| //===--- MacroExpansion.cpp - Top level Macro Expansion -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the top level handling of macro expasion for the |
| // preprocessor. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Lex/Preprocessor.h" |
| #include "MacroArgs.h" |
| #include "clang/Lex/MacroInfo.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/FileManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/LexDiagnostic.h" |
| #include "clang/Lex/CodeCompletionHandler.h" |
| #include "clang/Lex/ExternalPreprocessorSource.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <cstdio> |
| #include <ctime> |
| using namespace clang; |
| |
| MacroInfo *Preprocessor::getInfoForMacro(IdentifierInfo *II) const { |
| assert(II->hasMacroDefinition() && "Identifier is not a macro!"); |
| |
| llvm::DenseMap<IdentifierInfo*, MacroInfo*>::const_iterator Pos |
| = Macros.find(II); |
| if (Pos == Macros.end()) { |
| // Load this macro from the external source. |
| getExternalSource()->LoadMacroDefinition(II); |
| Pos = Macros.find(II); |
| } |
| assert(Pos != Macros.end() && "Identifier macro info is missing!"); |
| return Pos->second; |
| } |
| |
| /// setMacroInfo - Specify a macro for this identifier. |
| /// |
| void Preprocessor::setMacroInfo(IdentifierInfo *II, MacroInfo *MI, |
| bool LoadedFromAST) { |
| if (MI) { |
| Macros[II] = MI; |
| II->setHasMacroDefinition(true); |
| if (II->isFromAST() && !LoadedFromAST) |
| II->setChangedSinceDeserialization(); |
| } else if (II->hasMacroDefinition()) { |
| Macros.erase(II); |
| II->setHasMacroDefinition(false); |
| if (II->isFromAST() && !LoadedFromAST) |
| II->setChangedSinceDeserialization(); |
| } |
| } |
| |
| /// RegisterBuiltinMacro - Register the specified identifier in the identifier |
| /// table and mark it as a builtin macro to be expanded. |
| static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ |
| // Get the identifier. |
| IdentifierInfo *Id = PP.getIdentifierInfo(Name); |
| |
| // Mark it as being a macro that is builtin. |
| MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); |
| MI->setIsBuiltinMacro(); |
| PP.setMacroInfo(Id, MI); |
| return Id; |
| } |
| |
| |
| /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the |
| /// identifier table. |
| void Preprocessor::RegisterBuiltinMacros() { |
| Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); |
| Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); |
| Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); |
| Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); |
| Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); |
| Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); |
| |
| // GCC Extensions. |
| Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); |
| Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); |
| Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); |
| |
| // Clang Extensions. |
| Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); |
| Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); |
| Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); |
| Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); |
| Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); |
| Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); |
| Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); |
| |
| // Microsoft Extensions. |
| if (LangOpts.MicrosoftExt) |
| Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); |
| else |
| Ident__pragma = 0; |
| } |
| |
| /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token |
| /// in its expansion, currently expands to that token literally. |
| static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, |
| const IdentifierInfo *MacroIdent, |
| Preprocessor &PP) { |
| IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); |
| |
| // If the token isn't an identifier, it's always literally expanded. |
| if (II == 0) return true; |
| |
| // If the information about this identifier is out of date, update it from |
| // the external source. |
| if (II->isOutOfDate()) |
| PP.getExternalSource()->updateOutOfDateIdentifier(*II); |
| |
| // If the identifier is a macro, and if that macro is enabled, it may be |
| // expanded so it's not a trivial expansion. |
| if (II->hasMacroDefinition() && PP.getMacroInfo(II)->isEnabled() && |
| // Fast expanding "#define X X" is ok, because X would be disabled. |
| II != MacroIdent) |
| return false; |
| |
| // If this is an object-like macro invocation, it is safe to trivially expand |
| // it. |
| if (MI->isObjectLike()) return true; |
| |
| // If this is a function-like macro invocation, it's safe to trivially expand |
| // as long as the identifier is not a macro argument. |
| for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end(); |
| I != E; ++I) |
| if (*I == II) |
| return false; // Identifier is a macro argument. |
| |
| return true; |
| } |
| |
| |
| /// isNextPPTokenLParen - Determine whether the next preprocessor token to be |
| /// lexed is a '('. If so, consume the token and return true, if not, this |
| /// method should have no observable side-effect on the lexed tokens. |
| bool Preprocessor::isNextPPTokenLParen() { |
| // Do some quick tests for rejection cases. |
| unsigned Val; |
| if (CurLexer) |
| Val = CurLexer->isNextPPTokenLParen(); |
| else if (CurPTHLexer) |
| Val = CurPTHLexer->isNextPPTokenLParen(); |
| else |
