builder)) { |
| Matches = true; |
| return false; // Abort as soon as a match is found. |
| } |
| } else { |
| BoundNodesTreeBuilder RecursiveBuilder; |
| if (Matcher->matches(ast_type_traits::DynTypedNode::create(Node), |
| Finder, &RecursiveBuilder)) { |
| // After the first match the matcher succeeds. |
| Matches = true; |
| Builder->addMatch(RecursiveBuilder.build()); |
| } |
| } |
| return true; |
| } |
| |
| // Traverses the subtree rooted at 'Node'; returns true if the |
| // traversal should continue after this function returns. |
| template <typename T> |
| bool traverse(const T &Node) { |
| TOOLING_COMPILE_ASSERT(IsBaseType<T>::value, |
| traverse_can_only_be_instantiated_with_base_type); |
| if (!match(Node)) |
| return false; |
| return baseTraverse(Node); |
| } |
| |
| const DynTypedMatcher *const Matcher; |
| ASTMatchFinder *const Finder; |
| BoundNodesTreeBuilder *const Builder; |
| int CurrentDepth; |
| const int MaxDepth; |
| const ASTMatchFinder::TraversalKind Traversal; |
| const ASTMatchFinder::BindKind Bind; |
| bool Matches; |
| }; |
| |
| // Controls the outermost traversal of the AST and allows to match multiple |
| // matchers. |
| class MatchASTVisitor : public RecursiveASTVisitor<MatchASTVisitor>, |
| public ASTMatchFinder { |
| public: |
| MatchASTVisitor(std::vector<std::pair<const internal::DynTypedMatcher*, |
| MatchCallback*> > *MatcherCallbackPairs) |
| : MatcherCallbackPairs(MatcherCallbackPairs), |
| ActiveASTContext(NULL) { |
| } |
| |
| void onStartOfTranslationUnit() { |
| for (std::vector<std::pair<const internal::DynTypedMatcher*, |
| MatchCallback*> >::const_iterator |
| I = MatcherCallbackPairs->begin(), E = MatcherCallbackPairs->end(); |
| I != E; ++I) { |
| I->second->onStartOfTranslationUnit(); |
| } |
| } |
| |
| void set_active_ast_context(ASTContext *NewActiveASTContext) { |
| ActiveASTContext = NewActiveASTContext; |
| } |
| |
| // The following Visit*() and Traverse*() functions "override" |
| // methods in RecursiveASTVisitor. |
| |
| bool VisitTypedefDecl(TypedefDecl *DeclNode) { |
| // When we see 'typedef A B', we add name 'B' to the set of names |
| // A's canonical type maps to. This is necessary for implementing |
| // isDerivedFrom(x) properly, where x can be the name of the base |
| // class or any of its aliases. |
| // |
| // In general, the is-alias-of (as defined by typedefs) relation |
| // is tree-shaped, as you can typedef a type more than once. For |
| // example, |
| // |
| // typedef A B; |
| // typedef A C; |
| // typedef C D; |
| // typedef C E; |
| // |
| // gives you |
| // |
| // A |
| // |- B |
| // `- C |
| // |- D |
| // `- E |
| // |
| // It is wrong to assume that the relation is a chain. A correct |
| // implementation of isDerivedFrom() needs to recognize that B and |
| // E are aliases, even though neither is a typedef of the other. |
| // Therefore, we cannot simply walk through one typedef chain to |
| // find out whether the type name matches. |
| const Type *TypeNode = DeclNode->getUnderlyingType().getTypePtr(); |
| const Type *CanonicalType = // root of the typedef tree |
| ActiveASTContext->getCanonicalType(TypeNode); |
| TypeAliases[CanonicalType].insert(DeclNode); |
| return true; |
| } |
| |
| bool TraverseDecl(Decl *DeclNode); |
| bool TraverseStmt(Stmt *StmtNode); |
| bool TraverseType(QualType TypeNode); |
| bool TraverseTypeLoc(TypeLoc TypeNode); |
| bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS); |
| bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS); |
| |
| // Matches children or descendants of 'Node' with 'BaseMatcher'. |
