| //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for inline asm statements. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCObjectFileInfo.h" |
| #include "llvm/MC/MCParser/MCAsmParser.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCTargetAsmParser.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/TargetSelect.h" |
| using namespace clang; |
| using namespace sema; |
| |
| /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently |
| /// ignore "noop" casts in places where an lvalue is required by an inline asm. |
| /// We emulate this behavior when -fheinous-gnu-extensions is specified, but |
| /// provide a strong guidance to not use it. |
| /// |
| /// This method checks to see if the argument is an acceptable l-value and |
| /// returns false if it is a case we can handle. |
| static bool CheckAsmLValue(const Expr *E, Sema &S) { |
| // Type dependent expressions will be checked during instantiation. |
| if (E->isTypeDependent()) |
| return false; |
| |
| if (E->isLValue()) |
| return false; // Cool, this is an lvalue. |
| |
| // Okay, this is not an lvalue, but perhaps it is the result of a cast that we |
| // are supposed to allow. |
| const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); |
| if (E != E2 && E2->isLValue()) { |
| if (!S.getLangOpts().HeinousExtensions) |
| S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) |
| << E->getSourceRange(); |
| else |
| S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) |
| << E->getSourceRange(); |
| // Accept, even if we emitted an error diagnostic. |
| return false; |
| } |
| |
| // None of the above, just randomly invalid non-lvalue. |
| return true; |
| } |
| |
| /// isOperandMentioned - Return true if the specified operand # is mentioned |
| /// anywhere in the decomposed asm string. |
| static bool isOperandMentioned(unsigned OpNo, |
| ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { |
| for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { |
| const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; |
| if (!Piece.isOperand()) continue; |
| |
| // If this is a reference to the input and if the input was the smaller |
| // one, then we have to reject this asm. |
| if (Piece.getOperandNo() == OpNo) |
| return true; |
| } |
| return false; |
| } |
| |
| StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, |
| bool IsVolatile, unsigned NumOutputs, |
| unsigned NumInputs, IdentifierInfo **Names, |
| MultiExprArg constraints, MultiExprArg exprs, |
| Expr *asmString, MultiExprArg clobbers, |
| SourceLocation RParenLoc) { |
| unsigned NumClobbers = clobbers.size(); |
| StringLiteral **Constraints = |
| reinterpret_cast<StringLiteral**>(constraints.data()); |
| Expr **Exprs = exprs.data(); |
| StringLiteral *AsmString = cast<StringLiteral>(asmString); |
| StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); |
| |
| SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; |
| |
| // The parser verifies that there is a string literal here. |
| if (!AsmString->isAscii()) |
| return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) |
| << AsmString->getSourceRange()); |
| |
| for (unsigned i = 0; i != NumOutputs; i++) { |
| StringLiteral *Literal = Constraints[i]; |
| if (!Literal->isAscii()) |
| return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| << Literal->getSourceRange()); |
| |
| StringRef OutputName; |
| if (Names[i]) |
| OutputName = Names[i]->getName(); |
| |
| TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); |
| if (!Context.getTargetInfo().validateOutputConstraint(Info)) |
| return StmtError(Diag(Literal->getLocStart(), |
| diag::err_asm_invalid_output_constraint) |
| << Info.getConstraintStr()); |
| |
| // Check that the output exprs are valid lvalues. |
| Expr *OutputExpr = Exprs[i]; |
| if (CheckAsmLValue(OutputExpr, *this)) { |
| return StmtError(Diag(OutputExpr->getLocStart(), |