| Val = CurTokenLexer->isNextTokenLParen(); |
| |
| if (Val == 2) { |
| // We have run off the end. If it's a source file we don't |
| // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the |
| // macro stack. |
| if (CurPPLexer) |
| return false; |
| for (unsigned i = IncludeMacroStack.size(); i != 0; --i) { |
| IncludeStackInfo &Entry = IncludeMacroStack[i-1]; |
| if (Entry.TheLexer) |
| Val = Entry.TheLexer->isNextPPTokenLParen(); |
| else if (Entry.ThePTHLexer) |
| Val = Entry.ThePTHLexer->isNextPPTokenLParen(); |
| else |
| Val = Entry.TheTokenLexer->isNextTokenLParen(); |
| |
| if (Val != 2) |
| break; |
| |
| // Ran off the end of a source file? |
| if (Entry.ThePPLexer) |
| return false; |
| } |
| } |
| |
| // Okay, if we know that the token is a '(', lex it and return. Otherwise we |
| // have found something that isn't a '(' or we found the end of the |
| // translation unit. In either case, return false. |
| return Val == 1; |
| } |
| |
| /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be |
| /// expanded as a macro, handle it and return the next token as 'Identifier'. |
| bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, |
| MacroInfo *MI) { |
| // If this is a macro expansion in the "#if !defined(x)" line for the file, |
| // then the macro could expand to different things in other contexts, we need |
| // to disable the optimization in this case. |
| if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); |
| |
| // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. |
| if (MI->isBuiltinMacro()) { |
| if (Callbacks) Callbacks->MacroExpands(Identifier, MI, |
| Identifier.getLocation()); |
| ExpandBuiltinMacro(Identifier); |
| return false; |
| } |
| |
| /// Args - If this is a function-like macro expansion, this contains, |
| /// for each macro argument, the list of tokens that were provided to the |
| /// invocation. |
| MacroArgs *Args = 0; |
| |
| // Remember where the end of the expansion occurred. For an object-like |
| // macro, this is the identifier. For a function-like macro, this is the ')'. |
| SourceLocation ExpansionEnd = Identifier.getLocation(); |
| |
| // If this is a function-like macro, read the arguments. |
| if (MI->isFunctionLike()) { |
| // C99 6.10.3p10: If the preprocessing token immediately after the the macro |
| // name isn't a '(', this macro should not be expanded. |
| if (!isNextPPTokenLParen()) |
| return true; |
| |
| // Remember that we are now parsing the arguments to a macro invocation. |
| // Preprocessor directives used inside macro arguments are not portable, and |
| // this enables the warning. |
| InMacroArgs = true; |
| Args = ReadFunctionLikeMacroArgs(Identifier, MI, ExpansionEnd); |
| |
| // Finished parsing args. |
| InMacroArgs = false; |
| |
| // If there was an error parsing the arguments, bail out. |
| if (Args == 0) return false; |
| |
| ++NumFnMacroExpanded; |
| } else { |
| ++NumMacroExpanded; |
| } |
| |
| // Notice that this macro has been used. |
| markMacroAsUsed(MI); |
| |
| // Remember where the token is expanded. |
| SourceLocation ExpandLoc = Identifier.getLocation(); |
| |
| if (Callbacks) Callbacks->MacroExpands(Identifier, MI, |
| SourceRange(ExpandLoc, ExpansionEnd)); |
| |
| // If we started lexing a macro, enter the macro expansion body. |
| |
| // If this macro expands to no tokens, don't bother to push it onto the |
| // expansion stack, only to take it right back off. |
| if (MI->getNumTokens() == 0) { |
| // No need for arg info. |
| if (Args) Args->destroy(*this); |
| |
| // Ignore this macro use, just return the next token in the current |
| // buffer. |
| bool HadLeadingSpace = Identifier.hasLeadingSpace(); |
| bool IsAtStartOfLine = Identifier.isAtStartOfLine(); |
| |
| Lex(Identifier); |
| |
| // If the identifier isn't on some OTHER line, inherit the leading |
| // whitespace/first-on-a-line property of this token. This handles |
| // stuff like "! XX," -> "! ," and " XX," -> " ,", when XX is |
| // empty. |
| if (!Identifier.isAtStartOfLine()) { |
| if (IsAtStartOfLine) Identifier.setFlag(Token::StartOfLine); |
| if (HadLeadingSpace) Identifier.setFlag(Token::LeadingSpace); |
| } |
| Identifier.setFlag(Token::LeadingEmptyMacro); |
| ++NumFastMacroExpanded; |
| return false; |
| |
| } else if (MI->getNumTokens() == 1 && |
| isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), |
| *this)) { |
| // Otherwise, if this macro expands into a single trivially-expanded |
| // token: expand it now. This handles common cases like |
| // "#define VAL 42". |
| |
| // No need for arg info. |
| if (Args) Args->destroy(*this); |
| |
| // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro |
| // identifier to the expanded token. |
| bool isAtStartOfLine = Identifier.isAtStartOfLine(); |
| bool hasLeadingSpace = Identifier.hasLeadingSpace(); |
| |
| // Replace the result token. |
| Identifier = MI->getReplacementToken(0); |
| |
| // Restore the StartOfLine/LeadingSpace markers. |
| Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); |
| Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); |
| |
| // Update the tokens location to include both its expansion and physical |
| // locations. |
| SourceLocation Loc = |
| SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, |
| ExpansionEnd,Identifier.getLength()); |
| Identifier.setLocation(Loc); |
| |
| // If this is a disabled macro or #define X X, we must mark the result as |