| bool memoizedMatchesRecursively(const ast_type_traits::DynTypedNode &Node, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, int MaxDepth, |
| TraversalKind Traversal, BindKind Bind) { |
| const UntypedMatchInput input(Matcher.getID(), Node.getMemoizationData()); |
| |
| // For AST-nodes that don't have an identity, we can't memoize. |
| if (!input.second) |
| return matchesRecursively(Node, Matcher, Builder, MaxDepth, Traversal, |
| Bind); |
| |
| std::pair<MemoizationMap::iterator, bool> InsertResult |
| = ResultCache.insert(std::make_pair(input, MemoizedMatchResult())); |
| if (InsertResult.second) { |
| BoundNodesTreeBuilder DescendantBoundNodesBuilder; |
| InsertResult.first->second.ResultOfMatch = |
| matchesRecursively(Node, Matcher, &DescendantBoundNodesBuilder, |
| MaxDepth, Traversal, Bind); |
| InsertResult.first->second.Nodes = |
| DescendantBoundNodesBuilder.build(); |
| } |
| InsertResult.first->second.Nodes.copyTo(Builder); |
| return InsertResult.first->second.ResultOfMatch; |
| } |
| |
| // Matches children or descendants of 'Node' with 'BaseMatcher'. |
| bool matchesRecursively(const ast_type_traits::DynTypedNode &Node, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, int MaxDepth, |
| TraversalKind Traversal, BindKind Bind) { |
| MatchChildASTVisitor Visitor( |
| &Matcher, this, Builder, MaxDepth, Traversal, Bind); |
| return Visitor.findMatch(Node); |
| } |
| |
| virtual bool classIsDerivedFrom(const CXXRecordDecl *Declaration, |
| const Matcher<NamedDecl> &Base, |
| BoundNodesTreeBuilder *Builder); |
| |
| // Implements ASTMatchFinder::matchesChildOf. |
| virtual bool matchesChildOf(const ast_type_traits::DynTypedNode &Node, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, |
| TraversalKind Traversal, |
| BindKind Bind) { |
| return matchesRecursively(Node, Matcher, Builder, 1, Traversal, |
| Bind); |
| } |
| // Implements ASTMatchFinder::matchesDescendantOf. |
| virtual bool matchesDescendantOf(const ast_type_traits::DynTypedNode &Node, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, |
| BindKind Bind) { |
| return memoizedMatchesRecursively(Node, Matcher, Builder, INT_MAX, |
| TK_AsIs, Bind); |
| } |
| // Implements ASTMatchFinder::matchesAncestorOf. |
| virtual bool matchesAncestorOf(const ast_type_traits::DynTypedNode &Node, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, |
| AncestorMatchMode MatchMode) { |
| return matchesAncestorOfRecursively(Node, Matcher, Builder, MatchMode); |
| } |
| |
| // Matches all registered matchers on the given node and calls the |
| // result callback for every node that matches. |
| void match(const ast_type_traits::DynTypedNode& Node) { |
| for (std::vector<std::pair<const internal::DynTypedMatcher*, |
| MatchCallback*> >::const_iterator |
| I = MatcherCallbackPairs->begin(), E = MatcherCallbackPairs->end(); |
| I != E; ++I) { |
| BoundNodesTreeBuilder Builder; |
| if (I->first->matches(Node, this, &Builder)) { |
| BoundNodesTree BoundNodes = Builder.build(); |
| MatchVisitor Visitor(ActiveASTContext, I->second); |
| BoundNodes.visitMatches(&Visitor); |
| } |
| } |
| } |
| |
| template <typename T> void match(const T &Node) { |
| match(ast_type_traits::DynTypedNode::create(Node)); |
| } |
| |
| // Implements ASTMatchFinder::getASTContext. |
| virtual ASTContext &getASTContext() const { return *ActiveASTContext; } |
| |
| bool shouldVisitTemplateInstantiations() const { return true; } |
| bool shouldVisitImplicitCode() const { return true; } |
| // Disables data recursion. We intercept Traverse* methods in the RAV, which |
