| // SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*- |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines SValBuilder, the base class for all (complete) SValBuilder |
| // implementations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| |
| using namespace clang; |
| using namespace ento; |
| |
| //===----------------------------------------------------------------------===// |
| // Basic SVal creation. |
| //===----------------------------------------------------------------------===// |
| |
| void SValBuilder::anchor() { } |
| |
| DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) { |
| if (Loc::isLocType(type)) |
| return makeNull(); |
| |
| if (type->isIntegerType()) |
| return makeIntVal(0, type); |
| |
| // FIXME: Handle floats. |
| // FIXME: Handle structs. |
| return UnknownVal(); |
| } |
| |
| NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, |
| const llvm::APSInt& rhs, QualType type) { |
| // The Environment ensures we always get a persistent APSInt in |
| // BasicValueFactory, so we don't need to get the APSInt from |
| // BasicValueFactory again. |
| assert(lhs); |
| assert(!Loc::isLocType(type)); |
| return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type)); |
| } |
| |
| NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs, |
| BinaryOperator::Opcode op, const SymExpr *rhs, |
| QualType type) { |
| assert(rhs); |
| assert(!Loc::isLocType(type)); |
| return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type)); |
| } |
| |
| NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, |
| const SymExpr *rhs, QualType type) { |
| assert(lhs && rhs); |
| assert(!Loc::isLocType(type)); |
| return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type)); |
| } |
| |
| NonLoc SValBuilder::makeNonLoc(const SymExpr *operand, |
| QualType fromTy, QualType toTy) { |
| assert(operand); |
| assert(!Loc::isLocType(toTy)); |
| return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy)); |
| } |
| |
| SVal SValBuilder::convertToArrayIndex(SVal val) { |
| if (val.isUnknownOrUndef()) |
| return val; |
| |
| // Common case: we have an appropriately sized integer. |
| if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) { |
| const llvm::APSInt& I = CI->getValue(); |
| if (I.getBitWidth() == ArrayIndexWidth && I.isSigned()) |
| return val; |
| } |
| |
| return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy); |
| } |
| |
| nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){ |
| return makeTruthVal(boolean->getValue()); |
| } |
| |
| DefinedOrUnknownSVal |
| SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) { |
| QualType T = region->getValueType(); |
| |
| if (!SymbolManager::canSymbolicate(T)) |
| return UnknownVal(); |
| |
| SymbolRef sym = SymMgr.getRegionValueSymbol(region); |
| |
| if (Loc::isLocType(T)) |
| return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| |
| return nonloc::SymbolVal(sym); |
| } |
| |
| DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag, |
| const Expr *expr, |
| const LocationContext *LCtx, |
| unsigned count) { |
| QualType T = expr->getType(); |
| return conjureSymbolVal(symbolTag, expr, LCtx, T, count); |
| } |
| |
| DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag, |
| const Expr *expr, |
| const LocationContext *LCtx, |
| QualType type, |
| unsigned count) { |
| if (!SymbolManager::canSymbolicate(type)) |
| return UnknownVal(); |
| |
| SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag); |
| |
| if (Loc::isLocType(type)) |
| return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| |
| return nonloc::SymbolVal(sym); |
| } |
| |
| |
| DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt, |
| const LocationContext *LCtx, |
| QualType type, |
| unsigned visitCount) { |
| if (!SymbolManager::canSymbolicate(type)) |
| return UnknownVal(); |
| |
| SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount); |
| |
| if (Loc::isLocType(type)) |
| return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| |
| return nonloc::SymbolVal(sym); |
| } |
| |
| DefinedOrUnknownSVal |
| SValBuilder::getConjuredHeapSymbolVal(const Expr *E, |
| const LocationContext *LCtx, |
| unsigned VisitCount) { |
| QualType T = E->getType(); |
| assert(Loc::isLocType(T)); |
| assert(SymbolManager::canSymbolicate(T)); |
| |
| SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount); |
| return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym)); |
| } |
| |
| DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag, |
| const MemRegion *region, |
| const Expr *expr, QualType type, |