| diag::err_asm_invalid_lvalue_in_output) |
| << OutputExpr->getSourceRange()); |
| } |
| |
| OutputConstraintInfos.push_back(Info); |
| } |
| |
| SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; |
| |
| for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { |
| StringLiteral *Literal = Constraints[i]; |
| if (!Literal->isAscii()) |
| return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| << Literal->getSourceRange()); |
| |
| StringRef InputName; |
| if (Names[i]) |
| InputName = Names[i]->getName(); |
| |
| TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); |
| if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(), |
| NumOutputs, Info)) { |
| return StmtError(Diag(Literal->getLocStart(), |
| diag::err_asm_invalid_input_constraint) |
| << Info.getConstraintStr()); |
| } |
| |
| Expr *InputExpr = Exprs[i]; |
| |
| // Only allow void types for memory constraints. |
| if (Info.allowsMemory() && !Info.allowsRegister()) { |
| if (CheckAsmLValue(InputExpr, *this)) |
| return StmtError(Diag(InputExpr->getLocStart(), |
| diag::err_asm_invalid_lvalue_in_input) |
| << Info.getConstraintStr() |
| << InputExpr->getSourceRange()); |
| } |
| |
| if (Info.allowsRegister()) { |
| if (InputExpr->getType()->isVoidType()) { |
| return StmtError(Diag(InputExpr->getLocStart(), |
| diag::err_asm_invalid_type_in_input) |
| << InputExpr->getType() << Info.getConstraintStr() |
| << InputExpr->getSourceRange()); |
| } |
| } |
| |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); |
| if (Result.isInvalid()) |
| return StmtError(); |
| |
| Exprs[i] = Result.take(); |
| InputConstraintInfos.push_back(Info); |
| |
| const Type *Ty = Exprs[i]->getType().getTypePtr(); |
| if (Ty->isDependentType() || Ty->isIncompleteType()) |
| continue; |
| |
| unsigned Size = Context.getTypeSize(Ty); |
| if (!Context.getTargetInfo().validateInputSize(Literal->getString(), |
| Size)) |
| return StmtError(Diag(InputExpr->getLocStart(), |
| diag::err_asm_invalid_input_size) |
| << Info.getConstraintStr()); |
| } |
| |
| // Check that the clobbers are valid. |
| for (unsigned i = 0; i != NumClobbers; i++) { |
| StringLiteral *Literal = Clobbers[i]; |
| if (!Literal->isAscii()) |
| return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| << Literal->getSourceRange()); |
| |
| StringRef Clobber = Literal->getString(); |
| |
| if (!Context.getTargetInfo().isValidClobber(Clobber)) |
| return StmtError(Diag(Literal->getLocStart(), |
| diag::err_asm_unknown_register_name) << Clobber); |
| } |
| |
| GCCAsmStmt *NS = |
| new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, |
| NumInputs, Names, Constraints, Exprs, AsmString, |
| NumClobbers, Clobbers, RParenLoc); |
| // Validate the asm string, ensuring it makes sense given the operands we |
| // have. |
| SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; |
| unsigned DiagOffs; |
| if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { |
| Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) |
| << AsmString->getSourceRange(); |
| return StmtError(); |
| } |
| |
| // Validate constraints and modifiers. |
| for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { |
| GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; |
| if (!Piece.isOperand()) continue; |
| |
| // Look for the correct constraint index. |
| unsigned Idx = 0; |
| unsigned ConstraintIdx = 0; |
| for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) { |
| TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; |
| if (Idx == Piece.getOperandNo()) |
| break; |
| ++Idx; |
| |
| if (Info.isReadWrite()) { |
| if (Idx == Piece.getOperandNo()) |
| break; |
| ++Idx; |
| } |
| } |
| |
| for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) { |
| TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; |
| if (Idx == Piece.getOperandNo()) |
| break; |
| ++Idx; |
| |
| if (Info.isReadWrite()) { |
| if (Idx == Piece.getOperandNo()) |