| // are not triggered during data recursion. |
| bool shouldUseDataRecursionFor(clang::Stmt *S) const { return false; } |
| |
| private: |
| bool matchesAncestorOfRecursively( |
| const ast_type_traits::DynTypedNode &Node, const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, AncestorMatchMode MatchMode) { |
| if (Node.get<TranslationUnitDecl>() == |
| ActiveASTContext->getTranslationUnitDecl()) |
| return false; |
| assert(Node.getMemoizationData() && |
| "Invariant broken: only nodes that support memoization may be " |
| "used in the parent map."); |
| ASTContext::ParentVector Parents = ActiveASTContext->getParents(Node); |
| if (Parents.empty()) { |
| assert(false && "Found node that is not in the parent map."); |
| return false; |
| } |
| for (ASTContext::ParentVector::const_iterator AncestorI = Parents.begin(), |
| AncestorE = Parents.end(); |
| AncestorI != AncestorE; ++AncestorI) { |
| if (Matcher.matches(*AncestorI, this, Builder)) |
| return true; |
| } |
| if (MatchMode == ASTMatchFinder::AMM_ParentOnly) |
| return false; |
| for (ASTContext::ParentVector::const_iterator AncestorI = Parents.begin(), |
| AncestorE = Parents.end(); |
| AncestorI != AncestorE; ++AncestorI) { |
| if (matchesAncestorOfRecursively(*AncestorI, Matcher, Builder, MatchMode)) |
| return true; |
| } |
| return false; |
| } |
| |
| |
| // Implements a BoundNodesTree::Visitor that calls a MatchCallback with |
| // the aggregated bound nodes for each match. |
| class MatchVisitor : public BoundNodesTree::Visitor { |
| public: |
| MatchVisitor(ASTContext* Context, |
| MatchFinder::MatchCallback* Callback) |
| : Context(Context), |
| Callback(Callback) {} |
| |
| virtual void visitMatch(const BoundNodes& BoundNodesView) { |
| Callback->run(MatchFinder::MatchResult(BoundNodesView, Context)); |
| } |
| |
| private: |
| ASTContext* Context; |
| MatchFinder::MatchCallback* Callback; |
| }; |
| |
| // Returns true if 'TypeNode' has an alias that matches the given matcher. |
| bool typeHasMatchingAlias(const Type *TypeNode, |
| const Matcher<NamedDecl> Matcher, |
| BoundNodesTreeBuilder *Builder) { |
| const Type *const CanonicalType = |
| ActiveASTContext->getCanonicalType(TypeNode); |
| const std::set<const TypedefDecl*> &Aliases = TypeAliases[CanonicalType]; |
| for (std::set<const TypedefDecl*>::const_iterator |
| It = Aliases.begin(), End = Aliases.end(); |
| It != End; ++It) { |
| if (Matcher.matches(**It, this, Builder)) |
| return true; |
| } |
| return false; |
| } |
| |
| std::vector<std::pair<const internal::DynTypedMatcher*, |
| MatchCallback*> > *const MatcherCallbackPairs; |
| ASTContext *ActiveASTContext; |
| |
| // Maps a canonical type to its TypedefDecls. |
| llvm::DenseMap<const Type*, std::set<const TypedefDecl*> > TypeAliases; |
| |
| // Maps (matcher, node) -> the match result for memoization. |
| typedef llvm::DenseMap<UntypedMatchInput, MemoizedMatchResult> MemoizationMap; |
| MemoizationMap ResultCache; |
| }; |
| |
| // Returns true if the given class is directly or indirectly derived |
| // from a base type with the given name. A class is not considered to be |
| // derived from itself. |
| bool MatchASTVisitor::classIsDerivedFrom(const CXXRecordDecl *Declaration, |
| const Matcher<NamedDecl> &Base, |
| BoundNodesTreeBuilder *Builder) { |
| if (!Declaration->hasDefinition()) |
| return false; |
| typedef CXXRecordDecl::base_class_const_iterator BaseIterator; |
| for (BaseIterator It = Declaration->bases_begin(), |
| End = Declaration->bases_end(); It != End; ++It) { |
| const Type *TypeNode = It->getType().getTypePtr(); |
| |