| // unexpandable. |
| if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { |
| if (MacroInfo *NewMI = getMacroInfo(NewII)) |
| if (!NewMI->isEnabled() || NewMI == MI) { |
| Identifier.setFlag(Token::DisableExpand); |
| Diag(Identifier, diag::pp_disabled_macro_expansion); |
| } |
| } |
| |
| // Since this is not an identifier token, it can't be macro expanded, so |
| // we're done. |
| ++NumFastMacroExpanded; |
| return false; |
| } |
| |
| // Start expanding the macro. |
| EnterMacro(Identifier, ExpansionEnd, Args); |
| |
| // Now that the macro is at the top of the include stack, ask the |
| // preprocessor to read the next token from it. |
| Lex(Identifier); |
| return false; |
| } |
| |
| /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next |
| /// token is the '(' of the macro, this method is invoked to read all of the |
| /// actual arguments specified for the macro invocation. This returns null on |
| /// error. |
| MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName, |
| MacroInfo *MI, |
| SourceLocation &MacroEnd) { |
| // The number of fixed arguments to parse. |
| unsigned NumFixedArgsLeft = MI->getNumArgs(); |
| bool isVariadic = MI->isVariadic(); |
| |
| // Outer loop, while there are more arguments, keep reading them. |
| Token Tok; |
| |
| // Read arguments as unexpanded tokens. This avoids issues, e.g., where |
| // an argument value in a macro could expand to ',' or '(' or ')'. |
| LexUnexpandedToken(Tok); |
| assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); |
| |
| // ArgTokens - Build up a list of tokens that make up each argument. Each |
| // argument is separated by an EOF token. Use a SmallVector so we can avoid |
| // heap allocations in the common case. |
| SmallVector<Token, 64> ArgTokens; |
| |
| unsigned NumActuals = 0; |
| while (Tok.isNot(tok::r_paren)) { |
| assert((Tok.is(tok::l_paren) || Tok.is(tok::comma)) && |
| "only expect argument separators here"); |
| |
| unsigned ArgTokenStart = ArgTokens.size(); |
| SourceLocation ArgStartLoc = Tok.getLocation(); |
| |
| // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note |
| // that we already consumed the first one. |
| unsigned NumParens = 0; |
| |
| while (1) { |
| // Read arguments as unexpanded tokens. This avoids issues, e.g., where |
| // an argument value in a macro could expand to ',' or '(' or ')'. |
| LexUnexpandedToken(Tok); |
| |
| if (Tok.is(tok::eof) || Tok.is(tok::eod)) { // "#if f(<eof>" & "#if f(\n" |
| Diag(MacroName, diag::err_unterm_macro_invoc); |
| // Do not lose the EOF/EOD. Return it to the client. |
| MacroName = Tok; |
| return 0; |
| } else if (Tok.is(tok::r_paren)) { |
| // If we found the ) token, the macro arg list is done. |
| if (NumParens-- == 0) { |
| MacroEnd = Tok.getLocation(); |
| break; |
| } |
| } else if (Tok.is(tok::l_paren)) { |
| ++NumParens; |
| } else if (Tok.is(tok::comma) && NumParens == 0) { |
| // Comma ends this argument if there are more fixed arguments expected. |
| // However, if this is a variadic macro, and this is part of the |
| // variadic part, then the comma is just an argument token. |
| if (!isVariadic) break; |
| if (NumFixedArgsLeft > 1) |
| break; |
| } else if (Tok.is(tok::comment) && !KeepMacroComments) { |
| // If this is a comment token in the argument list and we're just in |
| // -C mode (not -CC mode), discard the comment. |
| continue; |
| } else if (Tok.getIdentifierInfo() != 0) { |
| // Reading macro arguments can cause macros that we are currently |
| // expanding from to be popped off the expansion stack. Doing so causes |
| // them to be reenabled for expansion. Here we record whether any |
| // identifiers we lex as macro arguments correspond to disabled macros. |
| // If so, we mark the token as noexpand. This is a subtle aspect of |
| // C99 6.10.3.4p2. |
| if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) |
| if (!MI->isEnabled()) |
| Tok.setFlag(Token::DisableExpand); |
| } else if (Tok.is(tok::code_completion)) { |
| if (CodeComplete) |
| CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), |
| MI, NumActuals); |
| // Don't mark that we reached the code-completion point because the |
| // parser is going to handle the token and there will be another |
| // code-completion callback. |
| } |
| |
| ArgTokens.push_back(Tok); |
| } |
| |
| // If this was an empty argument list foo(), don't add this as an empty |
| // argument. |
| if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) |
| break; |
| |
| // If this is not a variadic macro, and too many args were specified, emit |
| // an error. |
| if (!isVariadic && NumFixedArgsLeft == 0) { |
| if (ArgTokens.size() != ArgTokenStart) |
| ArgStartLoc = ArgTokens[ArgTokenStart].getLocation(); |
| |
| // Emit the diagnostic at the macro name in case there is a missing ). |
| // Emitting it at the , could be far away from the macro name. |
| Diag(ArgStartLoc, diag::err_too_many_args_in_macro_invoc); |
| return 0; |
| } |
| |
| // Empty arguments are standard in C99 and C++0x, and are supported as an extension in |
| // other modes. |
| if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99) |
| Diag(Tok, LangOpts.CPlusPlus0x ? |
| diag::warn_cxx98_compat_empty_fnmacro_arg : |
| diag::ext_empty_fnmacro_arg); |
| |
| // Add a marker EOF token to the end of the token list for this argument. |
| Token EOFTok; |
| EOFTok.startToken(); |