| break; |
| ++Idx; |
| } |
| } |
| |
| // Now that we have the right indexes go ahead and check. |
| StringLiteral *Literal = Constraints[ConstraintIdx]; |
| const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); |
| if (Ty->isDependentType() || Ty->isIncompleteType()) |
| continue; |
| |
| unsigned Size = Context.getTypeSize(Ty); |
| if (!Context.getTargetInfo() |
| .validateConstraintModifier(Literal->getString(), Piece.getModifier(), |
| Size)) |
| Diag(Exprs[ConstraintIdx]->getLocStart(), |
| diag::warn_asm_mismatched_size_modifier); |
| } |
| |
| // Validate tied input operands for type mismatches. |
| for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { |
| TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; |
| |
| // If this is a tied constraint, verify that the output and input have |
| // either exactly the same type, or that they are int/ptr operands with the |
| // same size (int/long, int*/long, are ok etc). |
| if (!Info.hasTiedOperand()) continue; |
| |
| unsigned TiedTo = Info.getTiedOperand(); |
| unsigned InputOpNo = i+NumOutputs; |
| Expr *OutputExpr = Exprs[TiedTo]; |
| Expr *InputExpr = Exprs[InputOpNo]; |
| |
| if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) |
| continue; |
| |
| QualType InTy = InputExpr->getType(); |
| QualType OutTy = OutputExpr->getType(); |
| if (Context.hasSameType(InTy, OutTy)) |
| continue; // All types can be tied to themselves. |
| |
| // Decide if the input and output are in the same domain (integer/ptr or |
| // floating point. |
| enum AsmDomain { |
| AD_Int, AD_FP, AD_Other |
| } InputDomain, OutputDomain; |
| |
| if (InTy->isIntegerType() || InTy->isPointerType()) |
| InputDomain = AD_Int; |
| else if (InTy->isRealFloatingType()) |
| InputDomain = AD_FP; |
| else |
| InputDomain = AD_Other; |
| |
| if (OutTy->isIntegerType() || OutTy->isPointerType()) |
| OutputDomain = AD_Int; |
| else if (OutTy->isRealFloatingType()) |
| OutputDomain = AD_FP; |
| else |
| OutputDomain = AD_Other; |
| |
| // They are ok if they are the same size and in the same domain. This |
| // allows tying things like: |
| // void* to int* |
| // void* to int if they are the same size. |
| // double to long double if they are the same size. |
| // |
| uint64_t OutSize = Context.getTypeSize(OutTy); |
| uint64_t InSize = Context.getTypeSize(InTy); |
| if (OutSize == InSize && InputDomain == OutputDomain && |
| InputDomain != AD_Other) |
| continue; |
| |
| // If the smaller input/output operand is not mentioned in the asm string, |
| // then we can promote the smaller one to a larger input and the asm string |
| // won't notice. |
| bool SmallerValueMentioned = false; |
| |
| // If this is a reference to the input and if the input was the smaller |
| // one, then we have to reject this asm. |
| if (isOperandMentioned(InputOpNo, Pieces)) { |
| // This is a use in the asm string of the smaller operand. Since we |
| // codegen this by promoting to a wider value, the asm will get printed |
| // "wrong". |
| SmallerValueMentioned |= InSize < OutSize; |
| } |
| if (isOperandMentioned(TiedTo, Pieces)) { |
| // If this is a reference to the output, and if the output is the larger |
| // value, then it's ok because we'll promote the input to the larger type. |
| SmallerValueMentioned |= OutSize < InSize; |
| } |
| |
| // If the smaller value wasn't mentioned in the asm string, and if the |
| // output was a register, just extend the shorter one to the size of the |
| // larger one. |
| if (!SmallerValueMentioned && InputDomain != AD_Other && |
| OutputConstraintInfos[TiedTo].allowsRegister()) |
| continue; |
| |
| // Either both of the operands were mentioned or the smaller one was |
| // mentioned. One more special case that we'll allow: if the tied input is |
| // integer, unmentioned, and is a constant, then we'll allow truncating it |
| // down to the size of the destination. |