| if (typeHasMatchingAlias(TypeNode, Base, Builder)) |
| return true; |
| |
| // Type::getAs<...>() drills through typedefs. |
| if (TypeNode->getAs<DependentNameType>() != NULL || |
| TypeNode->getAs<DependentTemplateSpecializationType>() != NULL || |
| TypeNode->getAs<TemplateTypeParmType>() != NULL) |
| // Dependent names and template TypeNode parameters will be matched when |
| // the template is instantiated. |
| continue; |
| CXXRecordDecl *ClassDecl = NULL; |
| TemplateSpecializationType const *TemplateType = |
| TypeNode->getAs<TemplateSpecializationType>(); |
| if (TemplateType != NULL) { |
| if (TemplateType->getTemplateName().isDependent()) |
| // Dependent template specializations will be matched when the |
| // template is instantiated. |
| continue; |
| |
| // For template specialization types which are specializing a template |
| // declaration which is an explicit or partial specialization of another |
| // template declaration, getAsCXXRecordDecl() returns the corresponding |
| // ClassTemplateSpecializationDecl. |
| // |
| // For template specialization types which are specializing a template |
| // declaration which is neither an explicit nor partial specialization of |
| // another template declaration, getAsCXXRecordDecl() returns NULL and |
| // we get the CXXRecordDecl of the templated declaration. |
| CXXRecordDecl *SpecializationDecl = |
| TemplateType->getAsCXXRecordDecl(); |
| if (SpecializationDecl != NULL) { |
| ClassDecl = SpecializationDecl; |
| } else { |
| ClassDecl = dyn_cast<CXXRecordDecl>( |
| TemplateType->getTemplateName() |
| .getAsTemplateDecl()->getTemplatedDecl()); |
| } |
| } else { |
| ClassDecl = TypeNode->getAsCXXRecordDecl(); |
| } |
| assert(ClassDecl != NULL); |
| if (ClassDecl == Declaration) { |
| // This can happen for recursive template definitions; if the |
| // current declaration did not match, we can safely return false. |
| assert(TemplateType); |
| return false; |
| } |
| if (Base.matches(*ClassDecl, this, Builder)) |
| return true; |
| if (classIsDerivedFrom(ClassDecl, Base, Builder)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool MatchASTVisitor::TraverseDecl(Decl *DeclNode) { |
| if (DeclNode == NULL) { |
| return true; |
| } |
| match(*DeclNode); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseDecl(DeclNode); |
| } |
| |
| bool MatchASTVisitor::TraverseStmt(Stmt *StmtNode) { |
| if (StmtNode == NULL) { |
| return true; |
| } |
| match(*StmtNode); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseStmt(StmtNode); |
| } |
| |
| bool MatchASTVisitor::TraverseType(QualType TypeNode) { |
| match(TypeNode); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseType(TypeNode); |
| } |
| |
| bool MatchASTVisitor::TraverseTypeLoc(TypeLoc TypeLocNode) { |
| // The RecursiveASTVisitor only visits types if they're not within TypeLocs. |
| // We still want to find those types via matchers, so we match them here. Note |
| // that the TypeLocs are structurally a shadow-hierarchy to the expressed |
| // type, so we visit all involved parts of a compound type when matching on |
| // each TypeLoc. |
| match(TypeLocNode); |
| match(TypeLocNode.getType()); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseTypeLoc(TypeLocNode); |
| } |
| |
| bool MatchASTVisitor::TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) { |
| match(*NNS); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifier(NNS); |
| } |
| |
| bool MatchASTVisitor::TraverseNestedNameSpecifierLoc( |
| NestedNameSpecifierLoc NNS) { |
| match(NNS); |
| // We only match the nested name specifier here (as opposed to traversing it) |