| unsigned count) { |
| assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type"); |
| |
| SymbolRef sym = |
| SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag); |
| |
| if (Loc::isLocType(type)) |
| return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| |
| return nonloc::SymbolVal(sym); |
| } |
| |
| DefinedOrUnknownSVal |
| SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol, |
| const TypedValueRegion *region) { |
| QualType T = region->getValueType(); |
| |
| if (!SymbolManager::canSymbolicate(T)) |
| return UnknownVal(); |
| |
| SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region); |
| |
| if (Loc::isLocType(T)) |
| return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| |
| return nonloc::SymbolVal(sym); |
| } |
| |
| DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) { |
| return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func)); |
| } |
| |
| DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block, |
| CanQualType locTy, |
| const LocationContext *locContext) { |
| const BlockTextRegion *BC = |
| MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext()); |
| const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext); |
| return loc::MemRegionVal(BD); |
| } |
| |
| /// Return a memory region for the 'this' object reference. |
| loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D, |
| const StackFrameContext *SFC) { |
| return loc::MemRegionVal(getRegionManager(). |
| getCXXThisRegion(D->getThisType(getContext()), SFC)); |
| } |
| |
| /// Return a memory region for the 'this' object reference. |
| loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D, |
| const StackFrameContext *SFC) { |
| const Type *T = D->getTypeForDecl(); |
| QualType PT = getContext().getPointerType(QualType(T, 0)); |
| return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| |
| SVal SValBuilder::makeSymExprValNN(ProgramStateRef State, |
| BinaryOperator::Opcode Op, |
| NonLoc LHS, NonLoc RHS, |
| QualType ResultTy) { |
| if (!State->isTainted(RHS) && !State->isTainted(LHS)) |
| return UnknownVal(); |
| |
| const SymExpr *symLHS = LHS.getAsSymExpr(); |
| const SymExpr *symRHS = RHS.getAsSymExpr(); |
| // TODO: When the Max Complexity is reached, we should conjure a symbol |
| // instead of generating an Unknown value and propagate the taint info to it. |
| const unsigned MaxComp = 10000; // 100000 28X |
| |
| if (symLHS && symRHS && |
| (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp) |
| return makeNonLoc(symLHS, Op, symRHS, ResultTy); |
| |
| if (symLHS && symLHS->computeComplexity() < MaxComp) |
| if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>()) |
| return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy); |
| |
| if (symRHS && symRHS->computeComplexity() < MaxComp) |
| if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>()) |
| return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy); |
| |
| return UnknownVal(); |
| } |
| |
| |
| SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op, |
| SVal lhs, SVal rhs, QualType type) { |
| |
| if (lhs.isUndef() || rhs.isUndef()) |
| return UndefinedVal(); |
| |
| if (lhs.isUnknown() || rhs.isUnknown()) |
| return UnknownVal(); |
| |
| if (Optional<Loc> LV = lhs.getAs<Loc>()) { |
| if (Optional<Loc> RV = rhs.getAs<Loc>()) |
| return evalBinOpLL(state, op, *LV, *RV, type); |
| |
| return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type); |
| } |
| |
| if (Optional<Loc> RV = rhs.getAs<Loc>()) { |
| // Support pointer arithmetic where the addend is on the left |
| // and the pointer on the right. |
| assert(op == BO_Add); |
| |
| // Commute the operands. |
| return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type); |
| } |
| |
| return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(), |
| type); |
| } |
| |
| DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state, |
| DefinedOrUnknownSVal lhs, |
| DefinedOrUnknownSVal rhs) { |
| return evalBinOp(state, BO_EQ, lhs, rhs, Context.IntTy) |
| .castAs<DefinedOrUnknownSVal>(); |
| } |
| |
| /// Recursively check if the pointer types are equal modulo const, volatile, |
| /// and restrict qualifiers. Also, assume that all types are similar to 'void'. |
| /// Assumes the input types are canonical. |
| static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy, |
| QualType FromTy) { |
| while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) { |
| Qualifiers Quals1, Quals2; |
| ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1); |
| FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2); |