| if (InputDomain == AD_Int && OutputDomain == AD_Int && |
| !isOperandMentioned(InputOpNo, Pieces) && |
| InputExpr->isEvaluatable(Context)) { |
| CastKind castKind = |
| (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); |
| InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take(); |
| Exprs[InputOpNo] = InputExpr; |
| NS->setInputExpr(i, InputExpr); |
| continue; |
| } |
| |
| Diag(InputExpr->getLocStart(), |
| diag::err_asm_tying_incompatible_types) |
| << InTy << OutTy << OutputExpr->getSourceRange() |
| << InputExpr->getSourceRange(); |
| return StmtError(); |
| } |
| |
| return Owned(NS); |
| } |
| |
| // getSpelling - Get the spelling of the AsmTok token. |
| static StringRef getSpelling(Sema &SemaRef, Token AsmTok) { |
| StringRef Asm; |
| SmallString<512> TokenBuf; |
| TokenBuf.resize(512); |
| bool StringInvalid = false; |
| Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid); |
| assert (!StringInvalid && "Expected valid string!"); |
| return Asm; |
| } |
| |
| // Build the inline assembly string. Returns true on error. |
| static bool buildMSAsmString(Sema &SemaRef, |
| SourceLocation AsmLoc, |
| ArrayRef<Token> AsmToks, |
| SmallVectorImpl<unsigned> &TokOffsets, |
| std::string &AsmString) { |
| assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!"); |
| |
| SmallString<512> Asm; |
| for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) { |
| bool isNewAsm = ((i == 0) || |
| AsmToks[i].isAtStartOfLine() || |
| AsmToks[i].is(tok::kw_asm)); |
| if (isNewAsm) { |
| if (i != 0) |
| Asm += "\n\t"; |
| |
| if (AsmToks[i].is(tok::kw_asm)) { |
| i++; // Skip __asm |
| if (i == e) { |
| SemaRef.Diag(AsmLoc, diag::err_asm_empty); |
| return true; |
| } |
| |
| } |
| } |
| |
| if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm) |
| Asm += ' '; |
| |
| StringRef Spelling = getSpelling(SemaRef, AsmToks[i]); |
| Asm += Spelling; |
| TokOffsets.push_back(Asm.size()); |
| } |
| AsmString = Asm.str(); |
| return false; |
| } |
| |
| namespace { |
| |
| class MCAsmParserSemaCallbackImpl : public llvm::MCAsmParserSemaCallback { |
| Sema &SemaRef; |
| SourceLocation AsmLoc; |
| ArrayRef<Token> AsmToks; |
| ArrayRef<unsigned> TokOffsets; |
| |
| public: |
| MCAsmParserSemaCallbackImpl(Sema &Ref, SourceLocation Loc, |
| ArrayRef<Token> Toks, |
| ArrayRef<unsigned> Offsets) |
| : SemaRef(Ref), AsmLoc(Loc), AsmToks(Toks), TokOffsets(Offsets) { } |
| ~MCAsmParserSemaCallbackImpl() {} |
| |
| void *LookupInlineAsmIdentifier(StringRef Name, void *SrcLoc, |
| unsigned &Length, unsigned &Size, |
| unsigned &Type, bool &IsVarDecl){ |
| SourceLocation Loc = SourceLocation::getFromPtrEncoding(SrcLoc); |
| |
| NamedDecl *OpDecl = SemaRef.LookupInlineAsmIdentifier(Name, Loc, Length, |
| Size, Type, |
| IsVarDecl); |
| return static_cast<void *>(OpDecl); |
| } |
| |
| bool LookupInlineAsmField(StringRef Base, StringRef Member, |
| unsigned &Offset) { |
| return SemaRef.LookupInlineAsmField(Base, Member, Offset, AsmLoc); |
| } |
| |
| static void MSAsmDiagHandlerCallback(const llvm::SMDiagnostic &D, |
| void *Context) { |
| ((MCAsmParserSemaCallbackImpl*)Context)->MSAsmDiagHandler(D); |
| } |
| void MSAsmDiagHandler(const llvm::SMDiagnostic &D) { |
| // Compute an offset into the inline asm buffer. |
| // FIXME: This isn't right if .macro is involved (but hopefully, no |
| // real-world code does that). |
| const llvm::SourceMgr &LSM = *D.getSourceMgr(); |
| const llvm::MemoryBuffer *LBuf = |
| LSM.getMemoryBuffer(LSM.FindBufferContainingLoc(D.getLoc())); |
| unsigned Offset = D.getLoc().getPointer() - LBuf->getBufferStart(); |
| |
| // Figure out which token that offset points into. |
| const unsigned *OffsetPtr = |
| std::lower_bound(TokOffsets.begin(), TokOffsets.end(), Offset); |
| unsigned TokIndex = OffsetPtr - TokOffsets.begin(); |
| |
| // If we come up with an answer which seems sane, use it; otherwise, |