| // because the traversal is already done in the parallel "Loc"-hierarchy. |
| match(*NNS.getNestedNameSpecifier()); |
| return |
| RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifierLoc(NNS); |
| } |
| |
| class MatchASTConsumer : public ASTConsumer { |
| public: |
| MatchASTConsumer( |
| std::vector<std::pair<const internal::DynTypedMatcher*, |
| MatchCallback*> > *MatcherCallbackPairs, |
| MatchFinder::ParsingDoneTestCallback *ParsingDone) |
| : Visitor(MatcherCallbackPairs), |
| ParsingDone(ParsingDone) {} |
| |
| private: |
| virtual void HandleTranslationUnit(ASTContext &Context) { |
| if (ParsingDone != NULL) { |
| ParsingDone->run(); |
| } |
| Visitor.set_active_ast_context(&Context); |
| Visitor.onStartOfTranslationUnit(); |
| Visitor.TraverseDecl(Context.getTranslationUnitDecl()); |
| Visitor.set_active_ast_context(NULL); |
| } |
| |
| MatchASTVisitor Visitor; |
| MatchFinder::ParsingDoneTestCallback *ParsingDone; |
| }; |
| |
| } // end namespace |
| } // end namespace internal |
| |
| MatchFinder::MatchResult::MatchResult(const BoundNodes &Nodes, |
| ASTContext *Context) |
| : Nodes(Nodes), Context(Context), |
| SourceManager(&Context->getSourceManager()) {} |
| |
| MatchFinder::MatchCallback::~MatchCallback() {} |
| MatchFinder::ParsingDoneTestCallback::~ParsingDoneTestCallback() {} |
| |
| MatchFinder::MatchFinder() : ParsingDone(NULL) {} |
| |
| MatchFinder::~MatchFinder() { |
| for (std::vector<std::pair<const internal::DynTypedMatcher*, |
| MatchCallback*> >::const_iterator |
| It = MatcherCallbackPairs.begin(), End = MatcherCallbackPairs.end(); |
| It != End; ++It) { |
| delete It->first; |
| } |
| } |
| |
| void MatchFinder::addMatcher(const DeclarationMatcher &NodeMatch, |
| MatchCallback *Action) { |
| MatcherCallbackPairs.push_back(std::make_pair( |
| new internal::Matcher<Decl>(NodeMatch), Action)); |
| } |
| |
| void MatchFinder::addMatcher(const TypeMatcher &NodeMatch, |
| MatchCallback *Action) { |
| MatcherCallbackPairs.push_back(std::make_pair( |
| new internal::Matcher<QualType>(NodeMatch), Action)); |
| } |
| |
| void MatchFinder::addMatcher(const StatementMatcher &NodeMatch, |
| MatchCallback *Action) { |
| MatcherCallbackPairs.push_back(std::make_pair( |
| new internal::Matcher<Stmt>(NodeMatch), Action)); |
| } |
| |
| void MatchFinder::addMatcher(const NestedNameSpecifierMatcher &NodeMatch, |
| MatchCallback *Action) { |
| MatcherCallbackPairs.push_back(std::make_pair( |
| new NestedNameSpecifierMatcher(NodeMatch), Action)); |
| } |
| |
| void MatchFinder::addMatcher(const NestedNameSpecifierLocMatcher &NodeMatch, |
| MatchCallback *Action) { |
| MatcherCallbackPairs.push_back(std::make_pair( |
| new NestedNameSpecifierLocMatcher(NodeMatch), Action)); |
| } |
| |
| void MatchFinder::addMatcher(const TypeLocMatcher &NodeMatch, |
| MatchCallback *Action) { |
| MatcherCallbackPairs.push_back(std::make_pair( |
| new TypeLocMatcher(NodeMatch), Action)); |
| } |
| |
| ASTConsumer *MatchFinder::newASTConsumer() { |
| return new internal::MatchASTConsumer(&MatcherCallbackPairs, ParsingDone); |
| } |
| |
| void MatchFinder::match(const clang::ast_type_traits::DynTypedNode &Node, |
| ASTContext &Context) { |
| internal::MatchASTVisitor Visitor(&MatcherCallbackPairs); |
| Visitor.set_active_ast_context(&Context); |
| Visitor.match(Node); |
| } |
| |
| void MatchFinder::registerTestCallbackAfterParsing( |
| MatchFinder::ParsingDoneTestCallback *NewParsingDone) { |
| ParsingDone = NewParsingDone; |
| } |
| |
| } // end namespace ast_matchers |
| } // end namespace clang |