| |
| // Make sure that non cvr-qualifiers the other qualifiers (e.g., address |
| // spaces) are identical. |
| Quals1.removeCVRQualifiers(); |
| Quals2.removeCVRQualifiers(); |
| if (Quals1 != Quals2) |
| return false; |
| } |
| |
| // If we are casting to void, the 'From' value can be used to represent the |
| // 'To' value. |
| if (ToTy->isVoidType()) |
| return true; |
| |
| if (ToTy != FromTy) |
| return false; |
| |
| return true; |
| } |
| |
| // FIXME: should rewrite according to the cast kind. |
| SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) { |
| castTy = Context.getCanonicalType(castTy); |
| originalTy = Context.getCanonicalType(originalTy); |
| if (val.isUnknownOrUndef() || castTy == originalTy) |
| return val; |
| |
| // For const casts, casts to void, just propagate the value. |
| if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType()) |
| if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy), |
| Context.getPointerType(originalTy))) |
| return val; |
| |
| // Check for casts from pointers to integers. |
| if (castTy->isIntegerType() && Loc::isLocType(originalTy)) |
| return evalCastFromLoc(val.castAs<Loc>(), castTy); |
| |
| // Check for casts from integers to pointers. |
| if (Loc::isLocType(castTy) && originalTy->isIntegerType()) { |
| if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) { |
| if (const MemRegion *R = LV->getLoc().getAsRegion()) { |
| StoreManager &storeMgr = StateMgr.getStoreManager(); |
| R = storeMgr.castRegion(R, castTy); |
| return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); |
| } |
| return LV->getLoc(); |
| } |
| return dispatchCast(val, castTy); |
| } |
| |
| // Just pass through function and block pointers. |
| if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) { |
| assert(Loc::isLocType(castTy)); |
| return val; |
| } |
| |
| // Check for casts from array type to another type. |
| if (originalTy->isArrayType()) { |
| // We will always decay to a pointer. |
| val = StateMgr.ArrayToPointer(val.castAs<Loc>()); |
| |
| // Are we casting from an array to a pointer? If so just pass on |
| // the decayed value. |
| if (castTy->isPointerType() || castTy->isReferenceType()) |
| return val; |
| |
| // Are we casting from an array to an integer? If so, cast the decayed |
| // pointer value to an integer. |
| assert(castTy->isIntegerType()); |
| |
| // FIXME: Keep these here for now in case we decide soon that we |
| // need the original decayed type. |
| // QualType elemTy = cast<ArrayType>(originalTy)->getElementType(); |
| // QualType pointerTy = C.getPointerType(elemTy); |
| return evalCastFromLoc(val.castAs<Loc>(), castTy); |
| } |
| |
| // Check for casts from a region to a specific type. |
| if (const MemRegion *R = val.getAsRegion()) { |
| // Handle other casts of locations to integers. |
| if (castTy->isIntegerType()) |
| return evalCastFromLoc(loc::MemRegionVal(R), castTy); |
| |
| // FIXME: We should handle the case where we strip off view layers to get |
| // to a desugared type. |
| if (!Loc::isLocType(castTy)) { |
| // FIXME: There can be gross cases where one casts the result of a function |
| // (that returns a pointer) to some other value that happens to fit |
| // within that pointer value. We currently have no good way to |
| // model such operations. When this happens, the underlying operation |
| // is that the caller is reasoning about bits. Conceptually we are |
| // layering a "view" of a location on top of those bits. Perhaps |
| // we need to be more lazy about mutual possible views, even on an |
| // SVal? This may be necessary for bit-level reasoning as well. |
| return UnknownVal(); |
| } |
| |
| // We get a symbolic function pointer for a dereference of a function |
| // pointer, but it is of function type. Example: |
| |
| // struct FPRec { |
| // void (*my_func)(int * x); |
| // }; |
| // |
| // int bar(int x); |
| // |
| // int f1_a(struct FPRec* foo) { |
| // int x; |
| // (*foo->my_func)(&x); |
| // return bar(x)+1; // no-warning |
| // } |
| |
| assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() || |
| originalTy->isBlockPointerType() || castTy->isReferenceType()); |
| |
| StoreManager &storeMgr = StateMgr.getStoreManager(); |
| |
| // Delegate to store manager to get the result of casting a region to a |
| // different type. If the MemRegion* returned is NULL, this expression |
| // Evaluates to UnknownVal. |
| R = storeMgr.castRegion(R, castTy); |
| return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); |
| } |
| |
| return dispatchCast(val, castTy); |
| } |