| EOFTok.setKind(tok::eof); |
| EOFTok.setLocation(Tok.getLocation()); |
| EOFTok.setLength(0); |
| ArgTokens.push_back(EOFTok); |
| ++NumActuals; |
| assert(NumFixedArgsLeft != 0 && "Too many arguments parsed"); |
| --NumFixedArgsLeft; |
| } |
| |
| // Okay, we either found the r_paren. Check to see if we parsed too few |
| // arguments. |
| unsigned MinArgsExpected = MI->getNumArgs(); |
| |
| // See MacroArgs instance var for description of this. |
| bool isVarargsElided = false; |
| |
| if (NumActuals < MinArgsExpected) { |
| // There are several cases where too few arguments is ok, handle them now. |
| if (NumActuals == 0 && MinArgsExpected == 1) { |
| // #define A(X) or #define A(...) ---> A() |
| |
| // If there is exactly one argument, and that argument is missing, |
| // then we have an empty "()" argument empty list. This is fine, even if |
| // the macro expects one argument (the argument is just empty). |
| isVarargsElided = MI->isVariadic(); |
| } else if (MI->isVariadic() && |
| (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) |
| (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() |
| // Varargs where the named vararg parameter is missing: ok as extension. |
| // #define A(x, ...) |
| // A("blah") |
| Diag(Tok, diag::ext_missing_varargs_arg); |
| |
| // Remember this occurred, allowing us to elide the comma when used for |
| // cases like: |
| // #define A(x, foo...) blah(a, ## foo) |
| // #define B(x, ...) blah(a, ## __VA_ARGS__) |
| // #define C(...) blah(a, ## __VA_ARGS__) |
| // A(x) B(x) C() |
| isVarargsElided = true; |
| } else { |
| // Otherwise, emit the error. |
| Diag(Tok, diag::err_too_few_args_in_macro_invoc); |
| return 0; |
| } |
| |
| // Add a marker EOF token to the end of the token list for this argument. |
| SourceLocation EndLoc = Tok.getLocation(); |
| Tok.startToken(); |
| Tok.setKind(tok::eof); |
| Tok.setLocation(EndLoc); |
| Tok.setLength(0); |
| ArgTokens.push_back(Tok); |
| |
| // If we expect two arguments, add both as empty. |
| if (NumActuals == 0 && MinArgsExpected == 2) |
| ArgTokens.push_back(Tok); |
| |
| } else if (NumActuals > MinArgsExpected && !MI->isVariadic()) { |
| // Emit the diagnostic at the macro name in case there is a missing ). |
| // Emitting it at the , could be far away from the macro name. |
| Diag(MacroName, diag::err_too_many_args_in_macro_invoc); |
| return 0; |
| } |
| |
| return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); |
| } |
| |
| /// \brief Keeps macro expanded tokens for TokenLexers. |
| // |
| /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
| /// going to lex in the cache and when it finishes the tokens are removed |
| /// from the end of the cache. |
| Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, |
| ArrayRef<Token> tokens) { |
| assert(tokLexer); |
| if (tokens.empty()) |
| return 0; |
| |
| size_t newIndex = MacroExpandedTokens.size(); |
| bool cacheNeedsToGrow = tokens.size() > |
| MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); |
| MacroExpandedTokens.append(tokens.begin(), tokens.end()); |
| |
| if (cacheNeedsToGrow) { |
| // Go through all the TokenLexers whose 'Tokens' pointer points in the |
| // buffer and update the pointers to the (potential) new buffer array. |
| for (unsigned i = 0, e = MacroExpandingLexersStack.size(); i != e; ++i) { |
| TokenLexer *prevLexer; |
| size_t tokIndex; |
| llvm::tie(prevLexer, tokIndex) = MacroExpandingLexersStack[i]; |
| prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; |
| } |
| } |
| |
| MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); |
| return MacroExpandedTokens.data() + newIndex; |
| } |
| |
| void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { |
| assert(!MacroExpandingLexersStack.empty()); |
| size_t tokIndex = MacroExpandingLexersStack.back().second; |
| assert(tokIndex < MacroExpandedTokens.size()); |
| // Pop the cached macro expanded tokens from the end. |
| MacroExpandedTokens.resize(tokIndex); |
| MacroExpandingLexersStack.pop_back(); |
| } |
| |
| /// ComputeDATE_TIME - Compute the current time, enter it into the specified |
| /// scratch buffer, then return DATELoc/TIMELoc locations with the position of |
| /// the identifier tokens inserted. |
| static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, |
| Preprocessor &PP) { |
| time_t TT = time(0); |
| struct tm *TM = localtime(&TT); |
| |
| static const char * const Months[] = { |
| "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" |
| }; |
| |
| char TmpBuffer[32]; |
| #ifdef LLVM_ON_WIN32 |
| sprintf(TmpBuffer, "\"%s %2d %4d\"", Months[TM->tm_mon], TM->tm_mday, |
| TM->tm_year+1900); |
| #else |
| snprintf(TmpBuffer, sizeof(TmpBuffer), "\"%s %2d %4d\"", Months[TM->tm_mon], TM->tm_mday, |
| TM->tm_year+1900); |
| #endif |
| |
| Token TmpTok; |
| TmpTok.startToken(); |
| PP.CreateString(TmpBuffer, strlen(TmpBuffer), TmpTok); |
| DATELoc = TmpTok.getLocation(); |
| |
| #ifdef LLVM_ON_WIN32 |
| sprintf(TmpBuffer, "\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, TM->tm_sec); |
| #else |
| snprintf(TmpBuffer, sizeof(TmpBuffer), "\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, TM->tm_sec); |
| #endif |
| PP.CreateString(TmpBuffer, strlen(TmpBuffer), TmpTok); |
| TIMELoc = TmpTok.getLocation(); |
| } |
| |
| |
| /// HasFeature - Return true if we recognize and implement the feature |