| // just point at the __asm keyword. |
| // FIXME: Assert the answer is sane once we handle .macro correctly. |
| SourceLocation Loc = AsmLoc; |
| if (TokIndex < AsmToks.size()) { |
| const Token *Tok = &AsmToks[TokIndex]; |
| Loc = Tok->getLocation(); |
| Loc = Loc.getLocWithOffset(Offset - (*OffsetPtr - Tok->getLength())); |
| } |
| SemaRef.Diag(Loc, diag::err_inline_ms_asm_parsing) << D.getMessage(); |
| } |
| }; |
| |
| } |
| |
| NamedDecl *Sema::LookupInlineAsmIdentifier(StringRef Name, SourceLocation Loc, |
| unsigned &Length, unsigned &Size, |
| unsigned &Type, bool &IsVarDecl) { |
| Length = 1; |
| Size = 0; |
| Type = 0; |
| IsVarDecl = false; |
| LookupResult Result(*this, &Context.Idents.get(Name), Loc, |
| Sema::LookupOrdinaryName); |
| |
| if (!LookupName(Result, getCurScope())) { |
| // If we don't find anything, return null; the AsmParser will assume |
| // it is a label of some sort. |
| return 0; |
| } |
| |
| if (!Result.isSingleResult()) { |
| // FIXME: Diagnose result. |
| return 0; |
| } |
| |
| NamedDecl *ND = Result.getFoundDecl(); |
| if (isa<VarDecl>(ND) || isa<FunctionDecl>(ND)) { |
| if (VarDecl *Var = dyn_cast<VarDecl>(ND)) { |
| Type = Context.getTypeInfo(Var->getType()).first; |
| QualType Ty = Var->getType(); |
| if (Ty->isArrayType()) { |
| const ArrayType *ATy = Context.getAsArrayType(Ty); |
| Length = Type / Context.getTypeInfo(ATy->getElementType()).first; |
| Type /= Length; // Type is in terms of a single element. |
| } |
| Type /= 8; // Type is in terms of bits, but we want bytes. |
| Size = Length * Type; |
| IsVarDecl = true; |
| } |
| return ND; |
| } |
| |
| // FIXME: Handle other kinds of results? (FieldDecl, etc.) |
| // FIXME: Diagnose if we find something we can't handle, like a typedef. |
| return 0; |
| } |
| |
| bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, |
| unsigned &Offset, SourceLocation AsmLoc) { |
| Offset = 0; |
| LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), |
| LookupOrdinaryName); |
| |
| if (!LookupName(BaseResult, getCurScope())) |
| return true; |
| |
| if (!BaseResult.isSingleResult()) |
| return true; |
| |
| NamedDecl *FoundDecl = BaseResult.getFoundDecl(); |
| const RecordType *RT = 0; |
| if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) { |
| RT = VD->getType()->getAs<RecordType>(); |
| } else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(FoundDecl)) { |
| RT = TD->getUnderlyingType()->getAs<RecordType>(); |
| } |
| if (!RT) |
| return true; |
| |
| if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0)) |
| return true; |
| |
| LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(), |
| LookupMemberName); |
| |
| if (!LookupQualifiedName(FieldResult, RT->getDecl())) |
| return true; |
| |
| // FIXME: Handle IndirectFieldDecl? |
| FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); |
| if (!FD) |
| return true; |
| |
| const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); |
| unsigned i = FD->getFieldIndex(); |
| CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); |
| Offset = (unsigned)Result.getQuantity(); |
| |
| return false; |
| } |
| |
| StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, |
| ArrayRef<Token> AsmToks,SourceLocation EndLoc) { |
| SmallVector<IdentifierInfo*, 4> Names; |
| SmallVector<StringRef, 4> ConstraintRefs; |
| SmallVector<Expr*, 4> Exprs; |
| SmallVector<StringRef, 4> ClobberRefs; |
| |
| llvm::Triple TheTriple = Context.getTargetInfo().getTriple(); |
| llvm::Triple::ArchType ArchTy = TheTriple.getArch(); |
| bool UnsupportedArch = ArchTy != llvm::Triple::x86 && |
| ArchTy != llvm::Triple::x86_64; |
| if (UnsupportedArch) |
| Diag(AsmLoc, diag::err_msasm_unsupported_arch) << TheTriple.getArchName(); |
| |
| // Empty asm statements don't need to instantiate the AsmParser, etc. |
| if (UnsupportedArch || AsmToks.empty()) { |
| StringRef EmptyAsmStr; |
| MSAsmStmt *NS = |