| /// specified by the identifier as a standard language feature. |
| static bool HasFeature(const Preprocessor &PP, const IdentifierInfo *II) { |
| const LangOptions &LangOpts = PP.getLangOpts(); |
| StringRef Feature = II->getName(); |
| |
| // Normalize the feature name, __foo__ becomes foo. |
| if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4) |
| Feature = Feature.substr(2, Feature.size() - 4); |
| |
| return llvm::StringSwitch<bool>(Feature) |
| .Case("address_sanitizer", LangOpts.AddressSanitizer) |
| .Case("attribute_analyzer_noreturn", true) |
| .Case("attribute_availability", true) |
| .Case("attribute_cf_returns_not_retained", true) |
| .Case("attribute_cf_returns_retained", true) |
| .Case("attribute_deprecated_with_message", true) |
| .Case("attribute_ext_vector_type", true) |
| .Case("attribute_ns_returns_not_retained", true) |
| .Case("attribute_ns_returns_retained", true) |
| .Case("attribute_ns_consumes_self", true) |
| .Case("attribute_ns_consumed", true) |
| .Case("attribute_cf_consumed", true) |
| .Case("attribute_objc_ivar_unused", true) |
| .Case("attribute_objc_method_family", true) |
| .Case("attribute_overloadable", true) |
| .Case("attribute_unavailable_with_message", true) |
| .Case("blocks", LangOpts.Blocks) |
| .Case("cxx_exceptions", LangOpts.Exceptions) |
| .Case("cxx_rtti", LangOpts.RTTI) |
| .Case("enumerator_attributes", true) |
| // Objective-C features |
| .Case("objc_arr", LangOpts.ObjCAutoRefCount) // FIXME: REMOVE? |
| .Case("objc_arc", LangOpts.ObjCAutoRefCount) |
| .Case("objc_arc_weak", LangOpts.ObjCAutoRefCount && |
| LangOpts.ObjCRuntimeHasWeak) |
| .Case("objc_default_synthesize_properties", LangOpts.ObjC2) |
| .Case("objc_fixed_enum", LangOpts.ObjC2) |
| .Case("objc_instancetype", LangOpts.ObjC2) |
| .Case("objc_modules", LangOpts.ObjC2 && LangOpts.Modules) |
| .Case("objc_nonfragile_abi", LangOpts.ObjCNonFragileABI) |
| .Case("objc_weak_class", LangOpts.ObjCNonFragileABI) |
| .Case("ownership_holds", true) |
| .Case("ownership_returns", true) |
| .Case("ownership_takes", true) |
| .Case("objc_bool", true) |
| .Case("objc_subscripting", LangOpts.ObjCNonFragileABI) |
| .Case("objc_array_literals", LangOpts.ObjC2) |
| .Case("objc_dictionary_literals", LangOpts.ObjC2) |
| .Case("arc_cf_code_audited", true) |
| // C11 features |
| .Case("c_alignas", LangOpts.C11) |
| .Case("c_atomic", LangOpts.C11) |
| .Case("c_generic_selections", LangOpts.C11) |
| .Case("c_static_assert", LangOpts.C11) |
| // C++11 features |
| .Case("cxx_access_control_sfinae", LangOpts.CPlusPlus0x) |
| .Case("cxx_alias_templates", LangOpts.CPlusPlus0x) |
| .Case("cxx_alignas", LangOpts.CPlusPlus0x) |
| .Case("cxx_atomic", LangOpts.CPlusPlus0x) |
| .Case("cxx_attributes", LangOpts.CPlusPlus0x) |
| .Case("cxx_auto_type", LangOpts.CPlusPlus0x) |
| .Case("cxx_constexpr", LangOpts.CPlusPlus0x) |
| .Case("cxx_decltype", LangOpts.CPlusPlus0x) |
| .Case("cxx_default_function_template_args", LangOpts.CPlusPlus0x) |
| .Case("cxx_defaulted_functions", LangOpts.CPlusPlus0x) |
| .Case("cxx_delegating_constructors", LangOpts.CPlusPlus0x) |
| .Case("cxx_deleted_functions", LangOpts.CPlusPlus0x) |
| .Case("cxx_explicit_conversions", LangOpts.CPlusPlus0x) |
| .Case("cxx_generalized_initializers", LangOpts.CPlusPlus0x) |
| .Case("cxx_implicit_moves", LangOpts.CPlusPlus0x) |
| //.Case("cxx_inheriting_constructors", false) |
| .Case("cxx_inline_namespaces", LangOpts.CPlusPlus0x) |
| .Case("cxx_lambdas", LangOpts.CPlusPlus0x) |
| .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus0x) |
| .Case("cxx_noexcept", LangOpts.CPlusPlus0x) |
| .Case("cxx_nullptr", LangOpts.CPlusPlus0x) |
| .Case("cxx_override_control", LangOpts.CPlusPlus0x) |
| .Case("cxx_range_for", LangOpts.CPlusPlus0x) |
| .Case("cxx_raw_string_literals", LangOpts.CPlusPlus0x) |
| .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus0x) |
| .Case("cxx_rvalue_references", LangOpts.CPlusPlus0x) |
| .Case("cxx_strong_enums", LangOpts.CPlusPlus0x) |
| .Case("cxx_static_assert", LangOpts.CPlusPlus0x) |
| .Case("cxx_trailing_return", LangOpts.CPlusPlus0x) |
| .Case("cxx_unicode_literals", LangOpts.CPlusPlus0x) |
| .Case("cxx_unrestricted_unions", LangOpts.CPlusPlus0x) |
| .Case("cxx_user_literals", LangOpts.CPlusPlus0x) |
| .Case("cxx_variadic_templates", LangOpts.CPlusPlus0x) |
| // Type traits |
| .Case("has_nothrow_assign", LangOpts.CPlusPlus) |
| .Case("has_nothrow_copy", LangOpts.CPlusPlus) |
| .Case("has_nothrow_constructor", LangOpts.CPlusPlus) |
| .Case("has_trivial_assign", LangOpts.CPlusPlus) |
| .Case("has_trivial_copy", LangOpts.CPlusPlus) |
| .Case("has_trivial_constructor", LangOpts.CPlusPlus) |
| .Case("has_trivial_destructor", LangOpts.CPlusPlus) |
| .Case("has_virtual_destructor", LangOpts.CPlusPlus) |
| .Case("is_abstract", LangOpts.CPlusPlus) |
| .Case("is_base_of", LangOpts.CPlusPlus) |
| .Case("is_class", LangOpts.CPlusPlus) |
| .Case("is_convertible_to", LangOpts.CPlusPlus) |
| // __is_empty is available only if the horrible |
| // "struct __is_empty" parsing hack hasn't been needed in this |
| // translation unit. If it has, __is_empty reverts to a normal |
| // identifier and __has_feature(is_empty) evaluates false. |
| .Case("is_empty", |
| LangOpts.CPlusPlus && |
| PP.getIdentifierInfo("__is_empty")->getTokenID() |
| != tok::identifier) |
| .Case("is_enum", LangOpts.CPlusPlus) |
| .Case("is_final", LangOpts.CPlusPlus) |
| .Case("is_literal", LangOpts.CPlusPlus) |
| .Case("is_standard_layout", LangOpts.CPlusPlus) |
| // __is_pod is available only if the horrible |
| // "struct __is_pod" parsing hack hasn't been needed in this |
| // translation unit. If it has, __is_pod reverts to a normal |
| // identifier and __has_feature(is_pod) evaluates false. |
| .Case("is_pod", |
| LangOpts.CPlusPlus && |
| PP.getIdentifierInfo("__is_pod")->getTokenID() |
| != tok::identifier) |
| .Case("is_polymorphic", LangOpts.CPlusPlus) |
| .Case("is_trivial", LangOpts.CPlusPlus) |
| .Case("is_trivially_assignable", LangOpts.CPlusPlus) |
| .Case("is_trivially_constructible", LangOpts.CPlusPlus) |
| .Case("is_trivially_copyable", LangOpts.CPlusPlus) |
| .Case("is_union", LangOpts.CPlusPlus) |
| .Case("modules", LangOpts.Modules) |
| .Case("tls", PP.getTargetInfo().isTLSSupported()) |
| .Case("underlying_type", LangOpts.CPlusPlus) |
| .Default(false); |
| } |
| |
| /// HasExtension - Return true if we recognize and implement the feature |
| /// specified by the identifier, either as an extension or a standard language |
| /// feature. |
| static bool HasExtension(const Preprocessor &PP, const IdentifierInfo *II) { |
| if (HasFeature(PP, II)) |
| return true; |
| |
| // If the use of an extension results in an error diagnostic, extensions are |
| // effectively unavailable, so just return false here. |
| if (PP.getDiagnostics().getExtensionHandlingBehavior() == |
| DiagnosticsEngine::Ext_Error) |
| return false; |
| |
| const LangOptions &LangOpts = PP.getLangOpts(); |
| StringRef Extension = II->getName(); |
| |
| // Normalize the extension name, __foo__ becomes foo. |
| if (Extension.startswith("__") && Extension.endswith("__") && |
| Extension.size() >= 4) |
| Extension = Extension.substr(2, Extension.size() - 4); |
| |
| // Because we inherit the feature list from HasFeature, this string switch |
| // must be less restrictive than HasFeature's. |
| return llvm::StringSwitch<bool>(Extension) |
| // C11 features supported by other languages as extensions. |
| .Case("c_alignas", true) |
| .Case("c_atomic", true) |
| .Case("c_generic_selections", true) |
| .Case("c_static_assert", true) |
| // C++0x features supported by other languages as extensions. |
| .Case("cxx_atomic", LangOpts.CPlusPlus) |
| .Case("cxx_deleted_functions", LangOpts.CPlusPlus) |
| .Case("cxx_explicit_conversions", LangOpts.CPlusPlus) |
| .Case("cxx_inline_namespaces", LangOpts.CPlusPlus) |
| .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus) |
| .Case("cxx_override_control", LangOpts.CPlusPlus) |
| .Case("cxx_range_for", LangOpts.CPlusPlus) |
| .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus) |
| .Case("cxx_rvalue_references", LangOpts.CPlusPlus) |
| .Default(false); |
| } |
| |
| /// HasAttribute - Return true if we recognize and implement the attribute |
| /// specified by the given identifier. |
| static bool HasAttribute(const IdentifierInfo *II) { |
| StringRef Name = II->getName(); |
| // Normalize the attribute name, __foo__ becomes foo. |
| if (Name.startswith("__") && Name.endswith("__") && Name.size() >= 4) |
| Name = Name.substr(2, Name.size() - 4); |
| |
| return llvm::StringSwitch<bool>(Name) |
| #include "clang/Lex/AttrSpellings.inc" |
| .Default(false); |
| } |
| |
| /// EvaluateHasIncludeCommon - Process a '__has_include("path")' |
| /// or '__has_include_next("path")' expression. |
| /// Returns true if successful. |
| static bool EvaluateHasIncludeCommon(Token &Tok, |
| IdentifierInfo *II, Preprocessor &PP, |
| const DirectoryLookup *LookupFrom) { |
| SourceLocation LParenLoc; |
| |
| // Get '('. |
| PP.LexNonComment(Tok); |
| |
| // Ensure we have a '('. |
| if (Tok.isNot(tok::l_paren)) { |
| PP.Diag(Tok.getLocation(), diag::err_pp_missing_lparen) << II->getName(); |
| return false; |
| } |
| |
| // Save '(' location for possible missing ')' message. |
| LParenLoc = Tok.getLocation(); |
| |
| // Get the file name. |
| PP.getCurrentLexer()->LexIncludeFilename(Tok); |
| |
| // Reserve a buffer to get the spelling. |
| SmallString<128> FilenameBuffer; |
| StringRef Filename; |
| SourceLocation EndLoc; |
| |
| switch (Tok.getKind()) { |
| case tok::eod: |
| // If the token kind is EOD, the error has already been diagnosed. |
| return false; |
| |
| case tok::angle_string_literal: |
| case tok::string_literal: { |
| bool Invalid = false; |
| Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); |
| if (Invalid) |
| return false; |
| break; |
| } |
| |
| case tok::less: |
| // This could be a <foo/bar.h> file coming from a macro expansion. In this |
| // case, glue the tokens together into FilenameBuffer and interpret those. |
| FilenameBuffer.push_back('<'); |
| if (PP.ConcatenateIncludeName(FilenameBuffer, EndLoc)) |
| return false; // Found <eod> but no ">"? Diagnostic already emitted. |
| Filename = FilenameBuffer.str(); |
| break; |
| default: |
| PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); |
| return false; |
| } |
| |
| // Get ')'. |
| PP.LexNonComment(Tok); |
| |
| // Ensure we have a trailing ). |
| if (Tok.isNot(tok::r_paren)) { |
| PP.Diag(Tok.getLocation(), diag::err_pp_missing_rparen) << II->getName(); |
| PP.Diag(LParenLoc, diag::note_matching) << "("; |
| return false; |
| } |
| |
| bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); |
| // If GetIncludeFilenameSpelling set the start ptr to null, there was an |
| // error. |