| new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true, |
| /*IsVolatile*/ true, AsmToks, /*NumOutputs*/ 0, |
| /*NumInputs*/ 0, Names, ConstraintRefs, Exprs, |
| EmptyAsmStr, ClobberRefs, EndLoc); |
| return Owned(NS); |
| } |
| |
| std::string AsmString; |
| SmallVector<unsigned, 8> TokOffsets; |
| if (buildMSAsmString(*this, AsmLoc, AsmToks, TokOffsets, AsmString)) |
| return StmtError(); |
| |
| // Get the target specific parser. |
| std::string Error; |
| const std::string &TT = TheTriple.getTriple(); |
| const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error)); |
| |
| OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT)); |
| OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT)); |
| OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo()); |
| OwningPtr<llvm::MCSubtargetInfo> |
| STI(TheTarget->createMCSubtargetInfo(TT, "", "")); |
| |
| llvm::SourceMgr SrcMgr; |
| llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr); |
| llvm::MemoryBuffer *Buffer = |
| llvm::MemoryBuffer::getMemBuffer(AsmString, "<inline asm>"); |
| |
| // Tell SrcMgr about this buffer, which is what the parser will pick up. |
| SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc()); |
| |
| OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx)); |
| OwningPtr<llvm::MCAsmParser> |
| Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI)); |
| OwningPtr<llvm::MCTargetAsmParser> |
| TargetParser(TheTarget->createMCAsmParser(*STI, *Parser)); |
| |
| // Get the instruction descriptor. |
| const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo(); |
| llvm::MCInstPrinter *IP = |
| TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI); |
| |
| // Change to the Intel dialect. |
| Parser->setAssemblerDialect(1); |
| Parser->setTargetParser(*TargetParser.get()); |
| Parser->setParsingInlineAsm(true); |
| TargetParser->setParsingInlineAsm(true); |
| |
| MCAsmParserSemaCallbackImpl MCAPSI(*this, AsmLoc, AsmToks, TokOffsets); |
| TargetParser->setSemaCallback(&MCAPSI); |
| SrcMgr.setDiagHandler(MCAsmParserSemaCallbackImpl::MSAsmDiagHandlerCallback, |
| &MCAPSI); |
| |
| unsigned NumOutputs; |
| unsigned NumInputs; |
| std::string AsmStringIR; |
| SmallVector<std::pair<void *, bool>, 4> OpDecls; |
| SmallVector<std::string, 4> Constraints; |
| SmallVector<std::string, 4> Clobbers; |
| if (Parser->parseMSInlineAsm(AsmLoc.getPtrEncoding(), AsmStringIR, |
| NumOutputs, NumInputs, OpDecls, Constraints, |
| Clobbers, MII, IP, MCAPSI)) |
| return StmtError(); |
| |
| // Build the vector of clobber StringRefs. |
| unsigned NumClobbers = Clobbers.size(); |
| ClobberRefs.resize(NumClobbers); |
| for (unsigned i = 0; i != NumClobbers; ++i) |
| ClobberRefs[i] = StringRef(Clobbers[i]); |
| |
| // Recast the void pointers and build the vector of constraint StringRefs. |
| unsigned NumExprs = NumOutputs + NumInputs; |
| Names.resize(NumExprs); |
| ConstraintRefs.resize(NumExprs); |
| Exprs.resize(NumExprs); |
| for (unsigned i = 0, e = NumExprs; i != e; ++i) { |
| NamedDecl *OpDecl = static_cast<NamedDecl *>(OpDecls[i].first); |
| if (!OpDecl) |
| return StmtError(); |
| |
| DeclarationNameInfo NameInfo(OpDecl->getDeclName(), AsmLoc); |
| ExprResult OpExpr = BuildDeclarationNameExpr(CXXScopeSpec(), NameInfo, |
| OpDecl); |
| if (OpExpr.isInvalid()) |
| return StmtError(); |
| |
| // Need address of variable. |
| if (OpDecls[i].second) |
| OpExpr = BuildUnaryOp(getCurScope(), AsmLoc, clang::UO_AddrOf, |
| OpExpr.take()); |
| |
| Names[i] = OpDecl->getIdentifier(); |
| ConstraintRefs[i] = StringRef(Constraints[i]); |
| Exprs[i] = OpExpr.take(); |
| } |
| |
| bool IsSimple = NumExprs > 0; |
| MSAsmStmt *NS = |
| new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, |
| /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, |
| Names, ConstraintRefs, Exprs, AsmStringIR, |
| ClobberRefs, EndLoc); |
| return Owned(NS); |
| } |