| if (Filename.empty()) |
| return false; |
| |
| // Search include directories. |
| const DirectoryLookup *CurDir; |
| const FileEntry *File = |
| PP.LookupFile(Filename, isAngled, LookupFrom, CurDir, NULL, NULL, NULL); |
| |
| // Get the result value. A result of true means the file exists. |
| return File != 0; |
| } |
| |
| /// EvaluateHasInclude - Process a '__has_include("path")' expression. |
| /// Returns true if successful. |
| static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II, |
| Preprocessor &PP) { |
| return EvaluateHasIncludeCommon(Tok, II, PP, NULL); |
| } |
| |
| /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression. |
| /// Returns true if successful. |
| static bool EvaluateHasIncludeNext(Token &Tok, |
| IdentifierInfo *II, Preprocessor &PP) { |
| // __has_include_next is like __has_include, except that we start |
| // searching after the current found directory. If we can't do this, |
| // issue a diagnostic. |
| const DirectoryLookup *Lookup = PP.GetCurDirLookup(); |
| if (PP.isInPrimaryFile()) { |
| Lookup = 0; |
| PP.Diag(Tok, diag::pp_include_next_in_primary); |
| } else if (Lookup == 0) { |
| PP.Diag(Tok, diag::pp_include_next_absolute_path); |
| } else { |
| // Start looking up in the next directory. |
| ++Lookup; |
| } |
| |
| return EvaluateHasIncludeCommon(Tok, II, PP, Lookup); |
| } |
| |
| /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded |
| /// as a builtin macro, handle it and return the next token as 'Tok'. |
| void Preprocessor::ExpandBuiltinMacro(Token &Tok) { |
| // Figure out which token this is. |
| IdentifierInfo *II = Tok.getIdentifierInfo(); |
| assert(II && "Can't be a macro without id info!"); |
| |
| // If this is an _Pragma or Microsoft __pragma directive, expand it, |
| // invoke the pragma handler, then lex the token after it. |
| if (II == Ident_Pragma) |
| return Handle_Pragma(Tok); |
| else if (II == Ident__pragma) // in non-MS mode this is null |
| return HandleMicrosoft__pragma(Tok); |
| |
| ++NumBuiltinMacroExpanded; |
| |
| SmallString<128> TmpBuffer; |
| llvm::raw_svector_ostream OS(TmpBuffer); |
| |
| // Set up the return result. |
| Tok.setIdentifierInfo(0); |
| Tok.clearFlag(Token::NeedsCleaning); |
| |
| if (II == Ident__LINE__) { |
| // C99 6.10.8: "__LINE__: The presumed line number (within the current |
| // source file) of the current source line (an integer constant)". This can |
| // be affected by #line. |
| SourceLocation Loc = Tok.getLocation(); |
| |
| // Advance to the location of the first _, this might not be the first byte |
| // of the token if it starts with an escaped newline. |
| Loc = AdvanceToTokenCharacter(Loc, 0); |
| |
| // One wrinkle here is that GCC expands __LINE__ to location of the *end* of |
| // a macro expansion. This doesn't matter for object-like macros, but |
| // can matter for a function-like macro that expands to contain __LINE__. |
| // Skip down through expansion points until we find a file loc for the |
| // end of the expansion history. |
| Loc = SourceMgr.getExpansionRange(Loc).second; |
| PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); |
| |
| // __LINE__ expands to a simple numeric value. |
| OS << (PLoc.isValid()? PLoc.getLine() : 1); |
| Tok.setKind(tok::numeric_constant); |
| } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) { |
| // C99 6.10.8: "__FILE__: The presumed name of the current source file (a |
| // character string literal)". This can be affected by #line. |
| PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); |
| |
| // __BASE_FILE__ is a GNU extension that returns the top of the presumed |
| // #include stack instead of the current file. |
| if (II == Ident__BASE_FILE__ && PLoc.isValid()) { |
| SourceLocation NextLoc = PLoc.getIncludeLoc(); |
| while (NextLoc.isValid()) { |
| PLoc = SourceMgr.getPresumedLoc(NextLoc); |
| if (PLoc.isInvalid()) |
| break; |
| |
| NextLoc = PLoc.getIncludeLoc(); |
| } |
| } |
| |
| // Escape this filename. Turn '\' -> '\\' '"' -> '\"' |
| SmallString<128> FN; |
| if (PLoc.isValid()) { |
| FN += PLoc.getFilename(); |
| Lexer::Stringify(FN); |
| OS << '"' << FN.str() << '"'; |
| } |
| Tok.setKind(tok::string_literal); |
| } else if (II == Ident__DATE__) { |
| if (!DATELoc.isValid()) |
| ComputeDATE_TIME(DATELoc, TIMELoc, *this); |
| Tok.setKind(tok::string_literal); |
| Tok.setLength(strlen("\"Mmm dd yyyy\"")); |
| Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), |
| Tok.getLocation(), |
| Tok.getLength())); |
| return; |
| } else if (II == Ident__TIME__) { |
| if (!TIMELoc.isValid()) |
| ComputeDATE_TIME(DATELoc, TIMELoc, *this); |
| Tok.setKind(tok::string_literal); |
| Tok.setLength(strlen("\"hh:mm:ss\"")); |
| Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), |
| Tok.getLocation(), |
| Tok.getLength())); |
| return; |
| } else if (II == Ident__INCLUDE_LEVEL__) { |
| // Compute the presumed include depth of this token. This can be affected |
| // by GNU line markers. |
| unsigned Depth = 0; |
| |
| PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); |
| if (PLoc.isValid()) { |
| PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); |
| for (; PLoc.isValid(); ++Depth) |
| PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); |
| } |
| |
| // __INCLUDE_LEVEL__ expands to a simple numeric value. |
| OS << Depth; |
| Tok.setKind(tok::numeric_constant); |
| } else if (II == Ident__TIMESTAMP__) { |
| // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be |
| // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. |
| |
| // Get the file that we are lexing out of. If we're currently lexing from |
| // a macro, dig into the include stack. |
| const FileEntry *CurFile = 0; |
| PreprocessorLexer *TheLexer = getCurrentFileLexer(); |
| |
| if (TheLexer) |
| CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); |
| |
| const char *Result; |
| if (CurFile) { |
| time_t TT = CurFile->getModificationTime(); |
| struct tm *TM = localtime(&TT); |
| Result = asctime(TM); |
| } else { |
| Result = "??? ??? ?? ??:??:?? ????\n"; |
| } |
| // Surround the string with " and strip the trailing newline. |
| OS << '"' << StringRef(Result, strlen(Result)-1) << '"'; |
| Tok.setKind(tok::string_literal); |
| } else if (II == Ident__COUNTER__) { |
| // __COUNTER__ expands to a simple numeric value. |
| OS << CounterValue++; |
| Tok.setKind(tok::numeric_constant); |
| } else if (II == Ident__has_feature || |
| II == Ident__has_extension || |
| II == Ident__has_builtin || |
| II == Ident__has_attribute) { |
| // The argument to these builtins should be a parenthesized identifier. |
| SourceLocation StartLoc = Tok.getLocation(); |
| |
| bool IsValid = false; |
| IdentifierInfo *FeatureII = 0; |
| |
| // Read the '('. |
| Lex(Tok); |
| if (Tok.is(tok::l_paren)) { |
| // Read the identifier |
| Lex(Tok); |
| if (Tok.is(tok::identifier)) { |
| FeatureII = Tok.getIdentifierInfo(); |
| |
| // Read the ')'. |
| Lex(Tok); |
| if (Tok.is(tok::r_paren)) |
| IsValid = true; |
| } |
| } |
| |
| bool Value = false; |
| if (!IsValid) |
| Diag(StartLoc, diag::err_feature_check_malformed); |
| else if (II == Ident__has_builtin) { |
| // Check for a builtin is trivial. |
| Value = FeatureII->getBuiltinID() != 0; |
| } else if (II == Ident__has_attribute) |
| Value = HasAttribute(FeatureII); |
| else if (II == Ident__has_extension) |
| Value = HasExtension(*this, FeatureII); |
| else { |
| assert(II == Ident__has_feature && "Must be feature check"); |
| Value = HasFeature(*this, FeatureII); |
| } |
| |
| OS << (int)Value; |
| if (IsValid) |
| Tok.setKind(tok::numeric_constant); |
| } else if (II == Ident__has_include || |
| II == Ident__has_include_next) { |
| // The argument to these two builtins should be a parenthesized |
| // file name string literal using angle brackets (<>) or |
| // double-quotes (""). |
| bool Value; |
| if (II == Ident__has_include) |
| Value = EvaluateHasInclude(Tok, II, *this); |
| else |
| Value = EvaluateHasIncludeNext(Tok, II, *this); |
| OS << (int)Value; |
| Tok.setKind(tok::numeric_constant); |
| } else if (II == Ident__has_warning) { |
| // The argument should be a parenthesized string literal. |
| // The argument to these builtins should be a parenthesized identifier. |
| SourceLocation StartLoc = Tok.getLocation(); |
| bool IsValid = false; |
| bool Value = false; |
| // Read the '('. |
| Lex(Tok); |
| do { |
| if (Tok.is(tok::l_paren)) { |
| // Read the string. |
| Lex(Tok); |
| |
| // We need at least one string literal. |
| if (!Tok.is(tok::string_literal)) { |
| StartLoc = Tok.getLocation(); |
| IsValid = false; |
| // Eat tokens until ')'. |
| do Lex(Tok); while (!(Tok.is(tok::r_paren) || Tok.is(tok::eod))); |
| break; |
| } |
| |
| // String concatenation allows multiple strings, which can even come |
| // from macro expansion. |
| SmallVector<Token, 4> StrToks; |
| while (Tok.is(tok::string_literal)) { |
| // Complain about, and drop, any ud-suffix. |
| if (Tok.hasUDSuffix()) |
| Diag(Tok, diag::err_invalid_string_udl); |
| StrToks.push_back(Tok); |
| LexUnexpandedToken(Tok); |
| } |
| |
| // Is the end a ')'? |
| if (!(IsValid = Tok.is(tok::r_paren))) |
| break; |
| |
| // Concatenate and parse the strings. |
| StringLiteralParser Literal(&StrToks[0], StrToks.size(), *this); |
| assert(Literal.isAscii() && "Didn't allow wide strings in"); |
| if (Literal.hadError) |
| break; |
| if (Literal.Pascal) { |
| Diag(Tok, diag::warn_pragma_diagnostic_invalid); |
| break; |
| } |
| |
| StringRef WarningName(Literal.GetString()); |
| |
| if (WarningName.size() < 3 || WarningName[0] != '-' || |
| WarningName[1] != 'W') { |
| Diag(StrToks[0].getLocation(), diag::warn_has_warning_invalid_option); |
| break; |
| } |
| |
| // Finally, check if the warning flags maps to a diagnostic group. |
| // We construct a SmallVector here to talk to getDiagnosticIDs(). |
| // Although we don't use the result, this isn't a hot path, and not |
| // worth special casing. |
| llvm::SmallVector<diag::kind, 10> Diags; |
| Value = !getDiagnostics().getDiagnosticIDs()-> |
| getDiagnosticsInGroup(WarningName.substr(2), Diags); |
| } |
| } while (false); |
| |
| if (!IsValid) |
| Diag(StartLoc, diag::err_warning_check_malformed); |
| |
| OS << (int)Value; |
| Tok.setKind(tok::numeric_constant); |
| } else { |
| llvm_unreachable("Unknown identifier!"); |
| } |
| CreateString(OS.str().data(), OS.str().size(), Tok, |
| Tok.getLocation(), Tok.getLocation()); |
| } |
| |
| void Preprocessor::markMacroAsUsed(MacroInfo *MI) { |
| // If the 'used' status changed, and the macro requires 'unused' warning, |
| // remove its SourceLocation from the warn-for-unused-macro locations. |
| if (MI->isWarnIfUnused() && !MI->isUsed()) |
| WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); |
| MI->setIsUsed(true); |
| } |